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Tropicalization is a non-Archimedean

analytic stack quotient

Martin Ulirsch

For a complex toric variety X the logarithmic absolute value in-
duces a natural retraction of X onto the set of its non-negative
points and this retraction can be identified with a quotient of
X(C) by its big real torus. We prove an analogous result in the
non-Archimedean world: The Kajiwara-Payne tropicalization map
is a non-Archimedean analytic stack quotient of Xan by its big affi-
noid torus. Along the way, we provide foundations for a geometric
theory of non-Archimedean analytic stacks, focussing on analytic
groupoids and their quotients, the process of analytification, and
the underlying topological spaces of analytic stacks.
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1. Introduction

Let T � Gn
m be a split algebraic torus and denote by N the dual of its

character lattice M . Suppose that X = X(Δ) is a T -toric variety defined by
a rational polyhedral fan Δ in NR = N ⊗ R. We refer the reader to [13] and
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[15] for the standard notation for toric varieties and details of this beautiful
theory.

1.1. The Archimedean case

Suppose first that X is defined over C. The logarithmic absolute value on C

induces a natural continuous map

X(C) −→ NR(Δ)

onto a partial compactification NR(Δ) of NR, whose fibers are homogenous
spaces under the operation of the real torus

NS1 = N ⊗ S1 ⊆ NC∗ = N ⊗ C
∗ = T (C) .

Write R =
(
R � {∞},+)

with the naturally defined addition. On a T -
invariant open affine subset Uσ = SpecC[Sσ] for a cone σ in Δ we have
NR(σ) = Hom(Sσ,R) with the topology of pointwise convergence and the
map is given by

Uσ(C) = Hom
(
Sσ, (C, ·)

) −→ NR(σ) = Hom(Sσ,R)

u −→ − log | · | ◦ u .

This map admits a continuous section, whose preimage is the locus of non-
negative points X(C)≥0 of X, and we can therefore reinterpret it as a re-
traction from X(C) onto X(C)≥0.

In fact, one can identify this retraction with the topological quotient
map

X(C) −→ X(C)/NS1

where the operation of NS1 on X(C) is induced by the natural operation of
T on X (see [13, Proposition 12.2.3]). Furthermore, if X is projective with a
chosen polarization, defined by a lattice polytope P in MR = M ⊗ R, then
there is a natural moment map X(C) → P , whose restriction to X(C)≥0 is
a homeomorphism (see [15, Section 4.2]).

1.2. The non-Archimedean case

Let k be a non-Archimedean field, possibly carrying the trivial norm. Ka-
jiwara [18] and, independently, Payne [24] have defined a continuous tropi-
calization map

tropΔ : Xan −→ NR(Δ)
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from the non-Archimedean analytic space Xan in the sense of Berkovich (see
[6] and [7]) onto NR(Δ) that can be identified with a natural deformation
retraction onto the non-Archimedean skeleton S(X) of Xan (see [32, Sec-
tion 2] and Lemma 4.1 below). In [24, Remark 3.3]) it has been suggested
that tropΔ is a non-Archimedean version of the moment map, a fact that has
been established by Kajiwara in [18, Theorem 2.2], when X is projective.

Write T ◦ for the affinoid torus

T ◦ =
{
x ∈ T an

∣∣|χm|x = 1 for all m ∈ M
}
,

an analytic subgroup of the analytic group T an that forms the natural ana-
logue of NS1 in the non-Archimedean world. The torus operation T ×X →
X induces an operation of T an, and therefore of T ◦, on Xan. Unfortunately
we cannot take the quotient of Xan by T ◦ in the category of topological
spaces, since the underlying set of T ◦ does not admit a group structure.

In Section 2 we work out foundations for a geometric theory of non-
Archimedean analytic stacks, geometric stacks over the category of non-
Archimedean analytic spaces in the sense of Berkovich, which allows us to
take such quotients. Based on this framework we develop in Section 3 the
notion of an underlying topological space |X | of a non-Archimedean analytic
stack X . Using this language we prove the following Theorem 1.1 identify-
ing the tropicalization map tropΔ with the non-Archimedean analytic stack
quotient Xan by T ◦, in complete analogy with the corresponding result in
the Archimedean case.

Theorem 1.1. There is a natural homeomorphism μΔ :
∣∣[Xan/T ◦]

∣∣ ∼−→
NR(Δ) that makes the diagram

Xan

∣∣[Xan/T ◦]
∣∣ NR(Δ)

tropΔ

μΔ

∼

commute.

In other words, on the level of underlying topological spaces, the
Kajiwara-Payne tropicalization map tropΔ and the analytic stack quotient
map X → [Xan/T ◦] are equal. Note that by Proposition 3.4 below Theo-
rem 1.1 implies the well-known fact that the tropicalization map tropΔ :
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Xan → NR(Δ) is a topological quotient map, which also follows from the
properness of tropΔ (see [24, Proposition 2.1 and Section 3]).

In particular, Theorem 1.1 says that NR(Δ), a purely combinatorial ob-
ject that serves as a tropical analogue of a toric variety, canonically admits
the structure of a non-Archimedean analytic stack. Based on this obser-
vation, one is led to speculate that tropical geometry can be axiomatized
as the geometry of ”affinoid substacks” of

[
Xan/T ◦]. The author hopes to

return to this speculation at some later point, once the necessary theory
of non-Archimedean analytic stacks has been developed, and to make this
statement precise.

It is worth noting that the operation of T ◦ on Xan already lies at the
very heart of the construction of the non-Archimedean skeleton S(X) of
Xan, as explained in [6, Theorem 6.1.5] for Pn and [32, Section 2] in the case
of k carrying the trivial absolute value. In fact, our proof of Theorem 1.1
(see Section 4) essentially goes by showing that the skeleton S(X) of Xan

is the set of T ◦-invariant points of Xan.

Example 1.2. Consider the affine line A1 over a trivially valued field k.
The non-Archimedean unit circle G◦

m is given as the subset of elements in
x ∈ (A1)an with |t|x = 1, where t denotes a coordinate on A1. The skeleton
S(A1) of (A1)an is the line connecting 0 to ∞. It is precisely the set of
”G◦

m-invariant” points in (A1)an and therefore naturally homeomorphic to
the topological space underlying

[
(A1)an

/
G◦

m

]
.

0

∞

η

(A1)an

0

∞

η

G◦
m

η

[
(A1)an

/
G◦

m

]
0

∞

�

�
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Example 1.2 also illustrates why it is important to take quotients with
respect to the operation of the affinoid torus T ◦ instead of T an. The topolog-
ical space underlying [Xan/T an] is homeomorphic to

∣∣[X/T ]
∣∣, whose points

correspond to the T -orbits in X. The topology on [X/T ] is determined by
the poset structure on the set of T -orbits that is given by containment of
orbit closures in X, and in particular not Hausdorff.

In order to get the gist of the argument in the proof of Theorem 1.1 the
reader may want to mostly skip the very technical Section 2, only referring
to the necessary definitions when needed and taking some results, such as
Proposition 2.14, as a black box.

1.3. Applications

1.3.1. Non-Archimedean geometry of Artin fans. In [35] (also see
[34, Section V]) we study the non-Archimedean analytic geometry of Artin
fans, certain locally toric Artin stacks that have been introduced in [3] and
[5] (also see [2]). The goal is to relate this theory to the tropical geometry
of logarithmic schemes, as introduced in [33].

Let k be an algebraically closed field that is endowed with the trivial
absolute value. By [3, Proposition 3.1.1] every fine and saturated logarithmic
scheme X, locally of finite type over k, admits a canonical strict morphism
X → AX into an Artin fan AX . We show that on the level of underlying
topological spaces the analytic morphism

(1) X� −→ A�
X

is nothing but the tropicalization map of the logarithmic scheme X con-
structed in [33], where (.)� is Thuillier’s analytic generic fiber functor over
trivially valued fields (see [32, Proposition et Définition 1.3], [35], and [34,
Section V.3]).

Theorem 1.1 is a first instance of this connection that is of independent
interest. The Artin fan of a T -toric variety X is the toric quotient stack
AX = [X/T ]. If X is complete, then Theorem 1.1 says that on the level of
underlying topological spaces the analytic stack quotient map

Xan = X� −→ A�
X = [X�/T�]

is nothing but the tropicalization map tropΔ of X.
The identification of (1) with the tropicalization map, or, in the log-

arithmically smooth case, with the natural deformation retraction of X�
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onto its toroidal skeleton (see [32] and [33, Theorem 1.2]) lies at the very
heart of recent results of Ranganathan [27], making explicit the relation-
ship between the tropical and non-Archimedean geometry of moduli spaces
(see [1]), tropical enumerative geometry (see [21] and [22]), and logarithmic
Gromov-Witten Theory (see [8] and [17]).

1.3.2. Realizability of tropical curves over Artin fans. In [28] the
author describes another application of Theorem 1.1 to the realizability prob-
lem for tropical curves by algebraic curves. In general not every tropical
curve Γ in NR(Δ) arises as the tropicalization of an algebraic curve in X.
The main reason for this behavior is the phenomenon of superabundance, a
cohomological obstruction to the existence of deformations of maps from a
logarithmically smooth curve into a toric variety that has an interpretation
purely in terms of the combinatorial geometry of Γ (see [21, Section 2.6],
[30], and [19, Section 1], as well as [9, Section 4]). However, this cohomolog-
ical obstruction vanishes for maps from a logarithmically smooth curve into
the Artin fan AX = [X/T ] of X leading to the main result of [28] that every
tropical curve can be realized as a curve mapping to the Artin fan AX .

1.4. An alternative approach to analytic stacks

A theory of non-Archimedean analytic stacks similar to ours has already
been outlined in [38, Section 6.1], in the context of non-Archimedean analytic
Gromov-Witten Theory, and further developed in [25]. The main difference
from our approach is that the above authors work over the category Rig of
quasi-separated rigid analytic spaces with locally finite admissible affinoid
coverings, endowed with the Tate-étale topology, while, in this article, we
work with the category of non-Archimedean analytic spaces in the sense of
Berkovich [7], endowed with the étale topology constructed in [7, Section 4].

The categoryRig is equivalent to the category of paracompact strictly k-
analytic spaces. Since étale morphisms are also Tate-étale, an analytic stack
in our setting is automatically an analytic stack in the setting of [38] and
[25]. Moreover, since the Tate-étale topology is finer than the étale topology
in the sense of [7] (as it includes e.g. closed affinoid domains), Porta and Yue
Yu’s class of analytic stacks is strictly bigger than ours. This distinction is
particularly relevant when studying generic fiber functors, such as Thuillier’s
(.)�-functor (see [35, Section 5]).

In Porta and Yue Yu’s setup one can associate to a non-Archimedean
analytic stack an underlying topological space in complete analogy with
Section 3. For many important examples, such as the toric quotients in
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Theorem 1.1, or analytifications of algebraic stacks, both definitions lead to
the same underlying topological spaces.

1.5. Conventions and prerequisites

We denote the category of non-Archimedean analytic spaces in the sense of
[7] byAnk. Given an analytic space S, we denote by (Ank/S) the category of
analytic spaces over S. A surjective morphism f : X → Y of analytic spaces
is said to be universally submersive, if every base change of f is submersive,
i.e. a topological quotient map.

Following Ducros [14, Section 3.1] a morphism f : X → Y between good
analytic spaces is said to be naively flat, if for all x ∈ X and y = φ(x) the
OY,y-algebraOX,x is flat. As seen in [14, Section 3.4] this notion is, in general,
not preserved under base change. As a solution to this issue, Ducros [14,
Section 3.1.4.2] defines a morphism f : X → Y to be universally flat (or
short: flat), if all of its good base changes are naively flat. It is an immediate
consequence of this definition that being flat is stable under base change.
So, in particular, all analytic domains in X are flat over X.

This shows that, in contrast to the category of schemes, not all flat
morphisms are open maps. For quasi-finite morphisms, however, this notion
of flatness agrees with the one introduced in [7, Section 3.2]. Therefore by [7,
Proposition 3.27] a quasi-finite flat morphism f : X → Y of analytic spaces
is open.

A morphism f : X → Y is said to be G-smooth of relative dimension
n, if it is flat and the sheaf of relative differentials ΩXG/YG

in the sense
of [7, Section 3.3] is locally free of dimension n. Accordingly, a G-smooth
morphism of relative dimension 0 is called G-étale. A morphism f : X → Y
is said to be étale, if it is quasi-finite and G-étale. This definition is equivalent
to [7, Definition 3.3.4].

Let X be an analytic space. As defined in [7, Section 4.1], an étale cov-
ering of an analytic space U over X is given by a family of étale morphisms
(f : Ui → U) such that

⋃
i f(Ui) = U . The class of étale coverings defines

a Grothendieck topology on Ank, called the étale topology. We denote the
resulting étale sites by (Ank)et and, more generally, for an analytic space S
by (Ank/S)et.

We refer the reader to [11, Section 2] for a long list of properties of
morphisms in Ank that can be checked on an étale covering of the target.
For our purposes it is enough to keep in mind that this list includes flat, G-
smooth, G-étale, étale, and surjective morphisms. With the same methods
as the ones employed in the proofs of [11, Theorems 2.4 and 2.5] one can
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show that whether a morphism is flat, G-smooth, G-étale, étale, or surjective
can also be checked on an étale covering of the domain. An easy argument
shows that for a surjective morphism to be universally submersive can be
verified on an étale covering of the target as well as on an étale covering of
the domain.

2. A geometric theory of non-Archimedean analytic stacks

The purpose of this section is to lay the foundations for a theory of geometric
stacks, in the sense of [29], over the category of non-Archimedean analytic
spaces in the sense of Berkovich (see [6] and [7]). A central role in this theory
is played by the notion of analytic groupoids, groupoid objects in Ank, and
their quotient stacks. Using these techniques we construct an analytification
pseudo-functor that associates to an algebraic stack X , locally of finite type
over k, an analytic stack X an.

We freely use the language of categories fibered in groupoids and stacks
over arbitrary sites, as developed in [16] and [37], and follow the notations
and conventions of the Stacks Project [31]. The only major difference from
this edifice is that for the definition of algebraic stacks we are using the big
étale site over the category of schemes that are locally of finite type over
k as an underlying site and not the fppf-site as in [31, Tag 026O]. Both
approaches are equivalent by [31, Tag 04X1].

2.1. Étale analytic spaces and analytic stacks

Given an analytic space X its associated functor of points is given by

hX : (Ank)
op −→ Sets

T �−→ X(T ) = Hom(T,X) .

By Yoneda’s Lemma the association X �→ hX faithfully embeds Ank into
the category of pre-sheaves on Ank as full subcategory. In the following
we may therefore safely identify X with hX . A pre-sheaf on Ank is said
to be representable by an analytic space X, if it is isomorphic to hX . A
morphism X → Y of pre-sheaves on Ank is said to be representable, if for
every morphism T → X from an analytic space T the base change X ×Y T
is representable by an analytic space S.
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Definition 2.1. An étale analytic space is a sheaf

X : (Ank)
op
et −→ Sets

such that there is an analytic space U together with a representable mor-
phism U → X that is surjective and étale.

We are going to refer to the representable surjective étale morphism
U → X (and in a slight abuse of notation also to U itself) as an atlas of
the étale analytic space X. The category of étale analytic spaces is the full
subcategory of the category of pre-sheaves (Ank)

op → Sets whose objects
are étale analytic spaces.

Example 2.2. Let X be an analytic space. In order to show that X is an
étale analytic space the only non-trivial fact is that hX is a sheaf in the étale
topology. By [7, Proposition 4.1.3] this is true when X is a good analytic
space and the general case follows from [12, Theorem 4.1.2], as explained in
[7, Remark 4.1.5].

A category fibered in groupoids over Ank is said to be representable by
an étale analytic space X, if it is equivalent to (Ank/X), the category of
analytic spaces over X. In this case we again identify X with (Ank/X),
which is justified by the 2-Yoneda Lemma (see [31, Tag 04SS]). A morphism
X → Y of categories fibered in groupoids is representable by étale analytic
spaces, if for every morphism T → Y from an analytic space T the 2-fiber
product X ×Y T is representable by an étale analytic space.

Lemma 2.3. Let X be a category fibered in groupoids over Ank. The fol-
lowing properties are equivalent:

(i) The diagonal morphism ΔX : X → X ×X is representable by étale an-
alytic spaces.

(ii) Given an analytic space T and two objects x, y ∈ X (T ) the presheaf
IsomX (x, y) is representable by an étale analytic space.

(iii) Every morphism U → X from an analytic space U to X is representable
by étale analytic spaces.

The proof of Lemma 2.3 is a simple adaption of [31, Tag 045G] to the
analytic situation (also see [36, Proposition 7.13]) and is left to the reader.
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Definition 2.4. A stack X over (Ank)et is said to be analytic, if the fol-
lowing two axioms hold:

(i) The diagonal morphism Δ : X → X ×X is representable by étale an-
alytic spaces.

(ii) There is an analytic space U and a morphism U → X that is G-smooth,
surjective, and universally submersive.

We are going to refer to the morphism U → X (and in a slight abuse
of notation to U itself) as an atlas of X . Note that by Lemma 2.3 the
diagonal morphism Δ : X → X ×X being representable by étale analytic
spaces implies that the atlas U → X is representable by étale analytic spaces.
If the atlas U → X can be chosen to be étale, we are going to refer to X
as an analytic Deligne-Mumford stack. The 2-category of analytic stacks is
defined to be the full subcategory of the 2-category of categories fibered in
groupoids over (Ank)et whose objects are analytic stacks.

Example 2.5. Let X be an étale analytic space. Since X is a sheaf in the
étale topology, the category fibered in groupoids (Ank/X) is a stack over
the étale site (Ank)et. The stack X is an analytic Deligne-Mumford stack,
because the surjective étale morphism U → X from an analytic space U as
in Definition 2.1 forms an atlas of X.

Remarks 2.6. (i) In Definition 2.1 we only require the atlas U → X to
be representable. From a theoretical point of view, it would be more
pleasing to require every morphism S → X from an analytic space S
to be representable, or equivalently that the diagonal morphism ΔX :

X → X ×X is representable (see [31, Tag 0024]). Nevertheless, in this
case, the proof of Proposition 2.8 below would require a bootstrap
argument similar to [10, Proposition A.1.1] and [31, Tag 0264], which
uses more sophisticated techniques from descent theory. Unfortunately
analytic analogues of these result do not seem to have appeared in the
literature so far.

(ii) In both Definition 2.1 and Definition 2.4 it would be theoretically more
appealing to use an analogue of the fppf-topology on the category Ank.
Since, to the best of our knowledge, there is no consensus in the litera-
ture on the nature of this analogue, let alone a satisfying collection of
descent theoretic results, we refrain from carrying out this approach.
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2.2. Groupoid presentations

The goal of this section is to study presentations of étale analytic spaces by
étale equivalence relations and presentations of analytic stacks by analytic
groupoids.

2.2.1. Étale equivalence relations.

Definition 2.7. Let U be an analytic space. An étale equivalence relation
on U consists of a monomorphism R ↪→ U × U such that

(i) for all analytic spaces T the subset R(T ) ⊆ U(T )× U(T ) defines an
equivalence relation, and

(ii) the compositions R ↪→ U × U ⇒ U are étale.

Given an étale equivalence relation R on an analytic space U , the asso-
ciation

T �−→ U(T )/R(T ) .

defines a pre-sheaf U/preR on Ank. We refer to the sheafification U/R of
U/preR on (Ank)et as the quotient of U by R.

Proposition 2.8. Let R be an étale equivalence relation on an analytic
space U . Then the quotient U/R is an étale analytic space.

Our approach to the proof of Proposition 2.8 is inspired by [31, Tag 0264],
but only uses the descent-theoretic results contained in [12] (see Remark 2.6
above). The statement of the following Lemma 2.9 has been communicated
to the author by Brian Conrad. We would like to thank him for generously
allowing us to include it in this article.

Let S be a fixed analytic space. One can easily generalize the above
notion to define an étale equivalence relations R ↪→ U ×S U in the category
of analytic spaces over S. In a slight abuse of notation its quotient sheaf
over

(
Ank/S

)
et

will also be denoted by U/R.

Lemma 2.9. Let R ↪→ U ×S U an étale equivalence relation in the category
of analytic spaces over S. If U → S is étale, then the quotient sheaf U/R over(
Ank/S

)
et

is representable by an analytic space X, which is étale over S.

Proof. Let Ui ⊆ U be a cover of U by open subsets. Set Ri = R×U×U (Ui ×
Ui) = R ∩ (Ui × Ui). Then the quotient U/R is representable by an analytic
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space X étale over S if and only if all quotients Ui/Ri are representable by
analytic spaces Xi étale over S. This statement is an immediate generaliza-
tion of [12, Lemma 4.2.3] and its proof is the same in our situation. Since
every point in U has an open neighborhood that is a finite étale cover of
an open subset of S, we can therefore assume that in our claim the étale
morphism U → S is finite étale.

Now consider the base change U ′ = U ×S U of U along U → S. Setting
R′ = R×U U ′ we obtain an étale equivalence relation R′ ↪→ U ′ ×S U ′ whose
quotient U ′/R′ is representable by an analytic spaceX ′, since the morphisms
R′ ⇒ U ′ admit sections. Similarly, we can consider the base change U ′′ =
U ′ ×U U ′ as well as the induced étale equivalence relation R′′ ↪→ U ′′ ×S U ′′

with R′′ = R′ ×U ′ U ′′. The morphisms R′′ ⇒ U ′′ again admit sections and
therefore the quotient U ′′/R′′ is representable by an analytic space X ′′. We
have an induced étale equivalence relation X ′′ ↪→ X ′ ×S X ′ whose diagonal
is a finite monomorphism, as a base change of U → S, and thus a closed
immersion. By a relative version of [12, Theorem 1.2.2] the quotient X ′′/X ′

is representable by an analytic spaceX over S. Finally, the morphismX → S
is étale, sinceX ′ → X is étale and surjective and the compositionX ′ → X →
S is étale. �

Proof of Proposition 2.8. Write X = U/R. Let T → X be a morphism from
an analytic space T to the quotient sheaf X = U/R. We have to show that
Z = T ×X U is representable by an analytic space.

There is an étale covering (Ti → T ) of T such that X|Ti
= (U/preR)|Ti

.
In this case the morphisms Ti → X factor through morphisms Ti → U and
the morphisms Tij = Ti ×T Ti → U × U factor through morphisms Tij → R.
In this case we have natural isomorphisms

Ti ×T Z � Ti ×T T ×X U

� Ti ×X U

� Ti ×U U ×X U

� Ti ×U R .

Therefore Ti ×T Z is representable by an analytic space Si and the mor-
phisms Si → Ti are étale and surjective, since U → X is étale and surjective.
The pullback of the effective descent datum

(
Ti, φij : Tij

∼−→ Tji

)
via Z → T

induces a descent datum over Z. This descent datum is effective by Lemma
2.9, since the morphisms Si → Ti are étale and surjective. Therefore Z is
representable by an analytic space S.
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Finally, the morphism S → T is étale and surjective, since the Si → Ti

are étale and surjective. Thus U → X is étale and surjective as well. �

A presentation of an étale analytic space X is given by an étale equiv-
alence relation R on an analytic space U together with an isomorphism
U/R � X. The following Proposition 2.10 shows that every étale analytic
space has a presentation.

Proposition 2.10. Let X be an étale analytic space and f : U → X be
a representable surjective étale morphism from an analytic space U onto
X. Set R = U ×X U . Then the monomorphism R ↪→ U × U defines an étale
equivalence relation and the morphism U → X induces an isomorphism
U/R � X.

Our proof of Proposition 2.10 is simple adaption of [31, Tag 0262].

Proof of Proposition 2.10. For an analytic space T we have

R(T ) =
{
(a, b) ∈ U(T )× U(T )

∣∣f ◦ a = f ◦ b}

and this clearly defines an equivalence relation. The morphisms R ⇒ U are
étale as base changes of the étale morphism f .

We are now going to prove U/R � X. By [31, Tag 086K] we only need to
show that U → X is an epimorphism of sheaves. Since U → X is surjective,
the base changeR → U is surjective as well and this is equivalent to hR → hU
being an epimorphism of étale sheaves, since both U and R are analytic
spaces. Since U → X is an étale cover of X, this observation already implies
the claim. �

Remark 2.11. Suppose that an étale analytic space X admits a pre-
sentation by an étale equivalence relation R ⇒ U such that the diagonal
R → U × U is a closed immersion. Then by [12, Theorem 1.2.2] the étale
analytic space X = U/R is representable by an analytic space. This means
that all separated étale analytic spaces are already analytic spaces.

2.2.2. Analytic groupoids.

Definition 2.12. An analytic groupoid is a groupoid object in the category
of étale analytic spaces, i.e. a septuple (U,R, s, t, c, i, e) consisting of two étale
analytic spaces U and R, as well as

• a source morphism s : R → U ,
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• a target morphism t : R → U ,

• a composition morphism c : R×s,U,t R → R,

• an inverse morphism i : R → R, and

• a unit morphism e : U → R

such that for all analytic spaces T over k the septuple
(
U(T ), R(T ), s, t, c, i, e

)

is a groupoid category.

Note that the inverse morphism i and the unit morphism e are uniquely
determined by s, t, and c. In our notation we are going to suppress the
reference to the morphisms c, i, and e and simply write (s, t : R ⇒ U) or
(R ⇒ U) for an analytic groupoid (U,R, s, t, c, i, e).

An analytic groupoid (R ⇒ U) gives rise to a presheaf

(Ank)
op −→ Groupoids

T �−→ (
U(T ) ⇒ R(T )

)

which by [31, Tag 0049] corresponds to a category fibered in groupoids
[U/preR] over Ank. In fact, the category fibered in groupoids [U/preR] is
pre-stack over (Ank)et.

Definition 2.13. Let (R ⇒ U) be an analytic groupoid. The quotient stack
[U/R] is defined to be the stackification of the pre-stack [U/preR].

Let now P be a property of morphisms in Ank that is stable under base
change and can be checked on étale coverings of the target and the domain.
An analytic groupoid (U,R, s, t, c) is said to have property P, if the source
and the target morphism (s, t : R ⇒ U) both have property P. It is enough
to check such properties for one of the two morphisms, since the inverse
morphism i : R → R is an isomorphism.

Proposition 2.14. Let (R ⇒ U) be a G-smooth, surjective, and universally
submersive analytic groupoid. Then:

(i) The quotient stack X = [U/R] is an analytic stack.

(ii) If the groupoid (R ⇒ U) is étale, the quotient stack X = [X/R] is an
analytic Deligne-Mumford stack.

Example 2.15. Let G be an analytic group acting on an analytic space
X. Then we have an analytic groupoid (G×X ⇒ X) given as follows:
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• the source morphism s : G×X → X by

(g, x) �−→ x ,

• the target morphism t : G×X → X by

(g, x) �−→ g · x ,

• the composition morphism c : (G×X)×X (G×X) → (G×X) by

(
(g, x), (g′, x′)

) �−→ (g′g, x) ,

• the inverse morphism i : G×X → G×X by

(g, x) �−→ (g−1, x) ,

and

• the unit morphism by e : X → G×X by

x �−→ (1, x) .

In this case the quotient stack will be denoted by [X/G]. By Proposition 2.14
the quotient [X/G] is an analytic stack and, if G is finite, it is an analytic
Deligne-Mumford stack.

The proof of Proposition 2.14 below is an adaption of the proof of [31,
Tag 04TK] to the non-Archimedean analytic situation.

Lemma 2.16. Let (R ⇒ U) be an analytic groupoid. Then the diagonal
morphism ΔX : X → X ×X of the quotient stack X = [U/R] is representable
by étale analytic spaces.

Proof. By Lemma 2.3 we only need to show that for an analytic space T
and two objects x, y ∈ X (T ) the sheaf IsomX (x, y) is representable. We claim
that there is an étale covering (Ti → T ) such that the sheaf IsomX (x, y)|Ti

is
representable by an étale analytic space. In order to see this we can choose
the Ti small enough so that we may assume that X|Ti

= [U/preR]|Ti
by the
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universal property of stackification. In this case we have a cartesian diagram

IsomX (x, y)|Ti
−−−−→ R

⏐⏐�
⏐⏐�(s,t)

Ti

(
x|Ti

,y|Ti

)
−−−−−−−→ U × U

and this shows that IsomX (x, y)|Ti
is representable by an étale analytic

space. Therefore, since IsomX (x, y) is a sheaf in the étale topology, it is
representable by an étale analytic space itself. �

Lemma 2.17. Let (R ⇒ U) be an analytic groupoid. Then the natural
square

R
s−−−−→ U

t

⏐⏐�
⏐⏐�

U −−−−→ [U/R]

is 2-cartesian.

Proof. Let T be an analytic space and consider two elements x and y in
[U/R](T ). Choose an étale covering (Ti → T ) of T such that [U/R]|Ti

=
[U/preR]|Ti

. As above we have again a cartesian diagram

IsomX (x, y)|Ti
−−−−→ R

⏐⏐�
⏐⏐�(s,t)

Ti

(
x|Ti

,y|Ti

)
−−−−−−−→ U × U

and this shows IsomX (x, y)|Ti
� (T ×U×U R)|Ti

. Since both sides of this
equation are sheaves, we obtain a global isomorphism

IsomX (x, y) � T ×U×U R

and this immediately implies that the natural functor R → U ×[U/R] U is an
equivalence. �

Proof of Proposition 2.14. By Lemma 2.16 the diagonal morphism of [U/R]
is representable by étale analytic spaces. We need to check that U → [U/R]
is G-smooth, surjective, and universally submersive. For this let T → [U/R]
be a morphism from an analytic space T into the quotient stack [U/R]. It is
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enough to check these properties étale locally on T . So take an étale cover
(Ti → T ) of T such that [U/R]|Ti

� [U/preR]|Ti
and we can assume that

Ti → X comes from a morphism xi : Ti → U . In this case, by Lemma 2.17,
there are natural equivalences

U ×[U/R] Ti � (U ×[U/R] U)×s,U,xi
Ti � R×s,U,xi

Ti

and the projection morphism R×U Ti → Ti is G-smooth, surjective, and
universally submersive as a base change of s : R → U . In the case that s
is étale, the morphism U ×[U/R] T → T is étale and [U/R] is an analytic
Deligne-Mumford stack. �

A groupoid presentation of an analytic stack X consists of an analytic
groupoid (R ⇒ U) together with an equivalence [U/R] � X . Following the
construction presented in [31, Tag 04T3] one can show that every analytic
stack X has a G-smooth, surjective, and universally submersive groupoid
presentation; it is given by a G-smooth, surjective, universally submersive
atlas U of X and R = U ×X U .

2.3. Analytification

As explained in [6, Theorem 3.4.1 and Theorem 3.5.1] and [7, Proposi-
tion 2.6.1] there is an analytification functor

(.)an : Schloc.f.t./k −→ Ank

X �−→ Xan(2)

from the category of schemes locally of finite type over k into the category of
k-analytic spaces that respects fiber products and therefore all finite limits.
By [7, Proposition 3.3.11] algebraic étale morphisms on the left side of (2)
induce analytic étale morphisms on the right side. Thus (.)an is a contin-
uous functor with respect to the étale topologies and it therefore defines a
morphism

α : (Ank)et −→
(
Schloc.f.t./k

)
et

from the analytic to the algebraic étale site.

Definition 2.18. Given an algebraic stack X locally of finite type over k
we define its associated analytic stack X an as the pullback α∗X of X along
α in the sense of [16, Section II.3.2] and [31, Tag 04WJ].
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A priori the pullback α∗X is only a stack; we will see in Corollary 2.20
below that X an = α∗X is analytic. Let Y be an analytic stack. Then by the
universal property of pullback there is natural equivalence

(3) HOM(Y,X an) � HOM(α∗Y,X )

between the functor categories, where α∗Y is the pushforward of Y along α,
i.e. the restriction of Y to Schloc.f.t./k along α. For a scheme X, locally of
finite type over k, the pullback α∗X is nothing but the analytic space Xan

associated to X. So, given an analytic space Y , the equivalence (3) reduces
to a bijection

Hom(Y,Xan) � Hom(α∗Y,X) = Hom(Y,X) ,

i.e. to the universal property of the analytification functor (.)an in [6, The-
orems 3.4.1 and 3.5.1].

By [31, Tag 00XS] taking pullbacks commutes with coequalizers of
sheaves and therefore for an étale equivalence relation R on an analytic
space U there is a natural isomorphism Uan/Ran � (U/R)an. This shows
that the analytification of an algebraic space, locally of finite type over k, is
an étale analytic space, since by [31, Tag 0262] every algebraic space X has
a presentation by an étale equivalence relation.

The following Proposition 2.19 shows that (.)an respects groupoid quo-
tients.

Proposition 2.19. Let X be an algebraic stack locally of finite type over k
and [U/R] � X a groupoid presentation of X of by algebraic spaces locally
of finite type over k. Then there is a natural equivalence

X an � [Uan/Ran] .

Using Proposition 2.19 we can show that the analytification of an alge-
braic stack locally of finite type over k is an analytic stack.

Corollary 2.20. Let X be an algebraic stack that is locally of finite type
over k. Then the stack X an is analytic. Moreover, if X is a Deligne-Mumford
stack, then X an is an analytic Deligne-Mumford stack.

Proof. By [31, Tag 04T3] every algebraic stack locally of finite type over k
has a smooth and surjective groupoid presentation [U/R] � X in the cate-
gory of algebraic spaces that are locally of finite type over k. By [6, Propo-
sition 3.4.6] (Ran ⇒ Uan) is surjective and by [7, Proposition 3.5.8] smooth
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in the sense of [7, Section 3.5]. Smooth analytic morphisms are stable under
base change by [7, Proposition 3.5.2] and open by [7, Corollary 3.7.4]. There-
fore both san and tan are universally submersive. Moreover, smooth mor-
phisms are G-smooth and therefore X an is analytic by Proposition 2.14 (i).

If X is a Deligne-Mumford stack, we can find an étale and surjective
groupoid presentation [U/R] � X of X by algebraic spaces locally of finite
type over k. In this case the induced analytic groupoid (Ran ⇒ Uan) is étale
by [7, Proposition 3.3.11] and surjective by [6, Proposition 3.4.6]. There-
fore X an = [Uan/Ran] is an analytic Deligne-Mumford stack by Proposi-
tion 2.14 (ii). �

The general properties of pullbacks (see [16, Section II.3.2] and [31, Tag
04WJ]) ensure that there is an analytification pseudofunctor

(.)an : Alg.Stacksloc.f.t./k −→ An.Stacksk

X �−→ X an

that restricts to the usual analytification functor on the full subcategory of
schemes locally of finite type over k. This functor is unique up to equivalence.

Example 2.21. Let G be an algebraic group acting on a scheme X that is
locally of finite type over k. Then the analytification [X/G]an of the quotient
stack [X/G] is given by [Xan/Gan].

The rest of this section is devoted to the proof of Proposition 2.19.

Proof of Proposition 2.19. This proof follows ideas of the proof of [31, Tag
04WX]. Let us first recall the construction of α∗X in our situation. Consider
the category X an,pp over Ank defined as follows:

• An object of X an,pp is a triple (T, φ : T ′ → T an, x), where T is an object
of Schloc.f.t./k, the arrow φ is a morphism in Ank and x : T → U is
morphism of schemes.

• A morphism

(a, a′, γ) : (T1, φ1 : T
′
1 → T an

1 , x1) −→ (T2, φ : T ′
2 → T an

2 , x2)
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consists of a morphism a : T1 → T2 and a morphism a′ : T ′
1 → T ′

2 in
Ank such that the diagram

T ′
1

a′−−−−→ T ′
2⏐⏐�
⏐⏐�

T an
1

aan−−−−→ T an
2

commutes, as well as a morphism γ : T1 → R such that the diagram

U

T1 R

T2 U

a

γ

x1

x2

s

t

commutes.

• The functor X an,pp → Ank is given by

(T, φ : T ′ → T an, x) �−→ T ′ .

Now let S denotes the set of arrows in X an,pp of the from

(a, idT ′ , γ) : (T1, φ1 : T
′ → T an

1 , x1) −→ (T2, φ2 : T
′ → T an

2 , x2)

such that γ is strongly cartesian as a morphism in [U/preR] over Schloc.f.t./k.
By [31, Tag 04WF] the set S is right-multiplicative and by [31, Tag 04WG
and Tag 04WH] the localization X an,p = S−1X an is a category fibered in
groupoids over Ank. As defined in [31, Tag 04WJ] the analytification X an

is the stackification of X an,p.
Having developed this terminology we can now prove our claim. Define

a functor [U/preR]an,pp → [Uan/preR
an] by

(T, φ : T ′ → T an, x) �−→ (x′ = x ◦ φ : T ′ → Uan)

on objects and

(a, a′, γ) �−→ (
(a′ : T ′

1 → T ′
2), (γ ◦ φ1 : T

′
1 → Ran)

)
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on morphisms. Since (Ran ⇒ Uan) is a groupoid in étale analytic spaces, this
functor sends morphisms in R to isomorphisms and therefore it canonically
factors through a functor

[U/preR]an,p → [Uan/preR
an] .

By [31, Tag 04WR] taking pullbacks commutes with stackification and so
we obtain a natural functor

X an −→ [Uan/Ran]

by the universal property of stackification.
Finally we need to prove that this functor is an equivalence; by [31, Tag

046N] it is enough to show that it is fully faithful and étale locally essentially
surjective. The latter assertion immediately follows from U admitting a sur-
jective étale morphism from a scheme locally of finite type over k. Since R
also admits a surjective étale morphism from a scheme locally of finite type
over k, the above functor is étale locally full. Moreover, for an analytic space
T ′ the images of two morphisms in [X/preR]an,pp(T ′) agree in [Uan/preR

an]
if and only if they differ by an element of R(T ). These two observations
are enough to show that the above functor is full and faithful by [31, Tag
04WQ]. �

Remarks 2.22. (i) Given a presentation [U/R] � X of an algebraic stack
X locally of finite type over k by algebraic spaces locally of finite
type over k, one could directly define X an as the groupoid quotient
[Uan/Ran] and show that this definition gives rise to a well-defined
object.

(ii) Let X be a separated algebraic space locally of finite type over k. In
[12, Theorem 1.2.1] the authors show that the analytification Xan of
X, which is a priori only an étale analytic space, is representable by
an analytic space.

3. Topology of analytic stacks

In this section we are going to define and study the functor

|.| : An.Stacksk −→ Top
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that associates to an analytic stack its underlying topological space. Many
results in this section are analogues of the corresponding results in the al-
gebraic setting, as developed e.g. in [31, Tag 04XE].

3.1. Points of analytic stacks

Throughout this section we fix an analytic stack X . Consider pairs (K, p)
consisting of a non-Archimedean field extension K of k and a morphism
p : M(K) → X over k. Two such pairs (K, p) and (L, q) are said to be equiva-
lent, if there is a non-Archimedean field extension Ω of bothK and Lmaking
the diagram

M(Ω) −−−−→ M(L)
⏐⏐�

⏐⏐�q

M(K) −−−−→
p

X

2-commutative. An argument analogous to the one in [31, Tag 04XF] shows
that this notion defines an equivalence relation.

Definition 3.1. The set of points |X | of X is the set of equivalence classes
of pairs (K, p) as above.

If X is represented by an analytic space X the set |X | recovers exactly
the set |X| underlying X. A morphism f : X → Y of analytic stacks induces
a well-defined map |f | : |X | → |Y| that is given by sending a representative
(K, p) of a point in |X | to the composition (K, f ◦ p). Moreover, the associ-
ation f �→ |f | is functorial. Note, in particular, that, given a 2-commutative
square

W −−−−→ X
⏐⏐�

⏐⏐�

Y −−−−→ Z
of analytic stacks, the induced diagram

|W| −−−−→ |X |
⏐⏐�

⏐⏐�

|Y| −−−−→ |Z|
is commutative in the category of sets.
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Lemma 3.2. (i) An equivalence X → Y of analytic stacks induces a nat-
ural bijection |X | ∼−→ |Y|.

(ii) Let X → Z and Y → Z be morphisms of analytic stacks. Then the
induced map |X ×Z Y| → |X | ×|Z| |Y| is surjective.

(iii) Let f : X → Y be a morphism of analytic stacks that is representable by
étale analytic spaces. Then f is surjective if and only if |f | : |X | → |Y|
is surjective.

Our proof of Lemma 3.2 is a simple adaptation of the proofs of the
corresponding statements in [31, Tag 04XE] and [31, Tag 0500].

Proof of Lemma 3.2. Part (i) immediately follows from the above reasoning,
since two naturally equivalent morphisms induce the same morphism on the
underlying topological spaces.

The proof of part (ii) is word-by-word the same as the proof of [31,
Tag 04XH]. Let K and L be two non-Archimedean extensions of k and
consider two morphisms M(K) → X and M(L) → Y, whose compositions
M(K) → X → Z and M(L) → Y → Z are equal as elements of |Z|. Then
there is a common non-Archimedean extension Ω of both K and L such that
M(Ω) → Z and M(Ω) → Z are 2-isomorphic. But this is exactly the datum
of a morphism M(Ω) → X ×Z Y.

For part (iii) suppose first that |f | : |X | → |Y| is surjective. Let T → Y
be a morphism from an analytic space T to Y and S → X ×Y T a surjective
morphism from an analytic space S onto X ×Y T . Then the map |S| → |T |
factors as |S| → |X ×Y T | → |X | ×|Y| |T | → |T | and is therefore surjective
by part (ii).

Conversely assume that f : X → Y is surjective. Then, given a pair
(K, p) consisting of a non-Archimedean extension K of k and a morphism
p : M(K) → Y, the induced morphism X ×Y M(K) → M(K) is surjective
as a morphism of étale analytic spaces. Let S → X ×Y M(K) be a surjective
morphism from an analytic space S. Since S → M(K) is surjective, we can
find a pair (K ′, p′) consisting of a non-Archimedean extension K ′ of K and
a morphism p′ : M(K ′) → S such that the induced composition

M(K ′) −→ S −→ X ×Y M(K) −→ M(K)

is the morphism induced by K ↪→ K ′. This proves that |f | is surjective. �

Definition 3.3. Let X be an analytic stack and choose a surjective univer-
sally submersive morphism U → X from an analytic space U onto X . The
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set |X | endowed with the quotient topology induced via |U | → |X | is called
the topological space underlying X .

The topology on |X | does not depend on the choice of an atlas U → X
by the following Proposition 3.4.

Proposition 3.4. Let X be an analytic stack.

(i) For every universally submersive surjective morphism U ′ → X from
an analytic space U ′ onto X the induced surjective map |U ′| → |X |
is a topological quotient map. If U ′ → X is étale, the quotient map
|U ′| → |X | is open.

(ii) Let [U/R] � X be a groupoid presentation of an analytic stack X . Then
the image of |R| ⇒ |U | × |U | defines an equivalence relation on |U | and
|X | is the topological quotient of |U | by this equivalence relation.

(iii) For every morphism f : X → Y of analytic stacks the induced map |f | :
|X | → |Y| is continuous.

For the proof of Proposition 3.4 we simply adapt the proof of [31, Tag
04XL] to the non-Archimedean analytic situation.

Proof. Taking the fiber product U ×X U ′ induces a diagram

|U ×X U ′| −−−−→ |U ′|
⏐⏐�

⏐⏐�

|U | −−−−→ |X |

where the upper horizontal and the left vertical arrow are surjective topo-
logical quotient maps. This immediately implies that the surjective map
|U ′| → |X | is also a topological quotient map.

For part (ii) we remark that by Lemma 3.2 (iii) the induced map |U | →
|X | is surjective. Since R → U ×X U is also surjective, the induced morphism
|R| → |U | ×|X | |U | is surjective by Lemma 3.2 (ii) and (iii). Thus the image
of |R| → |U | × |U | is exactly the set of pairs (u1, u2) consisting of elements
u1 and u2 in |U | that have the same image in |X |, i.e. |X | is the set-theoretic
quotient of |U | by the equivalence relation |R| → |U | × |U |. This defines a
topological quotient by (i).
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Consider now part (iii): Take an atlas V → Y and a representable sur-
jective étale cover U → X ×Y V . This gives rise to a 2-commutative diagram

U
f ′

−−−−→ V
⏐⏐�

⏐⏐�

X f−−−−→ Y
such that the vertical arrows are universally submersive surjective mor-
phisms. But then the vertical arrows induce surjective quotient maps of
the underlying topological spaces and therefore the continuity of |f ′| implies
that |f | is continuous. �

Corollary 3.5. The underlying topological space |X | of an analytic Deligne-
Mumford stack X is locally compact and locally path-connected.

Proof. Choose a surjective étale morphism U → X . By Proposition 3.4 (i)
the quotient map |U | → |X | is open and therefore |X | is locally compact
and locally path-connected, since |U | is locally compact and locally path-
connected. �

Corollary 3.6. Let U be an analytic space and Γ be a finite group acting
analytically on U . Then the underlying topological space of the quotient stack
[U/Γ] is equal to |U |/Γ.
Proof. This immediately follows from Proposition 3.4 (ii). �

Remark 3.7. Let G be an analytic group that is operating on an analytic
space X and let H be a (not necessarily analytic) subgroup of G. In [6,
Section 5.1] the author introduces a topological space X/H that functions
as a quotient of X by H. Its points are precisely the orbits (in the sense of
[6, Section 5.1]) of H in X and X/H is endowed with the quotient topology
from X. Therefore, if H is an analytic group itself, then by Proposition 3.4
(i) the topological space X/H is naturally homeomorphic to

∣∣[X/H]
∣∣. So, in

this case X/H naturally carries the structure of an analytic stack.

3.2. Topology and analytification

Let X be an algebraic stack that is locally of finite type over k. For a non-
Archimedean extension K of k we have a natural equivalence

HOM(M(K),X an) � HOM(SpecK,X )
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and therefore one may describe |X an| as the set of equivalence classes of pairs
(K, p) consisting of a non-Archimedean extension K of k and a morphism
SpecK → X . Two such paris (K, p) and (L, q) are hereby equivalent, if there
is a non-Archimedean field extension Ω of both K and L such that the
diagram

SpecΩ −−−−→ SpecL
⏐⏐�

⏐⏐�

SpecK −−−−→ X
is 2-commutative.

Now suppose in addition that X be a separated algebraic Deligne-
Mumford stack locally of finite type over k. By [20, Corollary 1.3 (1)] the
stack X admits a coarse moduli space X. Since the coarse moduli space X
is separated, [12, Theorem 1.2.1] implies that the étale analytic space Xan

is in fact an analytic space (also see Remark 2.6 (ii)).

Proposition 3.8. The topological spaces |X an| and |Xan| are naturally
homeomorphic.

Proof. For every non-Archimedean algebraically closed field K extending
k there is a natural equivalence X (K) � X(K) by the definition of coarse
moduli spaces. Therefore the above description immediately implies that
|X an| ∼−→ |Xan| is a continuous bijection. We still need to show that this
map is a homeomorphism.

By [4, Lemma 2.2.3] there is an étale covering (Xi → X) ofX as well as a
scheme Ui locally of finite type over k and a finite group Γi such that the pull-
back X ×X Xi is equivalent to [Ui/Γi]. Since the Xi → X are etale, the Xi

are coarse moduli spaces of X ×X Xi = [Ui/Γi] and thereforeXi = Ui/Γi. By
Proposition 2.19 we have [Ui/Γi]

an � [Uan
i /Γi] and therefore Corollary 3.6

shows ∣∣[Ui/Γi]
an

∣∣ =
∣∣Uan

i

∣∣/Γi =
∣∣Uan

i /Γi

∣∣

on the level of the underlying topological spaces. So the morphism |X ×X

Xi| → |Xi| is a homeomorphism. This gives rise to commutative diagrams

|Uan
i | −−−−→ |Xan

i |
⏐⏐�

⏐⏐�

|X an| −−−−→ |Xan|
where both the two vertical and the upper horizontal arrow are open maps.
Since the Xi cover X and the Ui cover X , this is enough to show that
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the continuous bijection |X an| ∼−→ |Xan| is open and therefore a homeomor-
phism. �

Remark 3.9. Suppose that k is an algebraically closed field endowed with
the trivial norm. In [1] the authors show that, given a proper toroidal al-
gebraic Deligne-Mumford stack X , the analytic space Xan associated to its
coarse moduli space X admits a strong deformation retraction pX of Xan

onto its skeleton S(X ), a closed subset of |Xan| that has the structure of
a generalized extended cone complex in the sense of [1, Section 2]. Proposi-
tion 3.8 tells us that S(X ) naturally embeds into |X an| and pX is actually
a strong deformation retraction of |X an|.

4. Skeletons and stack quotients

The goal of this section is to prove Theorem 1.1. Let T � Gn
m be a split

algebraic torus over k and denote by N the dual of its character lattice M .
Suppose that X = X(Δ) is a T -toric variety defined by a rational polyhedral
fan Δ in NR = N ⊗ R. We refer the reader to [15] for the standard notation
concerning toric varieties.

We recall from [18] and [24] (also see [26, Section 5]) that the continuous
and proper tropicalization map

tropΔ : Xan −→ NR(Δ)

from Xan into a partial compactification NR(Δ) of NR is uniquely deter-
mined by its restrictions to the T -invariant open affine subsets Uσ for cones
σ in Δ. In this case the codomain NR(σ) ⊆ NR(Δ) is the set Hom(Sσ,R),
where R =

(
R ∪ {∞},+)

, and NR(σ) is endowed with the topology of point-
wise convergence. On Uσ = Spec k[Sσ] the tropicalization map

tropσ : Uan
σ −→ NR(σ)

is defined by associating to an element x ∈ Xan the homomorphism s �→
− log |χs|x.

Lemma 4.1. There is a strong deformation retraction pΔ : Xan → Xan

onto a closed subset S(X) of Xan as well as a homeomorphism JΔ : NR(Δ)
∼−→ S(X) making the diagram
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Xan

S(X) NR(Δ)

tropΔpΔ

JΔ

∼

commute.

The deformation retract S(X) is called the non-Archimedean skeleton of
X. The proof of Lemma 4.1 uses techniques that have originally appeared in
[6, Section 6]. In particular, it generalizes the constructions of [32, Section 2]
to non-Archimedean ground fields k that do not necessarily carry the trivial
norm.

Proof of Lemma 4.1. Consider a T -invariant open subset Uσ = Spec k[Sσ]
for a cone σ in Δ. Given a point x ∈ Uan

σ we define the point pσ(x) as the
seminorm on k[Sσ] given by

pσ(x)(f) = max
s∈Sσ

|as||χs|x

for an element f =
∑

s∈Sσ
asχ

s in k[Sσ]. We also define the image Jσ(u) of

an element u ∈ NR(σ) = Hom(Sσ,R) as the seminorm on k[Sσ] given by

J(u)(f) = max
s∈Sσ

|as| exp
(− u(s)

)

for an element f =
∑

s∈Sσ
asχ

s in k[Sσ].
One immediately verifies that pσ is continuous, that the equality pσ ◦

pσ = pσ holds, and that Jσ defines a homeomorphism NR(σ)
∼−→ S(Uσ).

Moreover we can easily check that these constructions on T -invariant affine
open patches are compatible with restrictions and we therefore obtain a
global retraction pΔ as well as a global homeomorphism JΔ.

It remains to show that there is a strong homotopy between pΔ and the
identity map on Xan. This immediate generalization of the theory developed
in [32, Section 2.2] is left to the reader, since it is not relevant for the proof
of Theorem 1.1. �

Denote by μ : T ×X → X the operation of T on the toric variety X.
Recall that on a T -invariant open affine subset Uσ for a cone σ in Δ this
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morphism is induced by the homomorphism

μ# : k[Sσ] −→ k[M ]⊗K[Sσ]

χs �−→ χs ⊗ χs .

Moreover, we consider the projection morphism π : T ×X → X, which is
induced by the homomorphism

π# : k[Sσ] −→ k[M ]⊗K[Sσ]

χs �−→ 1⊗ χs .

Lemma 4.2. For a point x ∈ Uan
σ consider the point η⊗̂x ∈ T ◦ × Uan

σ given
by the seminorm

|f |η⊗̂x = max
m∈M

|am||fm|x
for an element f =

∑
m∈M amχm ⊗ fm ∈ k[M ]⊗k k[Sσ] with unique regular

functions fm ∈ k[Sσ]. Then we have

πan(η⊗̂x) = x

as well as

μan(η⊗̂x) = pσ(x) .

Proof. Let f =
∑

s∈Sσ
asχ

s ∈ k[Sσ]. Then we have

|f |πan(η⊗̂x) =

∣∣∣∣∣
∑

s∈Sσ

as1⊗ χs

∣∣∣∣∣
η⊗̂x

= |1⊗ f |η⊗̂x = |f |x

as well as

|f |μan(η⊗̂x) =

∣∣∣∣∣
∑

s∈Sσ

asχ
s ⊗ χs

∣∣∣∣∣
η⊗̂x

= max
s∈Sσ

|as||χs|x = |f |pσ(x)

and this implies our claim. �
Proof of Theorem 1.1. By Proposition 3.4 (ii) the topological space∣∣[Xan/T ◦]

∣∣ is the topological colimit of the maps

(4)
(
πan, μan : T ◦ ×Xan ⇒ Xan

)
.

Therefore, by Lemma 4.1 we only need to show that the deformation retrac-
tion Xan → S(X) makes S(X) into a colimit of (4). Since pΔ is determined



1234 Martin Ulirsch

on the T -invariant open affine subsets Uσ it is enough to prove this statement
for Uσ.

• Let x, x′ ∈ Uan
σ and y ∈ T ◦ × Uan

σ such that πan(y) = x and μan(y) =
x′. Then we have pσ(x) = pσ(x

′), since

|χs|x′ = |χs|μan(y) = |χs ⊗ χs|y
= |χs ⊗ 1|y · |1⊗ χs|y = |1⊗ χs|y
= |χs|πan(y) = |χs|x

for all s ∈ Sσ, since |χm ⊗ 1|y = 1 for all m ∈ M .

• Given x ∈ Uan
σ by Lemma 4.2 there is a point y = η⊗̂x ∈ T ◦ ⊗ Uan

σ

such that πan(y) = x and μan(y) = pσ(x). Given two points x, x′ ∈ U�
σ

such that pσ(x) = pσ(x
′), their image in

∣∣[Uan
σ /T ◦]

∣∣ is therefore equal.

Thus the skeleton S(Uσ) is the set-theoretic colimit of (4). It is a colimit in
the category of topological spaces, since pσ is continuous and proper. �
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