An open adelic image theorem for motivic representations over function fields

Anna Cadoret

Let \(F \) be a field and \(k \) a function field of positive transcendence degree over \(F \). Let \(S \) be a smooth, separated, geometrically connected scheme of finite type over \(k \). If \(F \) is quasi-finite or algebraically closed we show that for motivic representations of the \(\acute{e} \)tale fundamental group \(\pi_1(S) \) of \(S \), \(\ell \)-Galois-generic points are Galois-generic. This is a geometric variant of a previous result of the author for representations of \(\pi_1(S) \) on the adelic Tate module of an abelian scheme \(A \to S \) when the base field \(k \) is finitely generated of characteristic 0. The procyclicity of the absolute Galois group of a quasi-finite field allows to reduce the assertion for \(F \) finite to the assertion for \(F \) algebraically closed. The assertion for \(F \) algebraically closed can then be deduced, using basically the same arguments as in the case of abelian schemes, from maximality results for the image of \(\pi_1(S) \) inside the group of \(\mathbb{Z}_\ell \)-points of its Zariski-closure.

1. Introduction

Let \(k \) be a field of characteristic \(p \geq 0 \), \(S \) a smooth, separated, geometrically connected scheme of finite type over \(k \) with generic point \(\eta \) and \(X \to S \) a smooth, proper morphism. For every \(s \in S \), fix a geometric point \(\overline{s} \) over \(s \) and an \(\acute{e} \)tale path from \(s \) to \(\eta \). For a prime \(\ell \neq p \), via the canonical isomorphism (smooth-proper base change) \(H^i(X_{\overline{s}}, \mathbb{Z}/\ell^n) \simeq H^i(X_{\overline{\eta}}, \mathbb{Z}/\ell^n) \), the Galois representation by transport of structure of \(\pi_1(s, \overline{s}) \) on \(H^i(X_{\overline{s}}, \mathbb{Z}/\ell^n) \) identifies with the restriction of the representation of \(\pi_1(S, \overline{\eta}) \) on \(H^i(X_{\overline{\eta}}, \mathbb{Z}/\ell^n) \) via the functorial morphism \(\sigma_s : \pi_1(s, \overline{s}) \to \pi_1(S, \overline{s}) \to \pi_1(S, \overline{\eta}) \). So, from now on, we omit base-points in our notation for \(\acute{e} \)tale fundamental groups and write

\[
H_{\ell^\infty} := H^*(X_{\overline{\eta}}, \mathbb{Z}_\ell) / \text{torsion}, \quad V_{\ell^\infty} := H_{\ell^\infty} \otimes \mathbb{Q}_\ell.
\]
2 Anna Cadoret

Let

\[\rho_{\ell}\infty : \pi_1(S) \rightarrow \text{GL}(H_{\ell}\infty), \rho_{\infty} = \prod_{\ell \neq p} \rho_{\ell}\infty : \pi_1(S) \rightarrow \prod_{\ell \neq p} \text{GL}(H_{\ell}\infty) =: \text{GL}(H_{\infty}) \]

denote the resulting representations and set \(\Pi_{?} := \text{im}(\rho_{?}) \), \(? = \infty, \ell\infty \). For \(s \in S \), also set \(\rho_{?,s} := \rho_{?} \circ \sigma_s \) and \(\Pi_{?,s} := \text{im}(\rho_{?,s}) \), \(? = \infty, \ell\infty \).

Following the terminology of [CK16], we say that \(s \in S \) is \(\ell \)-Galois-generic (with respect to \(\rho_{\infty} \)) if \(\Pi_{\ell\infty,s} \) is open in \(\Pi_{\ell\infty} \) and that \(s \in S \) is Galois-generic (with respect to \(\rho_{\infty} \)) if \(\Pi_{\infty,s} \) is open in \(\Pi_{\infty} \).

Given a prime \(\ell \), we say that a field \(\mathbb{F} \) is \(\ell \)-non Lie semisimple if for every quotient \(\pi_1(\mathbb{F}) \rightarrow \Gamma_{\ell} \) with \(\Gamma_{\ell} \) a \(\ell \)-adic Lie group, none of the non-zero Lie subalgebra of \(\text{Lie}(\Gamma_{\ell}) \) is semisimple. Typical examples are algebraically closed fields and quasi-finite fields (in particular, finite fields), which are \(\ell \)-non Lie semisimple for every prime \(\ell \), or \(p \)-adic fields, which are \(\ell \)-non Lie semisimple for every prime \(\ell \neq p \).

Assume now that \(k \) is the function field of a smooth, separated, geometrically connected scheme of finite type and dimension \(\geq 1 \) over a field \(\mathbb{F} \). The main result of this note is

Theorem 1.1. Assume \(\mathbb{F} \) is \(\ell \)-non Lie semisimple. For a closed point \(s \in S \), the following are equivalent.

1) \(s \in S \) is \(\ell \)-Galois-generic;
2) \(s \in S \) is Galois-generic.

In particular, when \(\mathbb{F} \) is finite, this proves the abundance of closed Galois-generic points. More precisely, we have

Corollary 1.2. Assume \(\mathbb{F} \) is finite. Then

1) There exists an integer \(d \geq 1 \) such that there are infinitely many \((\ell\text{-})\)Galois-generic closed points \(s \in S \) with \([k(s) : k] \leq d \).
2) Assume furthermore that \(S \) is a curve. Then all but finitely many \(s \in S(k) \) are \((\ell\text{-})\)Galois-generic.

Proof. Assertion (1) follows from [SS9] §10.6 while assertion (2) follows from [A17, Thm. 1.3 (3)], since motivic representations are GLP. \(\square \)
Theorem 1.1 is a geometric variant of a previous result of the author for representations of $\pi_1(S)$ on the adelic Tate module of an abelian scheme $A \to S$ when the base field k is finitely generated of characteristic 0. The \(\ell\)-non Lie semisimple property allows to reduce Theorem 1.1 for F \(\ell\)-non Lie semisimple to Theorem 1.1 for F algebraically closed (Lemma 2.2.3). Theorem 1.1 for F algebraically closed can then be deduced, following the guidelines of [C15], from maximality results for $\Pi_{\ell\infty}$ inside the group of Z_{ℓ}-points of its Zariski-closure in $GL_{H_{\ell\infty}}$. For $p = 0$, the maximality result is the same as the one used in [C15]; it relies on a group-theoretical result of Nori ([N87]). For $p > 0$, the maximality result is due to Hui, Tamagawa and the author ([CHT17]).

It is reasonable to expect that Theorem 1.1 holds for k a number field (hence, by Hilbert’s irreducibility theorem, for any finitely generated field of characteristic 0). This should follow from variants with F_{ℓ}-coefficients of the Grothendieck-Serre-Tate conjectures.

Acknowledgments. The author is partly funded by the ANR project ANR-15-CE40-0002-01. She thanks the referees for accurate comments, which helped clarify the exposition of the paper. In a former version of this note, Theorem 1.1 was only stated for F finite or algebraically closed. One of the referees pointed out that it should extend to quasi-finite fields. This yields the author to observe that her proof was working, more generally, for \(\ell\)-non Lie semisimple fields.

2. Proof

The implication (1.1.2) \Rightarrow (1.1.1) is straightforward. We prove the converse implication. Fix a closed point $s \in S$. Without loss of generality, we may assume $s \in S(k)$.

2.1. Notation

Fix a smooth, separated, geometrically connected scheme U over F with generic point ζ such that there exists a model

\[
X \rightarrow S \rightarrow U \rightarrow F
\]
4 Anna Cadoret

of

\[
\begin{array}{c}
X \xrightarrow{s} S \xrightarrow{k} F
\end{array}
\]

in the sense that we have a cartesian diagram

\[
\begin{array}{c}
\begin{array}{c}
\mathcal{X} \xrightarrow{s_{\mathcal{X}}} U \xrightarrow{\mathcal{F}} F \\
\downarrow \quad \downarrow \\
X \xrightarrow{s} k = k(\zeta) \xrightarrow{\mathcal{F}} F
\end{array}
\end{array}
\]

with \(\mathcal{X} \to S\) smooth, proper and \(S \to U\) smooth, separated, geometrically connected of finite type. In particular, the action of \(\pi_1(S), \pi_1(s)\) on \(H_\infty\) factor respectively through \(\pi_1(S) \to \pi_1(S)\) and \(\pi_1(s) \to \pi_1(U)\) so that

2.1. the groups \(\Pi_?, \Pi_{?,s} \subset \text{GL}(H_?)\), \(? = \infty, \ell\infty\) identify with the images of the motivic representations attached to the smooth proper morphisms \(\mathcal{X} \to S\) and \(\mathcal{X} \times_{S, s_U} U \to U\) respectively. We write, again,

\[
\rho_? : \pi_1(S) \to \text{GL}(H_?), \rho_{?,s} : \pi_1(U) \to \text{GL}(H_{?,s}), \(? = \infty, \ell\infty\)
\]

for the corresponding representations and set

\[
\tilde{\Pi}_? := \rho_!(\pi_1(S_?), \tilde{\Pi}_{?,s} := \rho_{?,s}(\pi_1(U_?)), \(? = \infty, \ell\infty\).
\]

2.2.

We first reduce the assertion for \(F\) \(\ell\)-non Lie semisimple to the assertion for \(F\) algebraically closed.

The introduction of the property ‘\(\ell\)-non Lie semisimple’ comes from

2.2.1. Fact. The following equivalent assertions hold:

1) \(\text{Lie}(\tilde{\Pi}_{\ell\infty})\) and \(\text{Lie}(\tilde{\Pi}_{\ell\infty,s})\) are semisimple Lie algebras;

2) The Zariski closure of \(\tilde{\Pi}_{\ell\infty}\) and \(\tilde{\Pi}_{\ell\infty,s}\) in \(\text{GL}(H_{\ell\infty})\) are semisimple algebraic groups.

Proof. Recall 2.1. Then 2) follows from comparison between étale and singular cohomologies and [D71 Prop. (4.2.5), Thm. (4.2.6)] if \(p = 0\) and
An open adelic image theorem for motivic representations

from [D80] Cor. 3.4.13, Cor. 1.3.9] if $p > 0$. The equivalence of 1) and 2) follows from the general fact that if $\Pi \subset \text{GL}_r(\mathbb{Q}_\ell)$ is a compact ℓ-adic Lie group whose Zariski closure $G \subset \text{GL}_r(\mathbb{Q}_\ell)$ is semi simple then Π is open in $G(\mathbb{Q}_\ell)$; this boils down to the fact that a semi simple Lie algebra over \mathbb{Q}_ℓ is algebraic - see e.g. [S66] §1, Cor.]. □

2.2.2. We begin with an elementary observation (a partial snake lemma in the category of profinite groups). Consider a commutative diagram of profinite groups with exact lines

$$
\begin{array}{c}
1 \rightarrow \tilde{\Pi} \rightarrow \Pi \rightarrow \Gamma \rightarrow 1 \\
1 \rightarrow \tilde{\Pi}' \rightarrow \Pi' \rightarrow \Gamma' \rightarrow 1
\end{array}
$$

Assume the two left-hand vertical arrows are injective and the right-hand vertical arrow is surjective. Then the canonical map $\tilde{\Pi}' / \Pi' \rightarrow \Pi / \Pi'$ is surjective and its fibers are isomorphic to $\tilde{\Pi} \cap \Pi' / \Pi'$. In particular,

1) $\tilde{\Pi}' \subset \tilde{\Pi}$ is open \Rightarrow $\Pi' \subset \Pi$ is open.

2) $\Pi' \subset \Pi$ is open and $\tilde{\Pi} \cap \Pi' / \Pi'$ is finite \Rightarrow $\tilde{\Pi}' \subset \tilde{\Pi}$ is open.

2.2.3. Lemma.

1) $\tilde{\Pi}_{\infty,s} \subset \tilde{\Pi}_{\infty}$ is open \Rightarrow $\Pi_{\infty,s} \subset \Pi_{\infty}$ is open.

2) Fix a prime $\ell \neq p$ and assume F is ℓ-non Lie semisimple. Then $\Pi_{\ell,\infty,s} \subset \Pi_{\ell,\infty}$ is open \Rightarrow $\tilde{\Pi}_{\ell,\infty,s} \subset \tilde{\Pi}_{\ell,\infty}$ is open.

Proof. Since $s \in S(k)$, for $? = \infty, \ell^{\infty}$ the canonical morphism $\Pi_{?,s} / \Pi_{?,s} \rightarrow \Pi_{?,s} / \Pi_{?,s}$ is surjective and the short exact sequences of profinite groups

$$
\begin{array}{c}
1 \rightarrow \tilde{\Pi}_{?,s} \rightarrow \Pi_{?,s} \rightarrow \Pi_{?,s} / \Pi_{?,s} \rightarrow 1 \\
1 \rightarrow \tilde{\Pi}_{?,s} \rightarrow \Pi_{?,s} \rightarrow \Pi_{?,s} / \Pi_{?,s} \rightarrow 1
\end{array}
$$

is of the form considered in 2.2.2. So 1) follows from 2.2.2.1) while 2) would follow from 2.2.2.2) provided $\tilde{\Pi}_{\ell,\infty} \cap \Pi_{\ell,\infty,s} / \tilde{\Pi}_{\ell,\infty,s}$ is finite. This is where we
use the assumption that F is ℓ-non Lie semisimple. Indeed, we have
\[\tilde{\Pi}^{\infty} \cap \Pi^{\infty,s} / \tilde{\Pi}^{\infty,s} \rightarrow \Pi^{\infty,s} / \tilde{\Pi}^{\infty,s} \leftarrow \pi_1(F). \]
By Fact 2.2.1, the Lie algebra of $\tilde{\Pi}^{\infty} \cap \Pi^{\infty,s} / \tilde{\Pi}^{\infty,s}$ is semisimple, being a quotient of $\text{Lie}(\tilde{\Pi}^{\infty} \cap \Pi^{\infty,s}) = \text{Lie}(\Pi^{\infty})$. But this forces it to be 0, since F is ℓ-non Lie semisimple by assumption. □

Fix a prime $\ell \neq p$, assume F is ℓ-non Lie semisimple and $s \in S(k)$ is ℓ-Galois-generic. From (2.2.3.2), $\tilde{\Pi}^{\infty,s} \subset \tilde{\Pi}^{\infty}$ is open. If Theorem 1.1 holds for F algebraically closed, this would imply $\Pi^{\infty,s} \subset \Pi^{\infty}$ is open hence, from (2.2.3.1), $\Pi^{\infty,s} \subset \Pi^{\infty}$ is open. This observation reduces Theorem 1.1 for F ℓ-non Lie semisimple to Theorem 1.1 for F algebraically closed.

2.2.3 So, from now on, we assume F is algebraically closed hence
\[\tilde{\Pi}^{?} = \Pi^{?}, \tilde{\Pi}^{?,s} = \Pi^{?,s}, ? = \infty, \ell^{\infty}, s \in S. \]

2.3.

Fix a prime $\ell_0 \neq p$ and assume $s \in S(k)$ is ℓ_0-Galois-generic. We want to show $s \in S(k)$ is Galois-generic.

For every prime $\ell \neq p$ and profinite group Γ appearing as a subquotient of $\text{GL}(H^{\infty})$, let $\Gamma^+ \subset \Gamma$ denote the (normal) subgroup of Γ generated by its ℓ-Sylow subgroups. Let $\Theta^{\infty}, \Theta^{\infty,s}$ denote respectively the Zariski-closure of $\Pi^{\infty}, \Pi^{\infty,s}$ in $\text{GL}_{n^{\infty}}$. Write G^{∞} and $G^{\infty,s}$ for the generic fibers of $\Theta^{\infty}, \Theta^{\infty,s}$.

2.3.1. Fact. The dimensions of $G^{\infty}, G^{\infty,s}$ are independent of $\ell(\neq p)$.

Proof. This follows from comparison between étale and singular cohomologies if $p = 0$ and from [LaP95, Thm. 2.4] if $p > 0$. More precisely, [LaP95, Thm. 2.4] implies that, if $Y \rightarrow C$ is a smooth proper morphism with C a smooth, separated, geometrically connected curve over the algebraic closure \overline{F} of F_p then the dimension of the Zariski closure of the image of
\[\pi_1(C) \rightarrow \text{GL}(H^*(Y_\ell, Q_\ell)) \]
is independent of ℓ. To apply this to the setting of (2.1.1), we need the generalization of [LaP95, Thm. 2.4] for C of arbitrary dimension. This can be
An open adelic image theorem for motivic representations

deduced from the case of curves by Jouanolou’s version of Bertini’s theorem
[Jou83 Thm. 6.10, 2), 3)] and the smooth proper base change theorem. We
refer to the Claim in the proof of [CT17 Prop. 3.2] for details.

Also, to prove Theorem 1.1, we may freely replace
\(U \) and \(S \) by connected étale covers. In particular,

2.3.2. Fact. We may assume the following holds.

1) \(\Pi_{\ell^{\infty}} = \Pi_{\ell^{\infty}, s} \cap \Pi_{\ell^{\infty}} \) for \(\ell \gg 0 \);
2) \(\Pi_{\ell^{\infty}} = \prod_{\ell \neq p} \Pi_{\ell^{\infty}, s} \cap \Pi_{\ell^{\infty}} \);
3) \(G_{\ell^{\infty}}, G_{\ell^{\infty}, s} \) are connected for every prime \(\ell \neq p \);
4) \(\Pi_{\ell^{\infty}} = \mathfrak{S}_{\ell^{\infty}}(\mathbb{F}_{\ell}) + \mathfrak{S}_{\ell^{\infty}}(\mathbb{Z}_{\ell})^{+} \) for \(\ell \gg 0 \).

Proof. Recall 2.1.1 and 2.2.3. Then 1) follows from [CT17 Thm. 1.1] while
2) is [CT17 Cor. 4.6]. 3) follows from comparison between étale and singular
cohomologies if \(p = 0 \) and from [LaP95 Prop. 2.2] if \(p > 0 \). For 4), assume
first \(p = 0 \) (see [C15, §2.3] for details). Let \(\Pi_{\ell} \subset \mathfrak{S}_{\ell^{\infty}}(\mathbb{F}_{\ell}) \) denote the image
of \(\Pi_{\ell^{\infty}} \) via the reduction-modulo-\(\ell \) morphism \(\mathfrak{S}_{\ell^{\infty}}(\mathbb{Z}_{\ell}) \to \mathfrak{S}_{\ell^{\infty}}(\mathbb{F}_{\ell}) \). Then,
from [N87 Thm. 5.1], \(\Pi_{\ell} = \prod_{\ell \neq p} \mathfrak{S}_{\ell^{\infty}}(\mathbb{F}_{\ell})^{+} \) for \(\ell \gg 0 \). This forces \(\Pi_{\ell^{\infty}} = \mathfrak{S}_{\ell^{\infty}}(\mathbb{Z}_{\ell})^{+} \) since, by [C15 Fact 2.3, Lemma 2.4], \(\mathfrak{S}_{\ell^{\infty}}(\mathbb{Z}_{\ell})^{+} \to \mathfrak{S}_{\ell^{\infty}}(\mathbb{F}_{\ell})^{+} \) is
Frattini for \(\ell \gg 0 \). Eventually, 4) for \(p > 0 \) is [CHT17 Thm. 7.3.2].

2.4.

We can now conclude the proof. From (2.3.2.2), it is enough to show that

1) \(\Pi_{\ell^{\infty}, s} \subset \Pi_{\ell^{\infty}} \) is open for every prime \(\ell \neq p \);
2) \(\Pi_{\ell^{\infty}, s} = \Pi_{\ell^{\infty}} \) for \(\ell \gg 0 \).

Since \(s \in S(k) \) is \(\ell_{0} \)-Galois-generic, (2.3.2.3) for \(\ell_{0} \) ensures \(G_{\ell^{\infty}, s} = G_{\ell^{\infty}} \). As \(G_{\ell^{\infty}, s} \) is always a subgroup of \(G_{\ell^{\infty}} \), Fact 2.3.1 and (2.3.2.4) also ensure
\(G_{\ell^{\infty}, s} = G_{\ell^{\infty}} \) hence \(\mathfrak{S}_{\ell^{\infty}, s} = \mathfrak{S}_{\ell^{\infty}} \) for every prime \(\ell \neq p \). Then 1) follows from
(2.2.1.1) while 2) follows from (2.3.2.4).

References

[A17] E. Ambrosi, A uniform open image theorem for \(\ell \)-adic representa-
8 Anna Cadoret

IMJ-PRG, Sorbonne Université
4, place Jussieu, 75252 PARIS Cedex 05, France
E-mail address: anna.cadoret@imj-prg.fr

Received March 17, 2017