Volume 26, Number 6, 1571–1586, 2019

Growth of the analytic rank of modular elliptic curves over quintic extensions

Michele Fornea

Given F a totally real number field and E/F a modular elliptic curve, we denote by $G_5(E/F; X)$ the number of quintic extensions K of F such that the norm of the relative discriminant is at most X and the analytic rank of E grows over K, i.e., $r_{an}(E/K) > r_{an}(E/F)$. We show that $G_5(E/F; X) \asymp X$ when the elliptic curve E/F has odd conductor and at least one prime of multiplicative reduction. As Bhargava, Shankar and Wang [1] showed that the number of quintic extensions of F with norm of the relative discriminant at most X is asymptotic to $c_5,F X$ for some positive constant c_5,F, our result exposes the growth of the analytic rank as a very common circumstance over quintic extensions.

1. Introduction

The arithmetic of elliptic curves is an intriguing mystery for number theorists. Given an elliptic curve E over a number field K, it is possible to package its arithmetic information into a generating series $L(E/K, s)$. While a priori the series just converges for $\text{Re}(s) \gg 0$, conjecturally it has analytic continuation to the whole complex plane and a functional equation $s \mapsto 2 - s$ with center $s = 1$. The analytic rank is defined as the conjectural order of vanishing at the center

$$r_{an}(E/K) := \text{ord}_{s=1} L(E/K, s).$$

This analytic invariant has an algebraic doppelgänger: the \mathbb{Z}-rank of the finitely generated abelian group of K-rational points, $r_{alg}(E/K)$, also called the algebraic rank of E/K. The pioneering work of Birch and Swinnerton-Dyer strongly suggests the equality of the two invariants. When the elliptic curve E is defined over a totally real number field F and K/F is a finite extension, then one expects the inequality $r_{an}(E/K) \geq r_{an}(E/F)$ to hold. Furthermore, the strict inequality should be explained by the presence of a non-torsion point in $E(K)$ linearly independent from $E(F)$. We like to
think about our main result as evidence for the fact that there should be a systematic way to produce non-torsion points over S_5-quintic extensions of totally real number fields, in analogy with the case of Heegner points over CM fields.

Our main result is compatible with the conjectures in [4], [5] about the growth of the analytic rank of rational elliptic curves over cyclic quintic extensions. Even though in those works growth is predicted to be a rare phenomenon, cyclic quintic extensions form a thin subset of all quintic extensions: the counting function of cyclic quintic fields is asymptotic to $\alpha X^{1/4}$ for some positive constant $\alpha > 0$ [15]. The results obtained in this work appear to be widely applicable given how all elliptic curves over a totally real number field F of degree 2 over \mathbb{Q} are modular and that, in general, all but finitely many \mathbb{Q}-isomorphism classes of elliptic curves over a totally real number field F are known to be modular ([13], [1], [2], [6]).

1.1. Strategy of the proof

Let F be a totally real number field, K/F a S_5-quintic extension with a totally complex Galois closure J such that the subfield of J fixed by A_5 is a totally real quadratic extension M/F. Given E/F a modular elliptic curve corresponding to a primitive Hilbert cuspform f_E of parallel weight two, the key idea of the present work is to interpret the ratio of L-functions

$$\frac{L(E/K, s)}{L(E/F, s)}$$

as the twisted triple product L-function attached to f_E and a certain Hilbert cuspform g over M of parallel weight one. This interpretation provides meromorphic continuation, functional equation and holomorphicity at the center. As the sign $\varepsilon_{K/F}$ of the functional equation of $L(E/K, s)/L(E/F, s)$ is then determined by the splitting behaviour in K of the primes of multiplicative reduction of E/F, we conclude by establishing the existence of a positive proportion of quintic extensions K/F for which $\varepsilon_{K/F} = -1$ by invoking [4].

The twisted triple product L-function attached to a modular elliptic curve E/F and a cuspform g of parallel weight one over a totally real quadratic extension M/F, is the L-function $L(E, \otimes-\text{Ind}_M^F(g), s)$. Here $\otimes-\text{Ind}_M^F(g)$ denotes the tensor induction of the Artin representation attached to g. The main technical result of our work consists in proving the existence of an eigenform g such that

$$\otimes-\text{Ind}_M^F(g) \cong \text{Ind}_K^F 1 - 1$$
where 1 denotes the trivial representation. Thanks to the modularity of totally odd Artin representations [9], the problem reduces to finding the solution to a Galois embedding problem as follows.

The group $G(J/M) \cong A_5$ does not afford any irreducible 2-dimensional complex representation, but it has two conjugacy classes of embeddings into $\text{PGL}_2(\mathbb{C})$. Therefore, we look for a lift of the 2-dimensional projective representation of

$$G_M \to G(J/M) \hookrightarrow \text{PGL}_2(\mathbb{C})$$

which (i) is totally odd, (ii) has controlled ramification, and (iii) whose tensor induction is $\text{Ind}_F^1 \mathbb{1} - \mathbb{1}$. Since every projective 2-dimensional representation has a minimal lift with index a power of 2 ([11], Lemma 1.1), it suffices to consider the following Galois embedding problem:

Given a finite set of primes Σ_0, is it possible to find a Galois extension H/F unramified at Σ_0, containing J/F, and such that

$$1 \to \mathcal{C}_{2^r} \to G(H/F) \to G(J/F) \to 1$$

is a non-split extension for some $r \geq 1$?

Here \mathcal{C}_{2^r} denotes the cyclic group of order 2^r considered as an S_5-module via the homomorphism $S_5 \to \{\pm 1\} \hookrightarrow \text{Aut}(\mathcal{C}_{2^r})$, taking the non-trivial element of $\{\pm 1\}$ to the automorphism $x \mapsto x^{-1}$. Theorem 3.4 provides conditions for the Galois embedding problem to have a solution.

2. On exotic tensor inductions

Let A, B be groups, $n \in \mathbb{N}$ and $\phi : A \to S_n$ a group homomorphism. The wreath product of B with A is $B \wr A := B^{\oplus n} \rtimes \phi A$, where A acts permuting the factors through ϕ.

Let G be a group and Q a subgroup of index n. Denote by $\pi : G \to S_n$ the action of G on right cosets by right multiplication and let $\{g_1, \ldots, g_n\}$ be a set of coset representatives. For any $g \in G$ and $i \in \{1, \ldots, n\}$, we denote by $q_i(g)$ the unique element of Q such that $g \cdot g_i = g_i \pi(g) \cdot q_i(g)$. The map

$$\varphi : G \to Q \wr S_n, \quad g \mapsto (q_1(g), \ldots, q_n(g), \pi(g)),$$

is an injective group homomorphism. Moreover, a different choice of coset representatives produces a homomorphism conjugated to φ by an element of G.

Definition 2.1. Let \(Q \) be a subgroup of \(G \) of index \(n \) and \(\varrho : Q \to \text{Aut}(V) \) a representation of \(Q \). The tensor induction \(\otimes\text{-Ind}_G^Q(\varrho) \) of \(\varrho \) is defined as the composition of the arrows in the diagram

\[
\begin{array}{ccc}
G & \xrightarrow{\varphi} & \otimes\text{-Ind}_G^Q(\varrho) \\
\downarrow & & \downarrow \\
Q \wr S_n & \overset{(g,\text{id}_{S_n})}{\longrightarrow} & \text{Aut}(V) \wr S_n \overset{(\alpha,\psi)}{\longrightarrow} \text{Aut}(V^{\otimes n}),
\end{array}
\]

where \(\alpha : \text{Aut}(V)^{\otimes n} \to \text{Aut}(V^{\otimes n}) \) is given by \(\alpha(f_1, \ldots, f_n) = f_1 \otimes \cdots \otimes f_n \), and \(\psi : S_n \to \text{Aut}(V^{\otimes n}) \) by \(\sigma \mapsto [\psi(\sigma) : v_1 \otimes \cdots \otimes v_n \mapsto v_{1\sigma} \otimes \cdots \otimes v_{n\sigma}] \).

Example 2.2. Suppose \(Q \) is a subgroup of \(G \) index 2 and let \(\{1, \theta\} \) be representatives for the right cosets, then

\[
\begin{align*}
q_1(g) &= g, & q_2(g) &= \theta g \theta^{-1} & \text{if } g \in Q \\
q_1(g) &= \theta g^{-1}, & q_2(g) &= \theta g & \text{if } g \in G \setminus Q.
\end{align*}
\]

Thus,

\[
\otimes\text{-Ind}_G^Q(\varrho)(g) = \begin{cases} \varrho(g) \otimes \rho(\theta g \theta^{-1}) & g \in Q \\ [\varrho(g \theta^{-1}) \otimes \rho(\theta g)] \circ \psi(12) & g \in G \setminus Q. \end{cases}
\]

Proposition 2.3. Let \(Q \) be a subgroup of index 2 of \(G \) and \(\{1, \theta\} \) be representatives for the right cosets. If \((V, \varrho) \) is an irreducible complex 2-dimensional representation of \(Q \) with projective image isomorphic to either \(A_4, S_4 \) or \(A_5 \), then the tensor induction

\[
(V^{[G:Q]}, \otimes\text{-Ind}_G^Q(\varrho))
\]

is reducible if and only if \(V^*(\lambda) \cong V^\theta \) for some character \(\lambda : Q \to \mathbb{C}^\times \). When that happens the decomposition type is \((3, 1)\).

Proof. If \(V^*(\lambda) \cong V^\theta \) then the tensor product factors as

\[
V \otimes V^\theta \cong \text{Ad}^0(V)(\lambda) \oplus \mathbb{C}(\lambda),
\]

where \(\text{Ad}^0(V) \) is irreducible ([3], Lemma 2.1). Frobenius reciprocity implies

\[
\text{Hom}_G(V^{[G:Q]}, \text{Ind}_G^Q(\lambda)) = \text{Hom}_Q(V \otimes V^\theta, \mathbb{C}(\lambda)) \neq 0,
\]
hence $V^\otimes[G:Q]$ is reducible. Since $(V^\otimes[G:Q])_|Q = V \otimes V^\theta$ has decomposition type $(3, 1)$, so does $V^\otimes[G:Q]$.

Now suppose $V^\otimes[G:Q]$ is reducible. If $V^\otimes[G:Q]$ contains a 1-dimensional subrepresentation then we claim that $V^\ast(\chi) \cong V^\theta$. Indeed, if $\mathbb{C}(\chi)$ is a subrepresentation of $V^\otimes[G:Q]$ then Frobenius reciprocity implies

$$0 \neq \text{Hom}_G(V^\otimes[G:Q], C(\chi)) \hookrightarrow \text{Hom}_Q(V \otimes V^\theta, \mathbb{C}(\chi|Q)).$$

We deduce that the tensor product $V \otimes V^\theta(\chi|Q)^{-1}$ has a non-zero Q-invariant vector, that is,

$$0 \neq H^0(Q, V \otimes V^\theta(\chi|Q)^{-1}) = \text{Hom}_Q(V^\ast(\chi|Q), V^\theta),$$

producing the isomorphism $V^\ast(\chi|Q) \cong V^\theta$ because V is irreducible. By repeating the argument above we find that the decomposition type is $(3, 1)$. Finally suppose that $V^\otimes[G:Q]$ has decomposition type $(2, 2)$, then at least one of the irreducible components decomposes into a sum of characters when restricted to Q ([3], Lemma 2.2). The contradiction is obtained by applying ([3], Lemma 2.1). □

3. Galois embedding problems

3.1. Cohomological computation

Let F be a totally real number field, Σ_0 a finite set of places of F disjoint from the set Σ_∞ of archimedean places and the set Σ_2 of places above 2. For Σ the complement of Σ_0, we let $G_{F,\Sigma}$ denote the Galois group of the maximal Galois extension F_{Σ} of F unramified outside Σ.

We consider M/F a totally real quadratic extension unramified outside Σ, and for all $r \geq 1$ we give \mathscr{C}_{2^r} the structure of $G_{F,\Sigma}$-module via the homomorphism $G_{F,\Sigma} \to G(M/F) \hookrightarrow \text{Aut}(\mathscr{C}_{2^r})$ taking the non-trivial element of $G(M/F)$ to the automorphism $x \mapsto x^{-1}$. We denote by

$$\mathcal{M}_2 := \lim_{\to, r} \mathscr{C}_{2^r}$$

the $G_{F,\Sigma}$-module obtained by taking the direct limit with respect to the natural inclusions $\mathscr{C}_{2^r} \to \mathscr{C}_{2^{r+1}}$. The dual Galois module is defined as

$$\mathscr{C}_{2^r}^\ast := \text{Hom}_{G_{F}}(\mathscr{C}_{2^r}, \mathcal{O}_{\Sigma}^\times),$$
where \mathcal{O}_Σ is the ring of Σ-integers in F_Σ. As a G_M-module \mathcal{C}_2^r is isomorphic to the group μ_{2^r} of 2^r-th roots of unity with the natural Galois action, hence the field $M_r = M(\mu_{2^r})$ trivializes \mathcal{C}_2^r.

We are interested in analyzing the maps between the various kernels

$$\Pi^1(G_{F,\Sigma}, \mathcal{C}_2^r) := \ker \left(H^1(G_{F,\Sigma}, \mathcal{C}_2^r) \to \prod_{v \in \Sigma} H^1(F_v, \mathcal{C}_2^r) \right).$$

Proposition 3.1. For all $r \geq 2$ the map $(j'_r)_*: \Pi^1(G_{F,\Sigma}, \mathcal{C}_2^r) \to \Pi^1(G_{F,\Sigma}, \mathcal{C}_2^{r-2})$, induced by the dual of the natural inclusion $j_r: \mathcal{C}_2^{r-2} \to \mathcal{C}_2^r$, is zero.

Proof. We claim that the restriction

$$H^1(G_{M_r,\Sigma}, \mathcal{C}_2^r) \to \prod_{w \in \Sigma(M_r)} H^1(M_{r,w}, \mathcal{C}_2^r)$$

is injective, where the product is taken over all places of M_r above a place in Σ. Indeed, if $\phi: G_{M_r} \to \mathcal{C}_2^r$ is in the kernel of the restriction map, then the field fixed by $\ker \phi$ is a Galois extension of M_r in which the primes that split completely have density 1. Cebotarev’s density theorem implies that such extension is M_r itself. By examining the commutative diagram

$$\begin{array}{ccc}
H^1(G_{M_r,\Sigma}, \mathcal{C}_2^r) & \to & \prod_{w \in \Sigma(M_r)} H^1(M_{r,w}, \mathcal{C}_2^r) \\
0 & \to & \Pi^1(G_{F,\Sigma}, \mathcal{C}_2^r) \\
0 & \to & \Pi^1(M_r/F, \mathcal{C}_2^r) \\
\end{array}$$

we see that $\Pi^1(G_{F,\Sigma}, \mathcal{C}_2^r) = \Pi^1(M_r/F, \mathcal{C}_2^r)$.

We claim that $\Pi^1(G_{F,\Sigma}, \mathcal{C}_2^r)$ is killed by multiplication by 4. Clearly, it suffices to prove that $H^1(M_r/F, \mathcal{C}_2^r)$ is killed by multiplication by 4. The
Growth of the analytic rank of modular elliptic curves

claim follows by considering the inflation-restriction exact sequence

\[0 \longrightarrow H^1(M/F, (\mathcal{C}'_{2r})^{G(M_r/M)}) \longrightarrow H^1(M_r/F, \mathcal{C}'_{2r}) \longrightarrow H^1(M_r/M, \mathcal{C}'_{2r}). \]

and noticing that both \(H^1(M/F, (\mathcal{C}'_{2r})^{G(M_r/M)}) \) and \(H^1(M_r/M, \mathcal{C}'_{2r}) \) are isomorphic to \(\mathbb{Z}/2\mathbb{Z} \) (Lemma 9.1.4 & Proposition 9.1.6). Now, there is a natural factorization of multiplication by 4 on \(\mathcal{C}'_{2r} \),

which induces the commutative diagram

\[
\begin{array}{ccc}
\mathcal{C}'_{2r} & \xrightarrow{[4]^*} & \mathcal{C}'_{2r} \\
\downarrow{j^*} & & \downarrow{(4)^*} \\
\mathcal{C}'_{2r-2} & \xrightarrow{(4')^*} & \mathcal{C}'_{2r-2} \\
\end{array}
\]

Therefore to complete the proof we need to show that \(\text{III}^1(G_{F,\Sigma}, \mathcal{C}'_{2r-2}) \) does not intersect \(\ker((4)^*) \) because it would provide the required inclusion \(\text{III}^1(G_{F,\Sigma}, \mathcal{C}'_{2r}) \subset \ker([j^*]) \). The exact sequence of \(G_{F,\Sigma} \)-modules

\[1 \longrightarrow \mathcal{C}'_{2r-2} \xrightarrow{(4')^*} \mathcal{C}'_{2r} \longrightarrow \mathcal{C}'_{2r} \longrightarrow 1 \]

produces the exact sequence of cohomology groups

\[1 \longrightarrow C_2 = H^0(G_{F,\Sigma}, \mathcal{C}'_{2r}) \xrightarrow{\delta} H^1(G_{F,\Sigma}, \mathcal{C}'_{2r-2}) \xrightarrow{(4')^*} H^1(G_{F,\Sigma}, \mathcal{C}'_{2r}) \]

because any complex conjugation in \(G_{F,\Sigma} \) acts by inversion and gives the equality \(\delta(H^0(G_{F,\Sigma}, \mathcal{C}'_{2r})) = \ker((4)^*) \). Finally, for every real place \(v \in \Sigma_\infty \) the connecting homomorphism

\[\delta_v : C_2 = H^0(\mathbb{R}, \mathcal{C}'_{2r}) \hookrightarrow H^1(\mathbb{R}, \mathcal{C}'_{2r-2}) \]

is injective. In particular, the non-trivial class of \(\delta(H^0(G_{F,\Sigma}, \mathcal{C}'_{2r})) \) is not locally trivial at the real places. \(\square \)
Lemma 3.2. Let \(v \) be a place of \(F \), then the Galois cohomology group \(H^2(F_v, \mathcal{M}_2) \) is trivial.

Proof. If \(v \) splits in \(M/F \) then \(G_{F_v} \) acts trivially on \(\mathcal{M}_2 \) and we can refer to Tate’s Theorem ([12], Theorem 4). If \(v \) is inert or ramified (so non-archimedean under our assumptions), then \(G_K \) has cohomological dimension 2 and \(H^2(F_v, \mathcal{M}_2) \) is 2-divisible. The claim follows by noting that multiplication by 2 factors through \(H^2(M_v, \mathcal{M}_2) \) which is trivial because \(\mathcal{M}_2 \) is a trivial \(G_{M_v} \)-module. \(\square \)

Theorem 3.3. Let \(F \) be a totally real number field, \(\Sigma_0 \) a finite set of places of \(F \) disjoint from the set \(\Sigma_\infty \) of archimedean places and the set \(\Sigma_2 \) of places above 2. For \(\Sigma \) the complement of \(\Sigma_0 \), we consider \(M/F \) a totally real quadratic extension unramified outside \(\Sigma \). Then \(H^2(G_{F,\Sigma}, \mathcal{M}_2) = 0 \).

Proof. By Lemma 3.2 it suffices to show that the restriction morphism
\[
H^2(G_{F,\Sigma}, \mathcal{M}_2) \to \bigoplus_{v \in \Sigma} H^2(F_v, \mathcal{M}_2)
\]
is injective. For every \(r \geq 2 \), consider the exact sequence
\[
0 \longrightarrow \prod^2(G_{F,\Sigma}, \mathcal{C}_{2^r}) \longrightarrow H^2(G_{F,\Sigma}, \mathcal{C}_{2^r}) \longrightarrow \bigoplus_{v \in \Sigma} H^2(F_v, \mathcal{C}_{2^r}).
\]

Poitou-Tate duality ([12], Theorem 8.6.7) gives a commuting diagram
\[
\begin{array}{ccc}
\prod^1(G_{F,\Sigma}, \mathcal{C}_{2^r}) & \times & \prod^2(G_{F,\Sigma}, \mathcal{C}_{2^r}) \\
\downarrow j_r & & \downarrow j_r \\
\prod^1(G_{F,\Sigma}, \mathcal{C}_{2^{r-1}}) & \times & \prod^2(G_{F,\Sigma}, \mathcal{C}_{2^{r-1}}) \\
Q/\mathbb{Z}
\end{array}
\]
which in combination with Proposition 3.1 shows that
\[
j_r: \prod^2(G_{F,\Sigma}, \mathcal{C}_{2^{r-1}}) \to \prod^2(G_{F,\Sigma}, \mathcal{C}_{2^r})
\]
is zero because the pairings are perfect. Since direct limits are exact and commute with direct sums the following sequence is exact as well
\[
0 = \lim_{r \to} \prod^2(G_{F,\Sigma}, \mathcal{C}_{2^r}) \longrightarrow H^2(G_{F,\Sigma}, \mathcal{M}_2) \longrightarrow \bigoplus_{v \in \Sigma} H^2(F_v, \mathcal{M}_2). \qed
\]
3.2. Galois embedding problem

Let $n \geq 4$, $r \geq 1$ be integers. The symmetric group S_n acts trivially on \mathcal{C}_2, and it is a classical computation that

$$H^2(S_n, \mathcal{C}_2) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \quad \text{and} \quad H^2(A_n, \mathcal{C}_2) \cong \mathbb{Z}/2\mathbb{Z}.$$

We consider a class

$$[\omega] := \begin{bmatrix} 1 \to \mathcal{C}_2 \to \Omega \to S_n \to 1 \end{bmatrix} \in H^2(S_n, \mathcal{C}_2)$$

that does not belong to the kernel of the restriction map $H^2(S_n, \mathcal{C}_2) \to H^2(A_n, \mathcal{C}_2)$. Let F be a totally real number field. A S_n-Galois extension J/F, ramified at a finite set Σ_{ram} of places of F, determines a surjection $e : G_{F,\Sigma} \to S_n$ where Σ is the complement of any finite set Σ_0 of places of F disjoint from $\Sigma_{\text{ram}} \cup \Sigma_{\infty} \cup \Sigma_2$. We denote by $M = J^{A_n}$ the fixed field by A_n.

Theorem 3.4. Suppose the quadratic extension M/F cut out by A_n is totally real. For all $[\omega] \in H^2(S_n, \mathcal{C}_2)$ restricting to the universal central extension of A_n it is possible to embed J/F into a Galois extension H/F unramified outside Σ, such that the Galois group $G(H/F)$ represents the non-trivial extension $i_r * [\omega]$ of S_n by the S_n-module \mathcal{C}_2 for some $r \gg 0$.

Proof. Let $i_r : \mathcal{C}_2 \hookrightarrow \mathcal{C}_{2r}$ be the natural inclusion. The obstruction to the solution of the Galois embedding problem is encoded in the cohomology class $e^* i_r * [\omega] \in H^2(G_{F,\Sigma}, \mathcal{C}_{2r})$. Indeed, the triviality of the cohomology class is equivalent to the existence of a continuous homomorphism $\gamma : G_{F,\Sigma} \to \Omega_r$ such that the following diagram commutes

$$\begin{array}{cccccc}
1 & \longrightarrow & \mathcal{C}_{2r} & \longrightarrow & e^* \Omega_r & \longrightarrow & G_{F,\Sigma} & \longrightarrow & 1 \\
\gamma & \downarrow & \uparrow & \gamma & \downarrow & e & \downarrow & \downarrow & e^* i_r * [\omega] \\
1 & \longrightarrow & \mathcal{C}_2 & \longrightarrow & \Omega_r & \longrightarrow & S_n & \longrightarrow & 1.
\end{array}$$

The homomorphism γ need not be surjective, but it still defines a non-trivial extension of S_n by a submodule of \mathcal{C}_2, because Ω_r is a non-trivial extension. Indeed the non-triviality of the class $i_r * [\omega]$ follows by the commutativity of
the following diagram

\[
\begin{array}{ccc}
H^2(S_n, \mathbb{C}_2) & \xrightarrow{i_*} & H^2(S_n, \mathbb{C}_{2r}) \\
\downarrow & & \downarrow \\
H^2(A_n, \mathbb{C}_2) & \xrightarrow{i_*} & H^2(A_n, \mathbb{C}_{2r})
\end{array}
\]

because by hypothesis the restriction of \([\omega]\) to \(H^2(A_n, \mathbb{C}_2)\) is non-zero and the lower horizontal arrow is injective as \(H^1(A_n, \mathbb{C}_{2-1}) = 0\) for \(n \geq 4\). Finally, the obstruction to the solution of the Galois embedding problem vanishes for \(r \gg 0\) because by Theorem 3.3

\[
\lim_{r \to \infty} H^2(G_{F, \Sigma}, \mathbb{C}_2^*) = H^2(G_{F, \Sigma}, \mathbb{M}_2) = 0.
\]

\[\square\]

4. On Artin representations

Let \(K/F\) be a \(S_5\)-quintic extension ramified at a finite set \(\Sigma_{\text{ram}}\) of places of \(F\). Suppose the Galois closure \(J\) is totally complex and that the subfield of \(J\) fixed by \(A_5\) is a totally real quadratic extension \(M/F\). Let \(\Sigma\) be the complement of a finite set \(\Sigma_0\) disjoint from \(\Sigma_{\text{ram}} \cup \Sigma_{\infty} \cup \Sigma_2\).

The simple group \(A_5\) does not admit any irreducible complex 2-dimensional representation. However, there are two conjugacy classes of embeddings of \(A_5\) into \(\text{PGL}_2(\mathbb{C})\). We fix one such embedding and we consider the projective representation

\[G_{M, \Sigma} \to G(J/M) \cong A_5 \subset \text{PGL}_2(\mathbb{C}).\]

We are interested in finding a lift with specific properties. Consider the double cover \(\Omega_5^+\) of \(S_5\) where transpositions lift to involutions, and that restricts to the universal central extension of \(A_5\). By Theorem 3.4 there exists a positive integer \(r\) and a Galois extension \(H/F\), unramified outside \(\Sigma\) and containing \(J/F\), such that the sequence

\[
1 \longrightarrow \mathbb{C}_{2r} \longrightarrow G(H/F) \longrightarrow G(J/F) \longrightarrow 1
\]

is exact. Given our choice of the double cover \(\Omega_5^+\), transpositions of \(S_5 \cong G(J/F)\) lift to element of order 2 of \(G(H/F)\) and their conjugation action on \(\mathbb{C}_{2r}\) is by inversion: \(x \mapsto x^{-1}\). Let \(A_5\) denote the universal central extension
of $A_5 \cong \tilde{A}_5/\{\pm 1\}$. Complex 2-dimensional representations of the group

$$G(H/M) \cong (C_2 \times \tilde{A}_5)/((-1,-1))$$

are constructed by tensoring a character of C_2r with a complex 2-dimensional representation of \tilde{A}_5 taking the same value at -1. We consider a representation

$$\varrho_K : G_{M, \Sigma} \to GL_2(\mathbb{C})$$

obtained by composing the quotient map $G_{M, \Sigma} \to G(H/M)$ with any irreducible complex 2-dimensional representation of $G(H/M)$.

Remark 4.1. Since the abelianization of \tilde{A}_5 is trivial, there is a dihedral Galois extension D/F such that $\det(\varrho_K)$ factors through the quotient by the subgroup

$$G(H/D) \cong (C_2 \times \tilde{A}_5)/((-1,-1)).$$

Therefore, the composition of the determinant with the transfer map, $\det(\varrho_K) \circ V : G_F \to \mathbb{C}^\times$, is the trivial character.

Proposition 4.2. The tensor induction

$$\otimes\text{Ind}^F_M(\varrho_K) : G_F \to GL_4(\mathbb{C})$$

factors through G_J and induces a faithful representation

$$\otimes\text{Ind}^F_M(\varrho_K) : S_5 \to GL_4(\mathbb{C})$$

isomorphic to the standard representation of S_5.

Proof. By construction the action by conjugation of $G(J/F)$ on $G(H/J)$ factors through $G(M/F)$ and sends every element to its inverse. Let $\theta \in G_F$ be an element mapping to a transposition in $G(J/F) \cong S_5$, then

$$\ker (\otimes\text{Ind}^F_M(\varrho_K)) \cap G_M$$

$$= \ker \left(\varrho_K \otimes (\varrho_K) \theta \right)$$

$$= \{ h \in G_M \mid \exists \alpha \in \mathbb{C}^\times \text{ with } \varrho_K(h) = \alpha^2, \varrho_K(h) = \alpha^{-1}I_2 \}$$

$$= G_J.$$

Thus, $\otimes\text{Ind}^F_M(\varrho_K)$ induces a 4-dimensional representation

$$\otimes\text{Ind}^F_M(\varrho_K) : S_5 \to GL_4(\mathbb{C}).$$
By Proposition 2.3 \otimes-Ind$^F_M(\varrho_K)$ has either decomposition type $(3, 1)$ or it is irreducible. It follows that it has to be irreducible because S_5 does not admit irreducible complex representations of dimension 3. Finally, S_5 has only two irreducible complex 4-dimensional representations: the standard representation and its twist by the sign character sign : $S_5 \to \{\pm 1\}$. One can distinguish between them by computing the trace of transpositions.

Recall that our input was the central extension Ω^+_{5} of S_5 chosen because transpositions of S_5 lift to involutions. Therefore $\theta^2 \in G_H$ and $\varrho_K(\theta^2) = \mathbb{1}_2$, and we can compute that

$$\otimes$-Ind$^F_M(\varrho_K)(\theta) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

has trace equal to 2. □

Corollary 4.3. Let K/F be a S_5-quintic extension whose Galois closure J is totally complex and contains a totally real quadratic extension M/F. Let Σ be the complement of any finite set Σ_0 of places of F disjoint from $\Sigma_{\text{ram}} \cup \Sigma_{\infty} \cup \Sigma_2$, then there exists a totally odd 2-dimensional Artin representation $\varrho_K : G_{M, \Sigma} \to GL_2(\mathbb{C})$ such that

$$\otimes$-Ind$^F_M(\varrho_K) \cong \text{Ind}_K^F \mathbb{1} - \mathbb{1}.$$

Proof. Thanks to Proposition 4.2 we only have to check that the representation $\varrho_K : G_{M, \Sigma} \to GL_2(\mathbb{C})$ considered there is totally odd. By assumption the Galois closure J is totally complex, thus the projectivization of ϱ_K is a faithful representation of $G(J/M)$, which contains every complex conjugation of M. □

5. Growth of the analytic rank

Let M/F be a quadratic extension of totally real number fields, $E_{1,F}$ a modular elliptic curve of conductor N, and g a primitive Hilbert cuspform over M of parallel weight one and level Ω. Attached to this data, there is a unitary cuspidal automorphic representation $\Pi = \Pi_{g,E}$ of the algebraic group $G = \text{Res}_{M \times F/F}(GL_{2,M \times F})$. Let $\phi : G_F \to S_3$ be the homomorphism mapping the absolute Galois group of F to the symmetric group over 3 elements associated with the étale cubic algebra $(M \times F)/F$. The L-group
L^G is given by the semi-direct product $GL_2(\mathbb{C})^3 \rtimes G_F$ where G_F acts on the first factor through ϕ.

Definition 5.1. The twisted triple product L-function associated with the unitary automorphic representation Π is given by the Euler product

$$L(s, \Pi, r) = \prod_v L_v(s, \Pi_v, r)^{-1}$$

where Π_v is the local representation at the place v of F appearing in the restricted tensor product decomposition $\Pi = \bigotimes_v \Pi_v$, and r describes the action of L^G on $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ which restricts to the natural 8-dimensional representation of $GL_2(\mathbb{C})^3$ and for which G_F acts via ϕ permuting the vectors.

Remark 5.2. ([8], page 111). When Π_v is ramified, let q_v be the cardinality of the residue field of F_v, then the local L-factor at v of $L(s, \Pi, r)$ is given by

$$L_v\left(\frac{1+s}{2}, \Pi_v, r\right) = P_v(q_v^{-s})$$

for a certain polynomial $P_v(X) \in 1 + X\mathbb{C}[X]$. In particular, it is non-vanishing at $s = 1/2$.

Assume the central character ω_{Π} of Π is trivial when restricted to A_F^\times, then the complex L-function $L(s, \Pi, r)$ has meromorphic continuation to \mathbb{C} with possible poles at $0, \frac{1}{4}, \frac{3}{4}, 1$ and functional equation

$$L(s, \Pi, r) = \epsilon(s, \Pi, r)L(1-s, \Pi, r)$$

([8], Theorems 5.1, 5.2, 5.3). When all the primes dividing \mathfrak{N} are unramified in M/F and $(\mathfrak{N}, \mathfrak{Q}) = 1$, the sign of the functional equation can be computed as follows ([10], Theorems B, D & Remark 4.1.1):

write $\mathfrak{N} = \mathfrak{N}^+\mathfrak{N}^-$, where \mathfrak{N}^- is the square-free part of \mathfrak{N}. If all the prime factors of \mathfrak{N}^+ are split in M/F, then the sign of the functional equation is determined by the number of prime divisors of \mathfrak{N}^- which are inert in M/F

$$\epsilon\left(\frac{1}{2}, \Pi, r\right) = \left(\frac{M/F}{\mathfrak{N}^-}\right)$$.
Theorem 5.3. Let E/F be a modular elliptic curve of odd conductor \mathfrak{N} and let K/F be a S_5-quintic extension with totally complex Galois closure J. Suppose J is unramified at \mathfrak{N} and contains a totally real quadratic extension M/F, then the ratio of L-functions

$$L(E/K, s)/L(E/F, s)$$

has meromorphic continuation to the whole complex plane and it is holomorphic at $s = 1$. Furthermore, if all prime factors of \mathfrak{N}^+ are split in M/F, then

$$\text{ord}_{s=1} \frac{L(E/K, s)}{L(E/F, s)} \equiv 1 \pmod{2} \iff \left(\frac{M/F}{\mathfrak{N}^+} \right) = -1.$$

Proof. By Corollary 4.3 and the modularity of totally odd Artin representations of the absolute Galois group of totally real number fields ([9], Theorem 0.3), there is a primitive Hilbert cuspform g of parallel weight one over M, and level Q prime to N, such that $\varrho_g = \varrho_K$. A direct inspection of the Euler product of the twisted triple product L-function $L(s, \Pi, r)$ attached to $\Pi = \Pi_{g, E}$ produces the equality of incomplete L-functions

$$L_S(s, \Pi, r) = L_S\left(E, \otimes \text{Ind}_{M/F}^E(g), s + \frac{1}{2} \right) = \frac{L_S(E/K, s + \frac{1}{2})}{L_S(E/F, s + \frac{1}{2})},$$

where S is any finite set containing the primes dividing $\mathfrak{N}Q$ and the primes that ramify in M/F. As Remark 4.1 ensures the triviality of the central character ω_{Π} when restricted to \mathbb{A}_F^\times; meromorphic continuation, holomorphicity at the center and the criterion for the parity of the order of vanishing at the center of $L(E/K, s)/L(E/F, s)$ follow. □

Corollary 5.4. Let E/F be an elliptic curve of odd conductor \mathfrak{N} and at least one prime of multiplicative reduction. Denote by $G_5(E/F; X)$ the number of quintic extensions K of F such that the norm of the relative discriminant is at most X and the analytic rank of E grows over K, i.e., $r_{an}(E/K) > r_{an}(E/F)$. Then $G_5(E; X) \asymp_{+\infty} X$.

Proof. By Theorem 5.3, $G_5(E/F; X)$ contains all S_5-quintic extension K/F such that their Galois closure is totally complex, they contain a totally real quadratic extension of F, the prime divisors of \mathfrak{N} are unramified in K and have certain splitting behaviour. Then $G_5(E/F; X) \gg_{+\infty} X$ by ([1], Theorem 2), and $X \gg_{+\infty} G_5(E/F; X)$ by ([1], Theorem 1). □
Acknowledgements

This work would not have been possible without the constant guidance and support of my Ph.D. advisors Henri Darmon and Adrian Iovita. I would like to thank Jan Vonk for pointing out the relevance of the author’s work for statistical questions about elliptic curves, and I am grateful to Chantal David and Hershy Kisilevsky for useful comments on a first draft of the paper. Finally, I would like to thank the anonymous referee for the valuable feedback on the paper.

References

McGill University, Montreal QC H3A 0B9, Canada
E-mail address: michele.fornea@mail.mcgill.ca

Received March 21, 2018