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In this paper we study submanifolds of contact manifolds. The
main submanifolds we are interested in are contact coisotropic sub-
manifolds. They can be viewed as analogues to symplectic contact
coisotropic submanifolds, and can be defined by the symplectic
complement with respect to the symplectic structure dα|ξ, the
restriction of dα on the contact hyperplane field ξ. Based on a
correspondence between symplectic and contact coisotropic sub-
manifolds, we can show contact coisotropic submanifolds admit a
C0-rigidity, similar to Humilière-Leclercq-Seyfaddini’s coisotropic
rigidity on symplectic manifolds in [12]. Moreover, based on
Shelukhin’s norm in [20] defined on the contactomorphism group,
we define a Chekanov type pseudo-metric on the orbit space of a
fixed submanifold of a contact manifold. Moreover, we can show
a dichotomy of (non-) degeneracy of this pseudo-metric when the
dimension of this fixed submanifold is equal to the one for a Leg-
endrian submanifold. This can be viewed as a contact topology
analogue to Chekanov’s dichotomy in [5] of (non-)degeneracy of
Chekanov-Hofer’s metric on the orbit space of a Lagrangian sub-
manifold. The proof of our result follows several arguments from
[23] and [24].

1. Introduction and statement of results

Using Hofer’s metric to study submanifolds of a symplectic manifold has
been carried out in [23], extending Chekanov’s work in [5]. Chekanov’s
original work focused on Lagrangian submanifolds in symplectic topology,
whereas Usher considered, more generally, coisotropic submanifolds. It is
natural to extend this story to contact topology. By analogy, the main
submanifolds of a contact manifold that we are interested in are contact
coisotropic submanifolds. They are defined as follows.

Definition 1.1. (Definition 2.1 in [11]) Let (M2n+1, ξ = kerα) be a co-
oriented contact manifold. A submanifold Y ⊂M is called contact coisotropic
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if for any point p ∈ Y , (TpY ∩ ξp)
⊥dα ⊂ TpY ∩ ξp where⊥dα denotes the sym-

plectic orthogonal complement with respect to the non-degenerate 2-form
dα|ξ on ξ.

Remark 1.2. Let up points out that this definition is independent of the
choice of the contact form α, since the conformal class of the symplectic
form dα on the contact distribution ξ is well-defined (i.e., independent of
α).

A crucial criterion to check whether a submanifold is contact coisotropic
or not is the following result that is analogous to the symplectic case. Re-
call that a submanifold N of a symplectic manifold (W,ω) is symplectic
coisotropic if and only if the ideal IN = {F ∈ C∞

c (W ) |F |N = 0} is a Lie sub-
algebra of C∞

c (M) under the symplectic Poisson bracket (see Chapter I Sec-
tion 2, Lemma 2.1 in [13]). In terms of the contact Poisson bracket {−,−}α,
whose definition is recalled in Section 2 below, we have the following similar
result.

Proposition 1.3. Let (M, ξ = kerα) be a co-oriented contact manifold. A
submanifold Y ⊂M is contact coisotropic if and only if the ideal IY = {F ∈
C∞
c (M) |F |Y = 0} is a Lie subalgebra with respect to the contact Poisson

bracket {−,−}α.

Proposition 1.3 has useful corollaries. On the one hand, it establishes
various correspondences between symplectic coisotropic submanifolds and
contact coisotropic submanifolds, see Section 4. On the other hand, based
on the main result from [12], we obtain a C0-rigidity property of contact
coisotropic submanifolds as follows.

Theorem 1.4. Suppose Y is a coisotropic submanifold of a contact mani-
fold (M, ξ = kerα) and ϕ ∈ Aut(M, ξ). If ϕ(Y ) is smooth, then ϕ(Y ) is also
coisotropic.

Here Aut(M, ξ) is defined in Definition 5.1 where roughly speaking each
element is a homeomorphism that is a C0-limit of contactomorphisms (in a
strong sense). This can be regarded as a contact topology analogue to the
group Hameo(M,ω) that is often used in C0-symplectic geometry.

Example 1.5. Let Y be a Legendrian knot of a compact contact 3-manifold
(M, ξ). For any ϕ ∈ Aut(M, ξ), if ϕ(Y ) is smooth, then it is also a Legendrian
knot.
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Remark 1.6. It is a well-known fact (cf. Theorem 2.5 in [8]) that any
knot, not necessarily Legendrian, can be C0-approximated by Legendrian
knots via adding more and more “zigzags”. In view of Example 1.5, this
approximation cannot be of the form ϕk(Y ) for a Legendrian knot Y and a
sequence {ϕk}k of contactomorphisms converging in the sense of Definition
5.1. We believe that adding “zigzags” violates this type of convergence.

In contrast with the existence of Hofer’s metric (or the Hofer norm)
on the Hamiltonian diffeomorphism group of a symplectic manifold, there
does not exist a Finsler-type bi-invariant metric (or equivalently conjugation-
invariant norm) on the identity component of contactomorphism group
Cont0(M, ξ). In fact, any such non-trivial norm will be discrete, i.e., its val-
ues can not be arbitrarily close to zero, see [9, 19], or the original argument
in [4]. To remedy this, we can either restrict ourselves to a smaller group,
or on the other hand drop the bi-invariance condition. The first approach
is carried out by Banyaga-Donato [2], where a fine non-trivial bi-invariant
metric, a modification of the classical Hofer’s metric, is defined on the sub-
group of strict contactomorphisms, i.e. those contactomorphisms which pre-
serve a contact form; the second approach is implemented by Shelukhin in
[20], where he defines a (non-conjugation-invariant) non-degenerate norm on
Cont0(M, ξ) denoted by || − ||α (depending on a prior given contact 1-form
α defining ξ). In this paper, we follow Shelukhin, and study the pseudo-
metric induced by || − ||α on orbit spaces of subsets of M , which we refer to
as the Shelukhin-Chekanov-Hofer pseudo-metric. The definition and basic
properties of the Shelukhin-Hofer norm are recalled in Section 6.

Definition 1.7. Let (M, ξ = kerα) be a contact manifold with a fixed con-
tact 1-form α. Fix a subset N ⊂M , and denote by L(N) its orbit space
under the action of Cont0(M, ξ). Then for any L1, L2 ∈ L(N), define

(1) δα(L1, L2) = inf{||ϕ||α |ϕ ∈ Cont0(M, ξ) s.t. ϕ(L1) = L2}.

For brevity, we will call δα the α-metric on L(N). Basic properties of
this α-metric are explored in Section 6.

Certainly an interesting question is the non-degeneracy of δα on L(N).
Using elementary arguments, in Section 7 we can show that for several cases
δα is indeed non-degenerate. Let us point out that different choices of con-
tact forms give rise to equivalent metrics on L(N) (see (15) below) and in
particular the (non-)degeneracy of δα is independent of this choice.
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In general, in order to approach this question, we use Usher’s method in
[23] based on the following interesting concept called rigid locus (an analogue
to Definition 4.1 in [23]).

Definition 1.8. Let N be a subset of a contact manifold (M, ξ = kerα).
The rigid locus of N is defined by

(2) RN := {x ∈ N | for any ϕ ∈ Σ̄N , ϕ(x) ∈ N}

where ΣN is the stabilizer of N in Cont0(M, ξ) and Σ̄N is its closure with
respect to || − ||α.

Then, using a fragmentation type result on Cont0(M, ξ), a useful crite-
rion as follows can be obtained and its proof is given in Section 8.

Proposition 1.9. Let N be a proper closed subset of M . Then

(1) If RN = N , then δα is non-degenerate.

(2) If RN = ∅, then δα ≡ 0.

One of the main results in this paper is the following dichotomy, sim-
ilar to the symplectic case that can be found in Corollary 2.7 in [24], or
Theorem 2 in [5].

Theorem 1.10. Let N be a closed connected submanifold of (M2n+1, ξ =
kerα) with dimN = n. Then δα is either non-degenerate or vanishes identi-
cally.

The most interesting submanifolds of dimension n in a contact manifold
(M2n+1, ξ) are Legendrian submanifolds. At present, it is unclear how δα be-
haves in the orbit space of a Legendrian submanifold. We have the following
conjecture.

Conjecture 1.11. Let N be a closed connected Legendrian submanifold
of a contact manifold (M, ξ = kerα), then δα is non-degenerate.

In Section 10, we briefly point out the difficulty of proving Conjec-
ture 1.11, which roughly speaking comes from the failure to find a uniform
subset in the symplectization that can be displaced by all the lifts of con-
tactomorphisms. On the other hand, we claim that if N with dimension
n is non-Legendrian (i.e., not Legendrian at some point), then δα vanishes
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identically. In fact, by Proposition 8.6, if δα is non-degenerate on L(N),
then N has to be contact coisotropic. But Legendrian submanifolds are the
only contact coisotropic submanifolds of dimension n, so the claim follows
directly from Theorem 1.10.

Remark 1.12. Soon after our work became public, a recent work by Usher
[22] confirms Conjecture 1.11 for a certain family of Legendrian submanifolds
where N is hypertight. See Corollary 3.5 in [22] where Theorem 3.3 in [22]
provides the key energy estimation. Here, hypertight means that there exists
a contact form α defining ξ such that every closed orbit of the Reeb vector
field Rα is non-contractible and every Reeb chord for N represents a non-
trivial element of π1(M,N).

2. Contact preliminaries and notations

Here we recall some basic notion from contact topology and introduce the
notations we will use below.

Recall that a co-oriented contact structure on an odd-dimensional man-
ifold M2n+1 is a hyperplane distribution ξ ⊂ TM which can be (globally)
defined as a kernel of a 1-form α such that α ∧ (dα)n is a volume form onM .
Any such 1-form which respects the co-orientation of ξ is called a contact
form. A contactomorphism of (M,α) is a diffeomorphism ϕ :M →M which
preserves ξ together with its co-orientation, which in terms of a contact form
α reads ϕ∗α = egα or some smooth function g, called the conformal factor of
ϕ (with respect to α). We denote the group of contactomorphisms of (M, ξ)
by Cont(M, ξ), and its identity component by Cont0(M, ξ).

The Reeb vector field associated with a contact form α is the unique
vector field Rα on M satisfying

α(Rα) = 1 and iRα
dα = 0.

A smooth time-dependent function Ft :M → R, t ∈ [0, 1], called in this
context a contact Hamiltonian, determines a unique vector field XFt

on M
by the requirements

(3) α(XFt
) = Ft and iXFt

dα = dFt(Rα)α− dFt.

If follows that LXFt
α is proportional to α, and hence the flow of XFt

gives
rise to a contact isotopy ϕt. We say that {ϕt} is generated by the contact
Hamiltonian Ft, and note that any contact isotopy is generated by a (unique)
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contact Hamiltonian. As an example, the Reeb flow is generated by the
constant Hamiltonian Ft ≡ 1.

The symplectization SM of (M, ξ = kerα) is the symplectic manifold
SM = (R×M,d(eθα)), where θ is the coordinate on R. Let us point out
that SM is, up to a symplectomohpsim, independent of the choice of α.
Any contactomorphism ϕ of M lifts to a symplectomorphism ϕ̃ of SM ,
defined by

ϕ̃(θ,m) = (θ − g(m), ϕ(m)),

where g is the conformal factor of ϕ. If ϕt is a contact isotopy ofM generated
by a contact Hamiltonian Ft, the lifted isotopy ϕ̃t is a Hamiltonian isotopy
of SM generated by the Hamiltonian F̃t(θ,m) = eθFt(m). The Hamiltonian
vector field XF̃t

is related to the contact vector field XFt
by

(4) XF̃t
= −dFt(Rα)

∂

∂θ
+XFt

∈ TR⊕ TM ≃ T (SM).

An central role in our story is played by the contact Poisson bracket.
This is a Lie bracket on C∞(M) defined by

(5) {F,G}α = dF (XG)− dG(Rα)F.

It is related to the Poisson bracket on the symplectic manifold SM via (see
Exercise 3.57 (iv) in [15])

(6) {F̃ , G̃} = eθ{F,G}α.

Let us emphasize that {−,−}α depends on α. Interested readers can work
out the formula of {−,−}α′ in terms of {−,−}α if α′ = efα for some f ∈
C∞(M).

3. Contact coisotropic submanifold

3.1. Proof of Proposition 1.3

Given a smooth function G :M → R, we denote by ϕtG the contact isotopy
generated by G.

Proof of Proposition 1.3. Suppose Y is coisotropic. Let F |Y = G|Y = 0. For
any p ∈ Y , αp(XG(p)) = G(p) = 0, so XG(p) ⊂ ξp. For every v ∈ TpY ∩ ξp,
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by (3),

(dα)p(XG(p), v) = dGp(Rα)α(v)− dGp(v) = −dGp(v) = 0

where the final equality comes from our assumption that G is constant along
Y . So XG(p) ⊂ (TpY ∩ ξp)

⊥dα ⊂ TpY ∩ ξp ⊂ TpY . Now by definition (5), for
any p ∈ Y ,

{F,G}α(p) =
d

dt
F (ϕtG(p))|t=0 − dGp(Rα) · F (p)

=
d

dt
F (ϕtG(p))|t=0 − 0 = 0

where the final equality comes from our assumption that F is constant along
Y . Thus we have proved {F,G}α|Y = 0.

Conversely, suppose IY is a Lie subalgebra. If there exists some p ∈ Y
and v ∈ (TpY ∩ ξp)

⊥dα but v /∈ TpY ∩ ξp, then one can find a functionG ∈ IY
such that (dG)p(v) ̸= 0. Then by equation (3),

(dα)p(XG(p), v) = −(dG)p(v) ̸= 0

which implies XG(p) /∈ ((TpY ∩ ξp)
⊥dα)⊥dα = TpY ∩ ξp. Again, one can find

a function H ∈ IY such that (dH)p(XG(p)) ̸= 0. Hence

{H,G}α(p) = (dH)p(XG(p)) ̸= 0,

and we get a contradiction. □

A direct consequence of Proposition 1.3 is

Corollary 3.1. Let (M, ξ = kerα) be a contact manifold. Suppose Y ⊂M
is a contact coisotropic submanifold and ϕ is a contactomorphism on M .
Then ϕ(Y ) is also contact coisotropic.

This corollary easily follows from the following lemma which is of interest
itself.

Lemma 3.2. Suppose ϕ is a contactomorphism on (M, ξ = kerα) with
conformal factor g :M → R. For any functions F,G ∈ C∞

c (M),

{e−gϕ∗F, e−gϕ∗G}α = e−gϕ∗{F,G}α.

Assuming this lemma, we have
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Proof of Corollary 3.1. Let g be the conformal factor of contactomorphism
ϕ. For any two functions F,G such that F |φ(Y ) = G|φ(Y ) = 0, we have
(e−gϕ∗F )|Y = (e−gϕ∗G)|Y = 0. Then since Y is coisotropic, by Proposi-
tion 1.3 and Lemma 3.2,

{e−gϕ∗F, e−gϕ∗G}α|Y = 0 = e−gϕ∗{F,G}α|Y .

Hence, {F,G}α|φ(Y ) = 0. Then by Proposition 1.3 again, ϕ(Y ) is coisotropic.
□

Now let us prove Lemma 3.2.

Proof of Lemma 3.2. First, note that the lifts F̃ and ϕ̃ of F and ϕ, respec-
tively, to SM (see Section 2) satisfy

(ϕ̃)∗F̃ = F̃ ′

where F ′ :M → R is defined by F ′(m) = e−g(m)F (ϕ(m)). Then by symplec-
tic invariance property of the (symplectic) Poisson bracket on the symplec-
tization and relation (6), we compute

eθ{F ′, G′}α = {F̃ ′, G̃′}

= {(ϕ̃)∗F̃ , (ϕ̃)∗G̃}

= (ϕ̃)∗{F̃ , G̃}

= (ϕ̃)∗(eθ{F,G}α)

= eθ−gϕ∗{F,G}α.

That is eθ{F ′, G′}α = eθ−gϕ∗{F,G}α. Therefore, {F
′, G′}α = e−gϕ∗{F,G}α

which is the desired conclusion. □

3.2. Examples

Example 3.3. Suppose Y ⊂M2n+1 is a Legendrian submanifold. For any
p ∈ Y , TpY ∩ ξp = TpY . Moreover, since TpY is a Lagrangian subspace with
respect to dα|ξ, (TpY ∩ ξp)

⊥dα = (TpY )⊥dα = TpY = TpY ∩ ξp. So in partic-
ular, Y is contact coisotropic. Note that by Definition 1.1, dim(Y ) ≥ n,
so Legendrian submanifolds provide the lowest dimension within all the
coisotropic submanifolds. In fact, a coisotropic submanifold of dimension
n(= 1

2(dimM − 1)) is indeed a Legendrian submanifold.
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Example 3.4. Let Σ be a hypersurface of a contact manifold (M, ξ =
kerα). Then Σ is contact coisotropic. In fact, for any point x ∈ Σ, there
are two cases. One is TxΣ = ξx, then (TxΣ ∩ ξx)

⊥dα = {0} ⊂ TxΣ ∩ ξx. The
other is TxΣ is transversal to ξx, then by dimension counting, TxΣ ∩ ξx is
a hyperplane of ξx, therefore, symplectic coisotropic with respect to dα|ξ.
Thus we get the conclusion.

Example 3.5. Recall that a submanifold L ⊂M2n+1 of dimension n+ 1 is
called a pre-Lagrangian if it admits a Lagrangian lift in the symplectization
of M , that is, a Lagrangian submanifold L̂ ⊂ SM such that the canonical
projection π : SM →M restricts to a diffeomorphism L̂→ L. We claim any
pre-Lagrangian submanifold is contact coisotropic. In fact, let L ⊂M be
a pre-Lagrangian and F,G ∈ C∞

c (M) such that F |L = G|L = 0. Then their
lifts F̃ , G̃ to SM satisfy F̃ |

L̂
= G̃|

L̂
= 0, and hence by (6),

0 = {F̃ , G̃}|
L̂
= eθ · {F,G}α|L

which implies {F,G}α = 0 on L. By Proposition 1.3, L is contact coisotropic.

To end this section, we want to address the following point. Usually Leg-
endrian submanifolds are viewed as analogues to Lagrangian submanifolds
in symplectic topology. However, we use the following concept to illustrate
that, to some extent, pre-Lagrangian submanifolds are closer to Lagrangian
submanifolds than Legendrian submanifolds.

Definition 3.6. A submanifold N of a contact manifold (M, ξ) is called
infinitesimally displaceable if there exists a function H :M → R such that
for any point x ∈ N , the contact vector field XH(x) /∈ TxN .

Example 3.7. Any compact Legendrian submanifold is infinitesimally dis-
placeable simply by flowing along a Reeb vector field for a sufficiently small
amount of time. This is in sharp contrast to the well-known fact that any La-
grangian submanifold is not infinitesimally displaceable (cf. Proposition 4.8
in [23]).

Lemma 3.8. Any compact pre-Lagrangian submanifold is not infinitesi-
mally displaceable.

Proof. Suppose N is a compact pre-Lagrangian of M , then there exists
a compact Lagrangian submanifold L ⊂ SM such that π(L) = N where
π : SM →M is the canonical projection. Moreover, for any Hamiltonian
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function H on M and its lift H̃ to SM , the corresponding contact and
Hamiltonian vector field satisfy, in view of (4), that π∗(XH̃) = XH . If H

is a function such that XH(p) /∈ TpN for any p ∈ N , then H̃ is a function
such that XH̃(x) /∈ TxL for any x ∈ L. This implies that this (compact)
Lagrangian submanifold L is infinitesimally displaceable, which is a contra-
diction. □

Remark 3.9. In fact, in the contact topology set-up, Legendrian subman-
ifolds are not the only coisotropic submanifolds that break the infinitesi-
mally displaceable rule. In a 3-dimensional contact manifold (M, ξ), there
exists a special class surfaces, called convex surface, introduced by Giroux
in [10], which admits a transversal contact vector field. Hence, this pro-
vides a family of contact coisotropic submanifolds, not Legendrian, which
are also infinitesimally displaceable. In particular, any such convex surface
can never be a pre-Lagrangian. It is one of Giroux’s great achievements
that a C∞-generic closed embedded surface is convex (see Proposition II 2.6
in [10]), therefore any pre-Lagrangian submanifold of a contact 3-manifold
can be C∞-perturbed into a convex surface, which shows that infinitesimal
non-displaceability is not stable at all.

4. Coisotropic correspondence

4.1. Symplectization

Let L be a Legendrian submanifold of a contact manifold (M, ξ = kerα).
By Exercise 3.57 (i) in [15], its lift R× L is a Lagrangian submanifold in
the symplectization SM = (R×M,d(eθα)). Note that both Legendrian sub-
manifolds and Lagrangian submanifolds are special cases of coisotropic sub-
manifolds in the contact and symplectic topology, respectively. Here we have
the following generalized result.

Proposition 4.1. Let Y be a submanifold of a contact manifold (M, ξ =
kerα). Then Y is a contact coisotropic submanifold of (M, ξ = kerα) if and
only if R× Y is a symplectic coisotropic submanifold of the symplectization
SM = (R×M,ω = d(eθα)).

Proof of Proposition 4.1. We claim that, for any submanifold Y ⊂M and
any p ∈ Y and θ ∈ R,

(7) π∗((TθR× TpY )⊥ω) = (TpY ∩ ξp)
⊥dα ,
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where π : SM →M is the canonical projection. Assuming (7), we note that
if Y ⊂M is contact coisotropic, then

π∗((TθR× TpY )⊥ω) = (TpY ∩ ξp)
⊥dα ⊂ TpY,

and hence

(TθR× TpY )⊥Ω ⊂ TθR× TpY = T(θ,p)(R× Y ),

proving that R× Y is a symplectic coisotropic submanifold of SM . Con-
versely, if R× Y ⊂ SM is symplectic coisotropic, we get that

(TpY ∩ ξp)
⊥α = π∗((TθR× TpY )⊥ω) ⊂ π∗(TθR× TpY ) = TpY,

proving that Y is a contact coisotropic submanifold. It remains to prove (7).
Note that v ∈ (TpY ∩ ξp)

⊥dα if

(8) α(v) = 0 and ∀u ∈ TpY, α(u) = 0 ⇒ dα(u, v) = 0.

On the other hand, (s, v) ∈ (TθR× TpY )⊥ω if

∀u ∈ TpY, t ∈ TθR, ω((t, u), (s, v)) = eθ(tα(v)− sα(u) + dα(u, v)) = 0.

Note that the latter condition holds for all t ∈ TθR, which implies α(v) =
0, so we can rewrite this condition as

(9) α(v) = 0 and ∀u ∈ TpY, dα(u, v) = sα(u).

We now consider separately two cases for the point p ∈ Y :

I. If TpY ⊂ ξp, that is α(u) = 0 for all u ∈ TpY , we note that conditions
(8) and (9) both reduce to dα(u, v) = 0 for all u ∈ TpY and hence

(TθR× TpY )⊥ω = TθR× (TpY ∩ ξp)
⊥dα .

II. If TpY ̸⊂ ξp, then dim(TpY/(TpY ∩ ξp)) = 1. Note that if v satisfies (8),
the function dα(·, v) descends to TpY/(TpY ∩ ξp), and therefore the

number s(v) = dα(u,v)
α(u) is independent of u ∈ TpY such that α(u) ̸= 0.

It follows easily that

(TθR× TpY )⊥ω = {(s(v), v) | v ∈ (TpY ∩ ξp)
⊥dα}.

In both cases, we see that (7) holds, which completes the proof. □
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4.2. Prequantization

Recall that if a closed symplectic manifold (M,ω) satisfies the condition
[ω] ∈ H2(M ;Z), then there exists a principal S1-bundle P

π
−→M such that

P has a contact structure (P, ξ = kerα) for some α satisfying dα = π∗ω.
This contact manifold (P, ξ) is called a prequantization of (M,ω). It is easy
to check that for any point a ∈ P , we have a decomposition TaP = ξa ⊕ Va
where Va is the vertical subspace corresponding to the S1-direction (viewing
α as a connection form). Moreover, via dπ, we can identify

ξa ≃ TxM for any a ∈ π−1(x).

The relation between contact Hamiltonian vector fields and symplectic Hamil-
tonian vector fields is expressed by the following equation. For any Hamil-
tonian function F on M , and any point a ∈ P , denoting x = π(a), one has

(10) Xπ∗F (a) = π−1
∗ (XF (x))⊕ v

where v is the unique vector in Va such that α(v) = F (x) (cf. Section 1.3 in
[21]).

Proposition 4.2. Let Λ ⊂M be a submanifold. Then Λ is symplectic
coisotropic submanifold of M if and only if π−1(Λ) is a contact coisotropic
submanifold of P .

Proof. For a ∈ π−1(Λ), via dπ, we can identify

Ta(π
−1(Λ)) ∩ ξa ≃ (Tπ(a)Λ⊕ Va) ∩ TxM = Tπ(a)Λ

and dα is identified with ω.

If Λ is symplectic coisotropic, then

(Ta(π
−1Λ) ∩ ξa)

⊥dα = (Tπ(a)Λ)
⊥ω ⊂ Tπ(a)Λ ≃ Ta(π

−1(Λ)) ∩ ξa.

Therefore, π−1(Λ) is contact coisotropic. The same relation above also shows
that if π−1(Λ) is contact coisotropic, then Λ is symplectic coisotropic. □

Remark 4.3. Part of the proofs of Proposition 4.1 and Proposition 4.2 can
be done via the criterion from symplectic and contact Poisson brackets. For
instance, the equation (6) above easily implies that if R× Y is symplectic
coisotropic in the symplectization SM , then Y is contact coisotropic in the
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base contact manifold M . For another instance, one can show that, for any
two functions F,G ∈ C∞(M), their lifts to the prequantization π∗F, π∗G
satisfy

{π∗F, π∗G}α = π∗{F,G}.

This is analogous to the equation (6) above, and it implies that if π−1(Λ)
is contact coisotropic in the prequantization P , then Λ is a symplectic
coisotropic in the base symplectic manifold M .

Remark 4.4. Since the pre-image π−1(Λ) always contains the full S1-
fibres, we know that dimπ−1(Λ) = dimΛ + 1. Moreover, since the S1-
direction is always transversal to the contact hyperplane ξ of P , if Λ is
symplectic coisotropic, then π−1(Λ) is always a strictly coisotropic subman-
ifold with respect to the contact 1-form α on P (see Definition 1.6 in [3]). A
detailed study of these submanifolds was carried out in [3].

5. Proof of Theorem 1.4

Recall that a symplectic homeomorphism ϕ is a homeomorphism which is
a C0-limit of symplectomorphisms. The collection of all symplectic home-
omorphisms of a symplectic manifold (M,ω) is denoted as Sympeo(M,ω).
The famous Gromov-Eliashberg theorem (see [7]) states that

(11) Sympeo(M,ω) ∩Diff(M) = Symp(M,ω).

In the contact topology set-up, one can define

Definition 5.1. (Definition 6.8 in [17]) A homeomorphism ϕ of a contact
manifold (M, ξ = kerα) is called a topological automorphism of the contact
structure ξ if there exists a sequence of contactomorphisms ϕk ∈ Cont(M, ξ)
with corresponding conformal factors gk :M → R such that

• ϕk
C0

−−→ ϕ;

• gk
C0

−−→ g for some continuous function g :M → R.

Here the C0-topology on the group of homeomorphisms of M is induced by
the metric dC0(ϕ, ψ) = maxM dM (ϕ(x), ψ(x)) where dM is a distance func-
tion defined with respect to a fixed Riemannian metric onM . The collection
of all such homeomorphisms is denoted by Aut(M, ξ).
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Then an analogue conclusion to (11) is Theorem 1.3 in [17] which states
that

(12) Aut(M, ξ) ∩Diff(M) = Cont(M, ξ).

Conclusions (11) and (12) can be implied by their “relative” counter-
parts, i.e. conclusions involving Lagrangian submanifolds and Legendrian
submanifolds, respectively.

Example 5.2. Let ϕ ∈ Symp(M,ω). Consider the embedding Φφ :M →
M ×M given by x→ (x, ϕ(x)). Under the symplectic structure π∗1ω ⊕
π∗2(−ω) on M ×M , Im(Φφ) is a Lagrangian submanifold. In fact, for ϕ ∈
Diff(M), Im(Φφ) is Lagrangian if and only if ϕ is symplectic. Then the
conclusion (11) is implied by the following statement [14]: if ϕ ∈
Sympeo(M,ω) and Φφ is smooth, then Φφ is Lagrangian. Indeed, for any
ϕ ∈ Sympeo(M,ω) ∩Diff(M), Φφ is smooth. Then Φφ is Lagrangian, which
implies ϕ ∈ Symp(M,ω). Hence, Sympeo(M,ω) ∩Diff(M) ⊂ Symp(M,ω),
and Symp(M,ω) ⊂ Sympeo(M,ω) ∩Diff(M) is trivial.

Example 5.3. Let ϕ ∈ Cont(M, ξ) with conformal factor g. Consider the
embedding Ψφ,g :M →M ×M × R given by x→ (x, ϕ(x), g(x)). Then fix-
ing a contact 1-form α on M , under the contact 1-form eθπ∗1α⊕ π∗2(−α) on
M ×M × R (where θ is the R-coordinate), Im(Ψφ,g) is a Legendrian sub-
manifold. In fact, it is easy to check that for ϕ ∈ Diff(M) and a smooth
function g :M → R, the image Im(Ψφ,g) is Legendrian if and only if ϕ ∈
Cont(M, ξ) with conformal factor g. Then, similarly to Example 5.2, the
conclusion (12) is implied by the following statement (a special case of The-
orem 1.4): if ϕ ∈ Aut(M, ξ) with limiting conformal factor g and Im(Ψφ,g)
is smooth, then Im(Ψφ,g) is Legendrian.

A recent work from [12] generalizes the observation in Example 5.2 from
Lagrangian submanifolds to symplectic coisotropic submanifolds. Roughly
speaking, the main result proves that symplectic homeomorphisms preserve
symplectic coisotropic submanifolds. Similarly, our Theorem 1.4 is a natural
generalization of Example 5.3.

Proof of Theorem 1.4. By Proposition 4.1, R× Y ⊂ SM is a (symplectic)

coisotropic submanifold. Suppose there exists a ϕk
C0

−−→ ϕ where ϕk are con-

tactomorphisms with conformal factors gk
C0

−−→ g for some continuous func-
tion g :M → R. Recall from Section 2 that ϕk lifts to a symplectomorphism

Φk : SM → SM, Φk(θ,m) = (θ − gk(m), ϕk(m)).



✐

✐

“9-ZhangJ” — 2020/12/10 — 1:19 — page 1179 — #15
✐

✐

✐

✐

✐

✐

Chekanov’s dichotomy in contact topology 1179

Moreover, by defining Φ(θ,m) = (θ − g(m), ϕ(m)) (as the formal lift of ϕ),

Φk
C0

−−→ Φ and thus Φ ∈ Sympeo(SM). Since Φ(R× Y ) = R× ϕ(Y ), by our
assumption on the smoothness of ϕ(Y ), Φ(R× Y ) is smooth. The the main
theorem in [12] implies that Φ(R× Y ) = R× ϕ(Y ) is symplectic coisotropic.
Finally, by (ii) in Proposition 4.1, ϕ(Y ) is contact coisotropic. □

Remark 5.4. The C0-rigidity of contactomorphisms also holds when we
drop the requirement of convergence of conformal factors, see [16]. In this
case, since we have no control on the behaviour of the limiting conformal
factor, back in the proof of Theorem 1.4, there is no guarantee that the lift
Φk is C0-convergent to Φ. As a matter of fact, we highly doubt the same
conclusion in Theorem 1.4 still holds in this case.

6. Shelukhin-Chekanov-Hofer’s metric

Let (M, ξ = kerα) be a contact manifold with a fixed contact 1-form α. For
any ϕ ∈ Cont0(M, ξ), [20] defines the following norm

(13) ||ϕ||α := inf
φ1

H=φ

∫ 1

0
max
M

|H(·, t)|dt.

where the infimum is taken over all the contact isotopies with time-1 map be-
ing ϕ and H ∈ C∞(M × [0, 1]) denotes the associated contact Hamiltonian
functions. Let us recall some properties of || − ||α proven in [20]. Though not
conjugation invariant, it satisfies a natural “coordinate-change” formula as
follows, for any ϕ, ψ ∈ Cont0(M, ξ),

(14) ||ψϕψ−1||α = ||ϕ||ψ∗α.

Additionally, different choice of contact forms give rise to equivalent norms.
Specifically, if β = fα is a another contact form, where f :M → (0,∞) is a
smooth function, then (see [20, Lemma 10])

(15) min
M

f · || − ||α ≤ || − ||β ≤ max
M

f · || − ||α.

In particular, one has

(16) C−(ψ)||ϕ||α ≤ ||ψϕψ−1||α ≤ C+(ψ)||ϕ||α,
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where C+(ψ) = maxM eg for conformal factor ψ∗α = egα, and C−(ψ) =
C+(ψ

−1)−1. Finally, the α-displacement energy of a subset U ⊂M is de-
fined by

Eα(U) = inf{||ϕ||α : ψ(U) ∩ U = ∅}.

Then (see [20, Proposition 15])

(17) Eα(U) > 0 for any open U ⊂M.

Recall the definition of the Shelukhin-Chekanov-Hofer’s metric (or for
brevity, α-metric) (Definition 1.7): We fix a subset N ⊂M , and denote by
L(N) its orbit under the action of Cont0(M). Then

δα(L1, L2) = inf{||ϕ||α |ϕ(L1) = L2}.

We can prove the following proposition.

Proposition 6.1. The α-metric satisfies the following properties.

(1) δα(L,L) = 0.

(2) δα(L1, L2) = δα(L2, L1).

(3) δα(L1, L3) ≤ δα(L1, L2) + δα(L2, L3).

(4) Let ψ ∈ Cont(M, ξ), and let C±(ψ) as above. Then

(18) C−(ψ) · δα(L1, L2) ≤ δα(ψ(L1), ψ(L2)) ≤ C+(ψ) · δα(L1, L2).

Proof of Proposition 6.1. The only property which is not automatic is item
(4). This follows from the fact that ϕ satisfies ϕ(L1) = L2 if and only if
(ψϕψ−1)(ψ(L1)) = ψ(L2), together with (16). □

7. Examples of non-degenerate δα

In this section, we give some examples of submanifolds N ⊂M such that
δα is non-degenerate on L(N). Before this, we want to address a useful
reformulation of δα. By Proposition 1.2 in [24],

(19) δα(L1, L2) = inf

{
∫ 1

0
max
φt

H(L1)
|Ht|dt

∣

∣

∣

∣

ϕ1H(L1) = L2

}

.
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7.1. The simplest example - (S1, ds)

Consider the case when M = S1 (with co-ordinate s mod 1), α = ds and
N = {p}, for some p ∈ S1. N is Legendrian, so contact coisotropic. In this
case L(N) = S1. Denote by dS1 the standard (angular) distance function on
S1 = R/Z.

Proposition 7.1. In this case δα = dS1 .

Proof. Indeed, let p ̸= q ∈ S1. In our case, formula (19) simplifies to

δα(p, q) = inf

{
∫ 1

0
|Ht(ϕ

t
H(p))|dt

∣

∣

∣

∣

ϕ1H(p) = q

}

.

So, let Ht be any contact Hamiltonian generating a contact isotopy ϕtH
with ϕ1H(p) = q. Denote γ(t) = ϕtH(p). Then γ

′(t) = XHt
(ϕtH(p)), and hence

α(γ′(t)) = Ht(ϕ
t
H(p)). Note, moreover, that with respect to the standard

Riammanian metric on S1 (which induces the metric dS1) |γ′(t)| = |α(γ′(t))|,
and therefore

dS1(p, q) = dS1(γ(0), γ(1)) ≤

∫ 1

0
|γ′(t)|dt =

∫ 1

0
|Ht(ϕ

t
H(p))|dt.

This proves that dS1(p, q) ≤ δα(p, q). The converse inequality follows easily
by considering the isotopy {s 7→ s± t}0≤t≤dS1 (p,q) (the sign chosen positive
if q is obtained from p via a counter-clockwise rotation by dS1(p, q), and
negative otherwise). □

7.2. Pre-Lagrangian case

Proposition 7.2. Let N be any compact manifold and M = T ∗N × S1

with the canonical contact structure induced by the 1-form α = λcan + dt.
Then for L0 = oN × S1, we have that δα is non-degenerate on L(L0).

Proof. First, observe that there exists a standard symplectomorphism be-
tween SM and T ∗N × T ∗S1 (with the split symplectic structure), and under
this symplectomorphism L0 is a pre-Lagrangian submanifold of M with a
Lagrangian lift L̂0 = oN × (S1 × {1}) in T ∗N × T ∗S1. Moreover, any L ∈
L(L0) is pre-Lagrangian. Indeed, if L = ϕ(L0) ∈ L(L0), then ϕ̃(L̂0) is a La-
grangian lift of L0 where ϕ̃ is the lifted Hamiltonian diffeomorphism. Now,
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let L1, L2 ∈ L(L0). We claim that there exists C > 0 such that

(20) δCH(L̂1, L̂2) ≤ C · δα(L1, L2)

where δCH denotes the Chekanov-Hofer (pseudo)-metric between the La-
grangian submanifolds L̂1 and L̂2. Since SM ≃ T ∗(N × S1) which is in par-
ticular geometrically bounded 1, the Chekanov-Hofer (pseudo)-metric on
Lagrangian orbits is well-known to be non-degenerate (see [5] or [23]). This
implies the desired result.

To prove (20), let Ht be a contact Hamiltonian generating a contact
isotopy ϕt with ϕ1(L1) = L2. The lifted isotopy ϕ̃t : SM → SM is then
generated by the Hamiltonian H̃t(θ,m) = eθHt(m) for (θ,m) ∈ R×M =
SM . Note that, by compactness, there exists R > 0 such that ∪tϕ̃t(L̂1) ⊂
[−R,R]×M ⊂ SM . Then, for each time t,

(21) max
φ̃t(L̂1)

|H̃t| ≤ eR · max
φt(L1)

|Ht|.

Truncating H̃t, we may obtain a compactly supported HamiltonianGt on
SM such that, for each t, Gt = H̃t in a neighbourhood of ϕ̃t(L̂1). In partic-
ular, the Hamiltonian isotopy ψt generated by Gt satisfies ψt(L̂1) = ϕ̃t(L̂1).
Thus, computing using the analogous formula to (19) for the Chekanov-Hofer
distance δCH and using (21), we get:

δCH(L̂1, L̂2) ≤

∫ 1

0
max
ψt(L̂1)

|Gt|dt =

∫ 1

0
max
φ̃t(L̂1)

|H̃t|dt ≤ eR
∫ 1

0
max
φt(L)

|Ht|dt.

Taking the infimum over all such Ht and setting C = eR yields (20), which,
as noted before, completes the proof. □

7.3. Hypersurface case

Proposition 7.3. Let N be a closed hypersurface of a contact manifold
(M, ξ = kerα), then δα is non-degenerate on L(N).

We will only give the explicit proof when N divides M , i.e., M\N =
M0 ⊔M1 where Mi is open, non-empty and connected and M̄i =Mi ∪N .

1We thank E. Shelukhin and M. Usher for addressing this “geometrically
bounded” hypothesis to our attention and pointing out a related error in the earlier
preprint of our work in subsection 7.2.
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The general case can be covered by topological argument via Lemma 3.2
and Lemma 3.3 in [23].

Proof. For anyN ′( ̸= N) ∈ L(N), denoteM\N ′ =M ′
0 ⊔M

′
1. Consider, with-

out loss of generality, the case whenN\N ′ ̸= ∅. Without loss of generality, as-
sume M ′

0 intersects both M0 and M1 non-trivially. Now let ϕ ∈ Cont0(M, ξ)
such that ϕ(N) = N ′. Then ϕ maps the connected components of M \N to
those of M \N ′, so in particular M ′

1 is equal to one of ϕ(M0) and ϕ(M1).
In the former case, ϕ(M0) ∩M

′
0 = ∅ and in particular ϕ displaces the (non-

empty) open setM ′
0 ∩M1. In the latter case, similarly, ϕ displacesM ′

0 ∩M1.
Therefore, for any such ϕ, using (17),

||ϕ||α ≥ min{Eα(M
′
0 ∩M1), Eα(M

′
0 ∩M1)} > 0.

It follows that δα(N,N
′) > 0, which completes the proof. □

8. Rigid locus

8.1. Proof of Proposition 1.9

As observed in Proposition 2.2 in [23], the stabilizer subgroup of N , that
is, ΣN = {ϕ ∈ Cont0(M, ξ) |ϕ(N) = N} has a natural topological extension
under || − ||α, that is

Definition 8.1. Denote the closure of ΣN under δα by

(22) Σ̄N = {ϕ ∈ Cont0(M, ξ) | δα(N,ϕ(N)) = 0}.

The equality in Definition 8.1 follows from first part of the proof of
Proposition 2.2 in [23].

Lemma 8.2. The α-metric δα is non-degenerate on L(N) if and only if
ΣN = Σ̄N .

Proof. If there exists some ϕ ∈ Σ̄N\ΣN (hence ϕ(N) ̸= N), then by Defini-
tion (8.1), δα(N,ϕ(N)) = 0, so δα is degenerate. Conversely, suppose that
Σ̄N = ΣN and let L1, L2 ∈ L(N) such that δα(L1, L2) = 0. Then there exist
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some ϕ1, ϕ2 ∈ Cont(M, ξ) such that

0 = δα(L1, L2) = δα(ϕ1(N), ϕ2(N)) ≥ C−(ϕ1) · δα(N,ϕ
−1
1 ϕ2(N)).

Since C−(ϕ1) is positive, we get

δα(N,ϕ
−1
1 ϕ2(N)) = 0

which by definition 8.1 implies ϕ−1
1 ϕ2 ∈ Σ̄N = ΣN . Hence, ϕ

−1
1 ϕ2(N) = N

which is equivalent to L1 = L2. That is, δα is non-degenerate. □

It is easy to see that (1) in Proposition 1.9 follows directly from Lemma
8.2. We will focus on the proof of (2) in Proposition 1.9. It comes from the
following basic lemma which follows almost immediately from Definition 1.8.

Lemma 8.3. For any x ∈M\RN , there exists a neighborhood Ux of x such
that Cont0(Ux) ⊂ Σ̄N , where Cont0(Ux) is the group of contactomorphisms
of M compactly supported in Ux.

Proof. Since x ∈M\RN , by definition, there exists some ϕx ∈ Σ̄N such that
ϕx(x) /∈ N . Moreover, since N is closed, there exists a neighborhood Ux such
that ϕx(Ux) ∩N = ∅. Note that, in particular, Cont0(ϕx(Ux)) ⊂ ΣN ⊂ Σ̄N .
Meanwhile, we know that ϕxCont0(Ux)ϕ

−1
x = Cont0(ϕx(Ux)). Then since Σ̄N

is a group, we know Cont0(Ux) ⊂ Σ̄N . □

Proof of (2) in Proposition 1.9. Since RN = ∅, according to Lemma 8.3, for
each point x ∈ N we can find a neighborhood Ux with condition that
Cont0(Ux) ⊂ Σ̄N . In this way, we obtain an open cover of M , (M\N) ∪
⋃

x∈N Ux. According to the contact fragmentation lemma [1, 18], the group
Cont0(M, ξ) is generated by contactomorphisms supported in elements of the
cover. Since Cont0(Ux) ⊂ Σ̄N for all x ∈ N by construction, and Cont0(M \
N) ⊂ ΣN trivially, we obtain Cont0(M, ξ) = Σ̄N . Therefore, δα vanishes
identically. □

Remark 8.4. The same argument where the fragmentation lemma is ap-
plied to the contact manifold M\RN implies Cont0(M\RN ) ⊂ Σ̄N . This is
a parallel result to Proposition 2.1 in [24].

8.2. Useful corollaries

As a corollary of Remark 8.4, we can show the following result which claims
that a rigid locus RN behaves very similarly to a contact coisotropic sub-
manifold. However, in general, RN can be very singular.
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Proposition 8.5. Let IRN
= {H ∈ C∞(M) |H|RN

= 0} then IRN
is a Lie

subalgebra, i.e., {F,G}α = 0 on RN if F,G ∈ IRN
.

Proof. In fact, we only need to show that if G|RN
= 0, then ϕtG ∈ Σ̄N for

any t (only need t sufficiently small). Then indeed, ϕtG preserves RN . So for
any x ∈ RN ,

{F,G}α(x) = dF (XG)(x)− dG(Rα)F (x) = dF (XG)(x) = 0.

Without loss of generality, assume t = 1. In order to show ϕ1G ∈ Σ̄N , by
Remark 8.4, we only need to show ϕ1G can be approximated under δα by
a sequence of contactomorphisms ϕn ∈ Cont0(M\RN ) (hence in Σ̄N ). The
construction of this sequence is carried out in the proof of Proposition 2.2
in [24] and also in the proof of Lemma 4.3 in [23].

Explicitly, take a sequence of smooth functions βn : R → R such that
βn(s) = s for |s| ≥ 1/n and βn(s) = 0 for |s| < 1/(2n). Then note that

(23) max
M

|βn ◦G−G| → 0 as n→ ∞.

Meanwhile, by definition,

dα(ϕ
1
G, ϕ

1
βn◦G

) = ||ϕ−1
G ϕ1βn◦G

||α

and by composition formula (see the third relation in Lemma 2.2 in [17]), we
know the contact isotopy ϕ−tG ϕ

t
βn◦G

is generated by the contact Hamiltonian

e−gt · ((βn ◦G−G) ◦ ϕtG)

where importantly the conformal factor gt comes from the contact Hamilto-
nian G which is independent of the sequence {βn}n. Therefore

||ϕ−1
G ϕ1βn◦G

||α ≤

∫ 1

0
max
M

(e−gt · |(βn ◦G−G) ◦ ϕtG|)dt

≤

∫ 1

0
max
M

e−gt ·max
M

|(βn ◦G−G) ◦ ϕtG|dt

≤

∫ 1

0
max
M

e−gt ·max
M

|(βn ◦G−G)|dt

≤

(
∫ 1

0
max
M

e−gtdt

)

·max
M

|(βn ◦G−G)| → 0 as n→ ∞.
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Therefore, ϕ1βn◦G

δα−→ ϕ1G. Moreover, by construction and our assumption

that G|RN
= 0, each ϕ1βn◦G

∈ Cont0(M\RN ) (hence in Σ̄N ). Therefore, due

to closure under δα, ϕ
1
G ∈ Σ̄N . □

The following proposition, as a corollary of Proposition 1.9, justifies
that our interest mostly lies in contact coisotropic submanifolds. We have
the following proposition.

Proposition 8.6. Let N ⊂M be a submanifold. If δα is non-degenerate
on L(N), then N is contact coisotropic.

Proof. We will prove it by contrapositive. Suppose N is not contact coiso-
tropic, then by definition there exists a point p ∈ N and a vector v ∈ (TpN ∩
ξp)

⊥dα which is not in TpN ∩ ξp. Then we can find a function H on M such
that H|N = 0 but dHp(v) ̸= 0. If we take the same approximating sequence

Hn = βn ◦H
C0

−−→ H as in the proof of Proposition 8.5, then ϕtHn
∈ ΣN and

also ϕtHn

δα−→ ϕtH . Therefore, ϕ
t
H ∈ Σ̄N . By definition of RN , ϕ

t
H(RN ) ⊂ RN .

Now, for p ∈ N , αp(XH(p)) = H(p) = 0, so XH(p) ∈ ξp. Meanwhile, for the
vector v chosen earlier,

dαp(XH(p), v) = dH(p)(v) ̸= 0

which yields XH(p) /∈ ((TpN ∩ ξp)
⊥dα)⊥dα = TpN ∩ ξp. Therefore, XH(p) /∈

TpN . Then for sufficiently small t > 0, ϕtH(p) /∈ N . Then ϕtH(p) /∈ RN be-
cause RN ⊂ N . We conclude p /∈ RN and thus RN ̸= N (so strictly contained
in N). By Proposition 1.9, δα is degenerate. □

9. Dichotomy

Recall the dichotomy phenomena appearing in the Corollary 2.7 in [24]
says that in the symplectic set-up, when dimN = 1

2 dimM where N is con-
nected and closed, the Chekanov-Hofer (pseudo)-metric δCH is either non-
degenerate or vanishes identically. Theorem 1.10 shows an analogue result
in the contact topology set-up.

9.1. Local model analysis

The proof of Theorem 1.10 starts from the following local analysis. LetM be
a contact manifold with dimension 2n+ 1 and N ⊂M be a submanifold of
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dimension n. For any x ∈ N , its neighborhood can be modeled as a neigh-
borhood of 0⃗ in (R2n+1, α) where in coordinate (x1, . . . , xn, y1, . . . , yn, z),
α = dz −

∑

yidxi. Without loss of generality, we can assume either

N = {x1 = · · · = xk = y1 = · · · yn−k = z = 0}

or

N = {x1 = · · · = xk+1 = y1 = · · · = yn−k = 0}

We will careful study the first case and the second case will be discussed
in Remark 9.1. Also note that the first case covers the situation where
N is a Legendrian submanifold by standard neighborhood theorem. Con-
sider the following three types of coordinate-functions near 0⃗. (i) F = xm
for m ∈ {1, . . . , k}; (ii) F = ym for m ∈ {1, . . . , n− k}; (iii) F = z. We will
investigate their corresponding contact vector fields. Recall that the contact
vector fieldXF is uniquely determined by the following differential equations

(24)

{

ιXF
dα = dF (Rα)α− dF

α(XF ) = F

where locally Rα = ∂
∂z

and dα =
∑

dxi ∧ dyi. Let XF =
∑

Ai
∂
∂xi

+Bi
∂
∂yi

+

C ∂
∂z
,

(i) if F = xm, we know dF (Rα) = 0, so we are reduced to solve

(25)

{

ιXdα = −dF
α(X) = F

=⇒

{
∑

(Aidyi −Bidxi) = −dxm
C −

∑

Aiyi = xm

that is, Ai = 0 for all i, Bi = 1 only for i = m and 0 otherwise, and C =
xm. Therefore, XF = ∂

∂ym
+ xm

∂
∂z
. Note that at 0⃗, XF (⃗0) =

∂
∂ym

̸= 0;

(ii) if F = ym, we still know dF (Rα) = 0, so we are reduced to solve

(26)

{

ιXdα = −dF
α(X) = F

=⇒

{
∑

(Aidyi −Bidxi) = −dym
C −

∑

Aiyi = ym

that is, Ai = −1 only for i = m and 0 otherwise, Bi = 0 for all i, and
C = 0. Therefore, XF = − ∂

∂xm
and at 0⃗, XF (⃗0) ̸= 0.
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(iii) if F = z, we know dF (Rα) = 1, so we are reduced to solve

(27)

{

ιXdα = α− dF
α(X) = F

=⇒

{
∑

(Aidyi −Bidxi) = −
∑

yidxi
C −

∑

Aiyi = z

that is, Ai = 0 for all i, Bi = −yi only for all i, and C = z. Therefore,
XF =

∑

yi
∂
∂yi

+ z ∂
∂z
. Note that at 0⃗, XF is degenerate, i.e. XF (⃗0) = 0.

Let Fi denote the coordinate-function of type (i) and (ii) above (and there
are in total n many of them). For any fixed point x ∈ N , the following map

Φ : Rn →M by (a1, . . . , an) → ϕ1∑ aiFi
(x)

provides an embedding

(28) Bn(ϵ) →֒ neighborhood of x in N

where Bn(ϵ) is the open n-dimensional ball with radius ϵ > 0. This is be-
cause dΦ(⃗0) maps each basis element ei to a vector XFi

(x) - the contact
Hamiltonian vector field of Fi at x - for some i. By computations in (25)
and (26), these n vectors are linearly independent. Be aware that we aban-
doned F = z in type (iii) above because at 0⃗, it is degenerate (so it does not
provide a linearly independent direction contributing to our embeddings). In
other words, n is the maximal dimension that we can obtain for embeddings
like (28).

Remark 9.1. Recall that the local model of N have two different choices,
and their difference is whether {z = 0} is included or not. Based on the com-
putation above, observe that we don’t have the type (iii) if one considers the
local model N without the condition {z = 0}. Then by the same argument
as above, we have (n+ 1)-many linearly independent vectors coming from
(n+ 1)-many coordinate-functions which do not include z. Hence, for any
fixed x ∈ N , there exists an embedding Bn+1(ϵ) into a neighborhood of x
in N .

9.2. Proof of Theorem 1.10

Proof of Theorem 1.10. Suppose RN ̸= ∅. Then for any x ∈ RN , by (28) and
Remark 9.1, there exists an embedding from either Bn(ϵ) or Bn+1(ϵ) into N .
By our choice of coordinate-functions, in either case,

∑

aiFi ∈ IRN
because

RN ⊂ N and each Fi|N = 0. By the proof of Proposition 8.5, ϕ1∑ aiFi
∈ Σ̄N .
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In particular, ϕ1∑ aiFi
preserves RN . In other words, we can upgrade the

embedding from Bn(ϵ) or Bn+1(ϵ) into RN .
In terms of embedding from Bn+1(ϵ), it already gives a contradiction

because dimN = n < n+ 1. On the other hand, due to the embedding from
Bn(ϵ), one knows RN is open in N . Meanwhile, RN is also closed by its
definition, which, by the connectedness of N , implies RN = N . Therefore,
by Proposition 1.9, δα is non-degenerate. □

10. Different measurements

One standard way to approach Conjecture 1.11 (at least following the orig-
inal idead from [5], or its extension in Section 4 in [23] and [24] in the
symplectic set-up) is first getting a dichotomy result as above and then
using some energy-capacity inequality to rule out the identical vanishing
possibility. Interested readers can check a successful procedure in this spirit
from Theorem 4.9 and Corollary 4.10 in [23] (or the original argument in
[5]). Naive attempts to implement this approach in proving Conjecture 1.11
run into the following problem: the energy estimates in the symplectic case
stem from the positivity of displacement energy of Lagrangians, which fails
for Legendrians in view of Example 3.7. One possible solution is to look
for displacement of sets in the symplectization, and apply Proposition 11
in [20] rather then Corollary 15. Here the main difficulty is the lack of a
well-established energy-capacity inequality (only) in terms of norm || − ||α.
Note the proof of Proposition 10 in [20] still involves conformal factors (but
well-controlled for a single contactomorphism via a cut-off technique). How-
ever, when taking infimum over various contactomorphisms, for instance,
in the definition of δα considering all the contactomorphisms ϕ such that
ϕ(L1) = L2, there is no guarantee that in the symplectization there exists a
uniform ball which can be displaced.

In this section, we want to point out that in the contact topology set-up,
unlike Hofer’s metric in symplectic topology, there is no such “canonical”
quantity to measure the behavior of dynamics. Instead, several quantities
have been invented to get certain rigidity results in contact topology. For
instance, the following one was used in [6], namely, for ϕ ∈ Cont0(M, ξ) set

(29) ||ϕ||RS := inf

{

e−minM,t∈[0,1] gt

(
∫ 1

0
max
M

H(·, t)−min
M

H(·, t)dt

)}

,

where the infimum is taken over all contact Hamiltonian H generating a
contact isotopy ϕtH with ϕ1H = ϕ, and gt is the conformal factor of ϕtH for
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t ∈ [0, 1] with respect to the contact 1-form α. It would be an interest-
ing question to compare ||ϕ||RS with ||ϕ||α. In that regard, let us mention
that removing the conformal term from (29) one obtains the definition of
Shelukhin’s oscillation semi-norm, which is related to the α-distance from
the Reeb subgroup (see Definition 23 and Proposition 24 in [20].)

In our context, we can consider a related quantity, a modification of the
Hofer-Shelukhin norm which is sensitive to divergence of conformal factors
(this is suggested by M. Usher).

Definition 10.1. Given a contact manifold (M, ξ = kerα), for any ϕ ∈
Cont0(M, ξ), define

||ϕ||α,m := ||ϕ||α +max
M

|gφ|

where gφ is the conformal factor of ϕ with respect to contact 1-form α, i.e.
ϕ∗α = egφα.

Then one easily gets the following proposition.

Proposition 10.2. The quantity ||ϕ||α,m defined in Definition 10.1 satisfies

(i) ||ϕ||α,m ≥ ||ϕ||α and equality holds for any strict contactomorphism.

(ii) ||ϕ||α,m is a norm on Cont0(M, ξ).

Proof. (i) is trivial since for any strict contactomorphism, its associated
conformal factor is always 0. (ii) follows from properties of conformal factors.
If gφ is the conformal factor of ϕ, then −gφ ◦ ϕ

−1 is the conformal factor of
ϕ−1, so

||ϕ−1||α,m = ||ϕ−1||α +max
M

| − gφ ◦ ϕ
−1| = ||ϕ||α +max

M
|gφ| = ||ϕ||α,m.

Similarly, if gφ and gψ are conformal factors of ϕ and ψ respectively, then
gψ ◦ ϕ+ gφ is the conformal factor of ψ ◦ ϕ, so

||ψ ◦ ϕ||α,m = ||ψ ◦ ϕ||α +max
M

|gψ◦φ|

≤ ||ψ||α + ||ϕ||α +max
M

|gψ ◦ ϕ+ gφ|

≤ (||ψ||α +max
M

|gψ|) + (||ϕ||α +max
M

|gφ|) = ||ψ||α,m + ||ϕ||α,m.

Finally, the non-degeneracy of || − ||α,m trivially comes from the non-
degeneracy of || − ||α and (i). Moreover, when ϕ = 1, ||1||α,m = ||1||α =
0. □
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Remark 10.3. || − ||α,m provides a measurement which is comparable with
(but not equivalent to) || − ||α. Similar to δα, by using || − ||α,m, we can also
define Chekanov-type psuedo-metic denoted as δα,m. Interested readers can
check that all the conclusions on δα also hold for δα,m (thus we also have a
dichotomy with respect to this modified norm). Certainly Conjecture 1.11
can be modified to be stated under δα,m. From our personal perspective, this
modified conjecture is more likely to be true. Finally, for some rigidity results
characterized by quantity like || − ||RS involving Legendrian submanifolds,
see Section 1.3 in [6].
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