Rigidity of rationally connected smooth projective varieties from dynamical viewpoints

Sheng Meng and Guolei Zhong

Abstract

Let X be a rationally connected smooth projective variety of dimension n. We show that X is a toric variety if and only if X admits an int-amplified endomorphism with totally invariant ramification divisor. We also show that $X \cong\left(\mathbb{P}^{1}\right)^{\times n}$ if and only if X admits a surjective endomorphism f such that the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ (without counting multiplicities) are n distinct real numbers greater than 1.

1. Introduction

We work over an algebraically closed field k of characteristic 0 . Let X be a smooth projective variety which is rationally connected, i.e., any two general points of X can be connected by a chain of rational curves; see Cam92 and KMM92]. A natural interest is to characterize such varieties in terms of some dynamic assumptions.

Let $f: X \rightarrow X$ be a surjective endomorphism. Then f^{*} induces an invertible linear map on $\mathrm{N}^{1}(X):=\mathrm{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ where $\mathrm{NS}(X)$ is the NéronSeveri group of X. In this paper, we focus on the case when all the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ have modulus greater than 1 . Such f is also known to be int-amplified, i.e., $f^{*} L-L$ is ample for some ample Cartier divisor L; see Men20, Theorem 1.1]. It is a natural generalization of the q-polarized endomorphism, i.e., $f^{*} H \sim q H$ for some ample Cartier divisor H and integer $q>1$.

To the best knowledge of the authors, the int-amplified assumption is necessary for one to get restrictions on the rigidity of X. Roughly speaking, we want to exclude the effects of automorphisms. On the one hand, given a non-isomorphic surjective endomorphism f on a variety, it is easy to obtain a new non-isomorphic surjective endomorphism by taking the product of f and an automorphism of another arbitrary variety, in which case, one can
get little information on this new variety. In general, more complicated situations rather than the product case may occur; see Men20, Example 10.2]. On the other hand, we are concerned about the periodic points of such nonisomorphic endomorphisms. Fakhruddin showed in [Fak03, Theorem 5.1] that amplified endomorphism (i.e., $f^{*} L-L$ is ample for not necessarily ample L) has countable and Zariski dense periodic points. This property is also called $P C D$ (over an uncountable field of characteristic 0) as studied by the first author in Men23. However, there exist amplified (and hence PCD) automorphisms which can be easily constructed on the abelian varieties of product type (cf. [Men23, Theorem 6.2, Example 6.6]).

In [Men20, Theorem 1.10], the first author proved the equivariant minimal model program (MMP) for int-amplified endomorphisms (cf. MZ20a, Definition 2.1]), generalizing an early result for polarized endomorphisms by Zhang and the first author (cf. [MZ18, Theorem 1.8]). We refer to [MZ18], [CMZ20, Men20, MZ20a, MZ20b, Zho21] for details and further generalizations about equivariant MMP. In this way, Yoshikawa further proved the following result, answering partially a conjecture of Broustet and Gongyo (cf. [BG17, Conjecture 1.2]). It is also the initial point of this paper.

Theorem 1.1 ([Yos21, Corollary 1.4]). A rationally connected smooth projective variety X is of Fano type if it admits an int-amplified endomorphism (cf. Notation 2.1).

When X is a rationally connected smooth projective surface admitting a non-isomorphic endomorphism, it was proved by Nakayama Nak02, Theorem 3] that X is then a toric surface, answering affirmatively a conjecture proposed by Sato (cf. [Nak02, Conjecture 2]). Note that every toric variety is of Fano type (cf. Notation 2.1); however, there exist many non-rational Fano varieties. Based on Theorem 1.1, we ask the following question which is a higher dimensional analogue of Sato's conjecture; see also [Fak03, Question 4.4] for the polarized case. We note that Question 1.2 is known for Fano threefolds (see MZZ22, Theorem 1.4]) and for Fano fourfolds admitting a conic bundle structure (see [JZ23, Theorem 1.4]).

Question 1.2. Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism. Is X a toric variety?

Remark 1.3 (Motivation and Difficulties for Question $\mathbf{1 . 2}$). We note that toric varieties usually have lots of dynamically interesting symmetries (cf. [Nak02]), and our Question 1.2 here is sort of a converse direction to it. In general, given a non-isomorphic surjective endomorphism on a rationally
connected smooth projective variety (or even a Fano manifold) X, it is very difficult to find a big torus on X; hence a positive answer to Question 1.2 reveals a very deep symmetric essence shared by toric varieties and intamplified endomorphisms. In this paper, we shall show two situations from the aspects of geometry and cohomology in which Question 1.2 holds.

The following question proposed by Zhang and the first author aimed to generalize the results for polarized endomorphisms in [HN11, Theorem 2.1] and [MZ19, Corollary 1.4] to the int-amplified case.

Question 1.4 ([MZ22, Question 10.1]). Let $f: X \rightarrow X$ be an intamplified endomorphism of a rationally connected smooth projective variety. Suppose there is an f^{-1}-invariant reduced divisor D such that $\left.f\right|_{X \backslash D}$: $X \backslash D \rightarrow X \backslash D$ is étale. Is (X, D) a toric pair?

However, due to a gap of the slope semistability, Zhang and the first author can only deal with the case when $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ has at most two eigenvalues in [MZ22, Theorem 10.6]. We strongly recommend [MZ22, Section 10] for a detailed explanation. In this paper, we will mainly focus on overcoming this gap and answer Question 1.4 affirmatively.

Theorem 1.5. Let X be a rationally connected smooth projective variety with D a reduced divisor. Then (X, D) is a toric pair if and only if X admits an int-amplified endomorphism f such that $\left.f\right|_{X \backslash D}: X \backslash D \rightarrow X \backslash D$ is étale.

In Men20, Theorem 1.11], replacing f by a suitable power, $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ can be viewed as a diagonal matrix $\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{\rho}\right]$, where $\rho:=\rho(X)=$ $\operatorname{dim}_{\mathbb{R}} \mathrm{N}^{1}(X)$ and λ_{i} are (possibly the same) integers greater than 1. Here, ρ can be arbitrarily large in general, even if $n=\operatorname{dim}(X)$ is fixed. Nevertheless, the number r of eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ (without counting multiplicities) is bounded by n; see Proposition 4.5. Note that if $r=1$, then f is the usual polarized endomorphism. For another extremal case when $r=n$, we show the strongest splitting rigidity of X. The key idea is to show that the equivariant MMP of X involves only with (conic bundle type) Fano contractions of smooth Fano varieties, and then we are able to apply the adjunction formula in the most comfortable way and prove by induction on the dimension of X.

Theorem 1.6. Let X be a rationally connected smooth projective variety of dimension n. Then

$$
X \cong\left(\mathbb{P}^{1}\right)^{\times n}
$$

if and only if X admits a surjective endomorphism f such that the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ (without counting multiplicities) are n distinct real numbers greater than 1 .

Remark 1.7. In the proof of Theorem 1.6, we get a finite surjective morphism

$$
\psi: X \rightarrow\left(\mathbb{P}^{1}\right)^{\times n}
$$

with $\rho(X)=n$ and all the effective divisors of X being nef. The remaining main difficulty is to show that ψ is an isomorphism or simply $X \cong\left(\mathbb{P}^{1}\right)^{\times n}$. When $n=\rho(X)=2$, we have $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ by an easy observation of smooth Fano surfaces. However, for the higher dimensional cases, this is in general not true without dynamical concerns. For example, when $n=\rho(X)=3$, there exists a double cover ψ whose branch locus is a divisor of tridegree $(2,2,2)$ (cf. MM81, Table 3]). Such X admits three different Fano contractions to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ which are conic bundles with non-empty discriminant locus (i.e., the contraction morphisms are not smooth). In particular, we have $X \not \approx \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

At the end of this section, we propose the following splitting question for the general $1 \leq r \leq n$ which reduces Question 1.2 to the polarized case. Question 1.8 is not true in the general settings of smooth projective varieties; see examples in Men20, Section 10].

Question 1.8. Let $f: X \rightarrow X$ be a surjective endomorphism of a rationally connected smooth projective variety such that the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ (without counting multiplicities) are distinct integers $\lambda_{1}, \cdots, \lambda_{r}$ greater than 1. Will we have

$$
X \cong X_{1} \times \cdots \times X_{r}
$$

where each X_{i} is a smooth projective variety of Fano type and f splits to $\left.f\right|_{X_{i}}$ which is λ_{i}-polarized?

2. Preliminary

Notation 2.1. Let X be a projective variety. We use the following notation throughout this paper.
$\operatorname{Pic}(X) \quad$ the group of Cartier divisors of X modulo linear equivalence ~
$\operatorname{Pic}^{\circ}(X) \quad$ the neutral connected component of $\operatorname{Pic}(X)$
$\mathrm{NS}(X) \quad \operatorname{Pic}(X) / \operatorname{Pic}^{\circ}(X)$, the Néron-Severi group of X
$\equiv \quad$ the numerical equivalence for \mathbb{R}-Cartier divisors
$\equiv_{w} \quad$ the weak numerical equivalence for r-cycles. Two r-cycles C_{1} and C_{2} are said to be weakly numerically equivalent (denoted by $\left.C_{1} \equiv_{w} C_{2}\right)$ if $\left(C_{1}-C_{2}\right) \cdot L_{1} \cdots L_{r}=0$ for all Cartier divisors L_{i} on X; cf. [MZ18, Definition 2.2] and the references therein.
$\mathrm{N}^{1}(X) \quad \mathrm{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}$, the space of \mathbb{R}-Cartier divisors modulo the numerical equivalence \equiv
$\mathrm{N}_{r}(X) \quad$ the space of r-cycles modulo weak numerical equivalence \equiv_{w} $\rho(X) \quad \operatorname{dim}_{\mathbb{R}} \mathrm{N}^{1}(X)$, the Picard number of X
$\kappa(X, D) \quad$ the Iitaka dimension of a \mathbb{Q}-Cartier divisor D
$\operatorname{Nef}(X) \quad$ the cone of nef classes in $\mathrm{N}^{1}(X)$
$\mathrm{PE}^{1}(X) \quad$ the cone of pseudo-effective classes in $\mathrm{N}^{1}(X)$
$\overline{\mathrm{NE}}(X) \quad$ the cone of pseudo-effective classes in $\mathrm{N}_{1}(X)$

- The above cones are $\left(f^{*}\right)^{ \pm 1}$-invariant for any surjective endomorphism $f: X \rightarrow X$.
- A surjective endomorphism $f: X \rightarrow X$ is q-polarized if $f^{*} H \sim q H$ for some ample Cartier divisor H and integer $q>1$, or equivalently if $f^{*} B \equiv q B$ for some big \mathbb{R}-Cartier divisor B and integer $q>1$ (cf. MZ18, Proposition 3.6]).
- A surjective endomorphism $f: X \rightarrow X$ is int-amplified if $f^{*} L-L=H$ for some ample Cartier divisors L and H, or equivalently if $f^{*} L-L=$ H for some big \mathbb{R}-Cartier divisors L and H (cf. Men20, Theorem 1.1]).
- We say that a normal projective variety X is of Fano type, if there exists an effective Weil \mathbb{Q}-divisor Δ on X such that the pair (X, Δ) has at worst klt singularities and $-\left(K_{X}+\Delta\right)$ is ample (cf. [PS09, LemmaDefinition 2.6]). If $\Delta=0$, we say that X is a Fano variety.
- A finite surjective morphism is quasi-étale if it is étale in codimension one.
- We say that a normal variety X is a toric variety if X contains an algebraic torus $T=\left(k^{*}\right)^{n}$ as an (affine) open dense subset such that the natural multiplication action of T on itself extends to an action on
the whole variety. In this case, let $D:=X \backslash T$, which is a divisor; the pair (X, D) is said to be a toric pair.
- Let (X, Δ) be a \log pair. Write $\Delta=\sum_{i} a_{i} D_{i}$ with each $a_{i}>0$ and D_{i} being distinct irreducible divisors. Denote by

$$
\langle\Delta\rangle:=\lfloor\Delta\rfloor+\lceil 2 \Delta\rceil-\lfloor 2 \Delta\rfloor=\sum_{i: a_{i}>1 / 2} D_{i} .
$$

A decomposition of Δ is an expression of the form $\sum_{i=1}^{k} a_{i} S_{i} \leq \Delta$ where $S_{i} \geq 0$ are \mathbb{Z}-divisors and $a_{i} \geq 0$ for each i. The complexity of this decomposition is $n+r-d$, where r is the rank of the vector space spanned by $S_{1}, S_{2}, \cdots, S_{k}$ in the space of Weil \mathbb{R}-divisors modulo algebraic equivalence and $d=\sum a_{i}$. The complexity $c=c(X, \Delta)$ of (X, Δ) is the infimum of the complexity of any decomposition of Δ (cf. [BMSZ18, Definition 1.1]).

In what follows, we prepare several preliminary results for the use of our proofs. First, the following theorem gives a geometric characterization of toric varieties involving the complexity by Brown, M^{C} Kernan, Svaldi and Zong.

Theorem 2.2 ([BMSZ18, Theorem 1.2]). Let X be a proper variety of dimension n and let (X, Δ) be a log canonical pair such that $-\left(K_{X}+\Delta\right)$ is nef. If $\sum a_{i} S_{i}$ is a decomposition of complexity c less than one, then there is a divisor D such that (X, D) is a toric pair, where $D \geq\langle\Delta\rangle$ and all but $\lfloor 2 c\rfloor$ components of D are elements of the set $\left\{S_{i} \mid 1 \leq i \leq k\right\}$.

We give a simple version of Theorem 2.2 , which is enough for our application.

Theorem 2.3 ([MZ19, Remark 4.4 (1)]). Let X be a smooth projective variety of dimension n and let $D=\sum_{i=1}^{d} D_{i}$ be a reduced divisor such that (X, D) is a log canonical pair and $K_{X}+D \equiv 0$. Suppose the complexity $c(X, D) \leq 0$. Then (X, D) is a toric pair.

The following result is well-known due to the cone theorem.
Lemma 2.4 (cf. [KM98, Theorem 3.7], BCHM10, Corollary 1.3.2]). Let X be a normal projective variety of Fano type. Then $\operatorname{Nef}(X)$ is generated by finitely many base point free (extremal) Cartier divisors.

Lemma 2.5. Let X be a projective variety with $\operatorname{Nef}(X)=\operatorname{PE}^{1}(X)$. Then any generically finite surjective morphism $\pi: X \rightarrow Y$ to a projective variety Y is finite.

Proof. Let $\pi: X \rightarrow Y$ be a generically finite surjective morphism. Fixing an ample Cartier divisor H on Y, we have that $\pi^{*} H$ is big and thus ample by assumption. So π does not contract any curve and hence π is finite.

Lemma 2.6. Let $f: X \rightarrow X$ be a surjective endomorphism of a normal projective variety such that all the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ are positive real numbers. Suppose that $\left(f^{m}\right)^{*} D \equiv \lambda^{m} D$ for some $\lambda>0$ and integer $m \geq 1$. Then $f^{*} D \equiv \lambda D$.

Proof. We may assume $D \not \equiv 0$ and $m \geq 2$. Let $\varphi:=\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ and we regard φ as a matrix. Note that $D \in \operatorname{ker}\left(\varphi^{m}-\lambda^{m}\right)$ and

$$
\varphi^{m}-\lambda^{m}=\prod_{i=0}^{m-1}\left(\varphi-\lambda \cdot \xi_{m}^{i}\right)
$$

where ξ_{m} is a primitive m-th root of unity. Suppose that $D \notin \operatorname{ker}(\varphi-\lambda)$. Then there exists $1 \leq j \leq m-1$ such that

$$
\widetilde{D}:=\left(\prod_{i=0}^{j-1}\left(\varphi-\lambda \cdot \xi_{m}^{i}\right)\right)(D) \not \equiv 0 \text { and }\left(\varphi-\lambda \cdot \xi_{m}^{j}\right)(\widetilde{D}) \equiv 0
$$

Note that $\lambda \cdot \xi_{m}^{j}$ is not a positive real number but an eigenvalue of φ. So we get a contradiction.

Remark 2.7. Let $X:=C_{1} \times \cdots \times C_{n}$ with each $C_{i} \cong \mathbb{P}^{1}$. Let $f: X \rightarrow X$ be a surjective endomorphism. Then replacing f by a power, we have

$$
f=f_{1} \times \cdots \times f_{n}
$$

where each $f_{i}: C_{i} \rightarrow C_{i}$ is a surjective endomorphism. Moreover, if all the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$ are already positive real numbers, then we don't need to replace f by a power above by Lemma 2.6. Note that this kind of splitting result holds true when each C_{i} is a normal projective variety with $H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right)=0$; see [San20, Theorem 4.6].

3. Proof of Theorem 1.5

In this section, we shall answer Question 1.4 affirmatively. Let X be a normal projective variety and D a reduced divisor on X. Let $j: U \hookrightarrow X$ be a smooth open subset of X with $\operatorname{codim}(X \backslash U) \geq 2$ and $D \cap U$ being a normal crossing divisor. Denote by

$$
\hat{\Omega}_{X}^{1}(\log D):=j_{*} \Omega_{U}^{1}(\log D \cap U)
$$

where $\Omega_{U}^{1}(\log D \cap U)$ is the locally free sheaf of germs of logarithmic 1-forms over U with poles only along $D \cap U$. Note that $\hat{\Omega}_{X}^{1}(\log D)$ is a reflexive coherent sheaf on X which is independent of the choice of U.

First, with the same notations as above, we recall the following two results which are borrowed from [MZ19] and MZ22], and will be used in the proof of Theorem 1.5 .

Theorem 3.1 (cf. MZ19, Theorem 4.5]). Let X be a normal projective variety of dimension n, and D a reduced divisor of X. Then the complexity (cf. Notation 2.1)

$$
c(X, D) \leq n+\widetilde{q}(X)-h^{0}\left(X, \hat{\Omega}_{X}^{1}(\log D)\right)
$$

where $\widetilde{q}(X):=q(\widetilde{X})=h^{1}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}\right)$ with \widetilde{X} being a smooth projective model of X.

Proposition 3.2 (cf. [MZ22, Proposition 10.3]). Let $f: X \rightarrow X$ be an int-amplified endomorphism of a normal projective variety X which is of dimension $n \geq 2$ and smooth in codimension 2. Let H be an ample Cartier divisor and $D \subseteq X$ a reduced divisor. Suppose that $f^{-1}(D)=D$ and $\left.f\right|_{X \backslash D}$: $X \backslash D \rightarrow X \backslash D$ is quasi-étale. Then
$c_{1}\left(\hat{\Omega}_{X}^{1}(\log D)\right) \cdot H^{n-1}=c_{1}\left(\hat{\Omega}_{X}^{1}(\log D)\right)^{2} \cdot H^{n-2}=c_{2}\left(\hat{\Omega}_{X}^{1}(\log D)\right) \cdot H^{n-2}=0$.
We follow the idea of [MZ22, Proposition 10.5] to prove the next proposition.

Proposition 3.3. Let $f: X \rightarrow X$ be an int-amplified endomorphism of a normal projective variety, which is of dimension n, of Fano type and smooth in codimension two. Let H be an ample Cartier divisor and $D \subseteq X$ a reduced divisor. Suppose that $f^{-1}(D)=D$ and $\left.f\right|_{X \backslash D}: X \backslash D \rightarrow X \backslash D$ is quasi-étale. Then $\hat{\Omega}_{X}^{1}(\log D)$ is H-slope semistable.

Proof. By Lemma 2.4, $\operatorname{Nef}(X)$ is generated by finitely many nef divisors. Replacing f by a power, we may assume f^{*} fixes each extremal ray of $\operatorname{Nef}(X)$. Then, there exist nef divisors D_{1}, \cdots, D_{k} on X such that $f^{*} D_{i} \equiv \lambda_{i} D_{i}$ and $H \equiv \sum_{i=1}^{k} a_{i} D_{i}$ with each $a_{i}>0$.

Suppose the contrary that $\hat{\Omega}_{X}^{1}(\log D)$ is not H-slope semistable. We consider the maximal destabilizing subsheaf $\mathcal{F} \subseteq \hat{\Omega}_{X}^{1}(\log D)$ with respect to H such that

$$
\mu_{H}(\mathcal{F}):=\frac{c_{1}(\mathcal{F}) \cdot H^{n-1}}{\operatorname{rank} \mathcal{F}}>\mu_{H}\left(\hat{\Omega}_{X}^{1}(\log D)\right)=0
$$

Note that the last equality is due to Proposition 3.2. Since $H \equiv \sum a_{i} D_{i}$ with each $a_{i}>0$, there exists a summand $D_{i_{1}} \cdots D_{i_{n-1}}$ of H^{n-1} such that

$$
c_{1}(\mathcal{F}) \cdot D_{i_{1}} \cdots D_{i_{n-1}}>0
$$

Then $D_{i_{1}} \cdots D_{i_{n-1}} \not 三_{w} 0$ and there exists a nef Cartier divisor D_{l} such that

$$
f^{*} D_{l}=\lambda_{l} D_{l} \text { and } D_{i_{1}} \cdots D_{i_{n-1}} \cdot D_{l}>0
$$

So $\operatorname{deg} f=\lambda_{i_{1}} \cdots \lambda_{i_{n-1}} \cdot \lambda_{l}$ by the projection formula. Since all the $D_{i_{j}}$ are nef, we have

$$
s=\sup \left\{c_{1}(\mathcal{F}) \cdot D_{i_{1}} \cdots D_{i_{n-1}} \mid \mathcal{F} \subseteq \hat{\Omega}_{X}^{1}(\log D)\right\}<\infty
$$

Note that $\lambda_{l}>1$ (cf. [Men20, Theorem 1.1]). Then for some $k \gg 1$ and $g:=$ f^{k}, we get the following inequality by the projection formula

$$
c_{1}\left(g^{*} \mathcal{F}\right) \cdot D_{i_{1}} \cdots D_{i_{n-1}}=\lambda_{l}^{k} \cdot c_{1}(\mathcal{F}) \cdot D_{i_{1}} \cdots D_{i_{n-1}}>s
$$

Let U be a smooth open subset in X such that $\operatorname{codim}(X \backslash U) \geq 3$ and $D \cap U$ is a normal crossing divisor (cf. [MZ22, Proposition 10.2]). Let j : $g^{-1}(U) \hookrightarrow X$ be the inclusion map and $\mathcal{G}:=j_{*}\left(\left.\left(g^{*} \mathcal{F}\right)\right|_{g^{-1}(U)}\right)$. Then we have

$$
c_{1}(\mathcal{G}) \cdot D_{i_{1}} \cdots D_{i_{n-1}}=c_{1}\left(g^{*} \mathcal{F}\right) \cdot D_{i_{1}} \cdots D_{i_{n-1}}>s
$$

Note that $\left.\left.\left.\left(g^{*} \mathcal{F}\right)\right|_{g^{-1}(U)} \subseteq\left(g^{*} \hat{\Omega}_{X}^{1}(\log D)\right)\right|_{g^{-1}(U)} \cong \hat{\Omega}_{X}^{1}(\log D)\right|_{g^{-1}(U)}$, the latter of which is a locally free sheaf. Since $\operatorname{codim}\left(X \backslash g^{-1}(U)\right) \geq 2$ and j_{*} is left exact, \mathcal{G} is a coherent subsheaf of $\hat{\Omega}_{X}^{1}(\log D)$. So we get a contradiction.

Proof of Theorem 1.5. Let $n=\operatorname{dim}(X)$. Suppose (X, D) is a toric pair and denote by $T:=X \backslash D \cong\left(k^{*}\right)^{n}$ the big torus. Then the power map

$$
T \rightarrow T \operatorname{via}\left(x_{1}, \cdots, x_{n}\right) \mapsto\left(x_{1}^{q}, \cdots, x_{n}^{q}\right)
$$

extends to a surjective endomorphism $f: X \rightarrow X$; see [Nak02, Lemma 4]. By the construction, the morphism f sends any divisor D to $q D$ via the pull-back; hence f is q-polarized.

For another direction, X first is of Fano type by Theorem 1.1. If $\operatorname{dim}(X)=1$, then $X \cong \mathbb{P}^{1}$ and D is a divisor of two distinct points. Assume that $n:=\operatorname{dim}(X) \geq 2$. By Propositions 3.2, 3.3 and [GKP16, Theorem 1.20], the reflexive sheaf of germs of logarithmic 1 -forms $\hat{\Omega}_{X}^{1}(\log D)$ is free of rank n since X is simply connected. In particular, $h^{0}\left(X, \hat{\Omega}_{X}^{1}(\log D)\right)=n$. Now, we compute the complexity $c(X, D)$ of the pair (X, D). By Theorem 3.1,

$$
c(X, D) \leq n+\widetilde{q}(X)-h^{0}\left(X, \hat{\Omega}_{X}^{1}(\log D)\right)
$$

where $\widetilde{q}(X)$ is the irregularity of a smooth projective model of X. Since X is smooth and rationally connected, $\widetilde{q}(X)=q(X)=0$ (cf. Deb01, Corollary 4.18]). Therefore,

$$
c(X, D) \leq n+0-n=0
$$

Since D is f^{-1}-invariant with f being an int-amplified endomorphism, it follows from [BH14, Theorem 1.4] and [Men20, Lemma 3.11] that (X, D) is a \log canonical pair by noticing that the non-lc center of (X, D) is f^{-1} invariant and hence empty. By the ramification divisor formula, since $\left.f\right|_{X \backslash D}$ is étale, we have

$$
K_{X}+D=f^{*}\left(K_{X}+D\right)
$$

So $K_{X}+D \equiv 0$ by Men20, Theorem 1.1]. Finally, applying Theorem 2.3 to the pair (X, D) with all the assumptions therein verified, we see that (X, D) is a toric pair, and our theorem is thus proved.

4. Dynamics with Hodge index theorem

We begin with the following type of Hodge index theorem which is known to experts.

Lemma 4.1 (cf. [DS04, Corollarie 3.2] or [Zha16, Lemma 3.2]). Let X be a normal projective variety. Let $D_{1} \not \equiv 0$ and $D_{2} \not \equiv 0$ be two nef \mathbb{R} Cartier divisors such that $D_{1} \cdot D_{2} \equiv_{w} 0$. Then $D_{1} \equiv a D_{2}$ for some $a>0$.

Proof. We may assume $n:=\operatorname{dim}(X) \geq 2$. Let H be a very ample Cartier divisor on X. Let S be a general surface on X such that $H^{n-2} \equiv_{w} S$. Then $\left.\left.D_{1}\right|_{S} \cdot D_{2}\right|_{S}=D_{1} \cdot D_{2} \cdot H^{n-2}=0$. By the Hodge index theorem on S, we have $\left.\left.D_{1}\right|_{S} \equiv a D_{2}\right|_{S}$ for some $a>0$. Therefore,

$$
\left(D_{1}-a D_{2}\right) \cdot H^{n-1}=\left(D_{1}-a D_{2}\right)^{2} \cdot H^{n-2}=0
$$

By [Zha16, Lemma 3.2], $D_{1} \equiv a D_{2}$.
We slightly generalize [Zha16, Claim 3.3] (also cf. [DS04, Théorème 3.3]) to the following, which states the semi-negativity of the generalized Hodge index theorem.

Lemma 4.2. Let X be a normal projective variety of dimension n and M some \mathbb{R}-Cartier divisor. Let D_{1}, \cdots, D_{n-1} be nef \mathbb{R}-Cartier divisors such that $D_{1} \cdots D_{n-1} \not 三_{w} 0$ and $M \cdot D_{1} \cdots D_{n-1}=0$. Then $M^{2} \cdot D_{1} \cdots D_{n-2} \leq 0$.

Proof. We may assume $n \geq 2$. Write $D_{i}=\lim _{m \rightarrow \infty} D_{i, m}$ with $D_{i, m}$ ample \mathbb{R} Cartier divisors for each i. Fix an ample $\stackrel{m}{\mathrm{C}} \mathrm{Cartier}$ divisor H on X. Since $H \cdot D_{1, m} \cdots D_{n-1, m}>0$, we have

$$
(M+r(m) H) \cdot D_{1, m} \cdots D_{n-1, m}=0
$$

for some unique real number $r(m)$. Therefore,

$$
(M+r(m) H)^{2} \cdot D_{1, m} \cdots D_{n-2, m} \leq 0
$$

by the negativity in Zha16, Claim 3.3]. By the assumption $D_{1} \cdots D_{n-1} \not \equiv_{w}$ 0 , we have $H \cdot D_{1, m} \cdots D_{n-1, m}>0$ and hence $\lim _{m \rightarrow \infty} r(m)=0$. Therefore,

$$
M^{2} \cdot D_{1} \cdots D_{n-2} \leq 0
$$

by letting $m \rightarrow \infty$.
The following lemma is known in [DS04, Corollaire 3.5] for the case of compact Kähler manifolds. We follow the idea there and reprove it in the algebraic context.

Lemma 4.3. Let X be a normal projective variety, and $D, D^{\prime}, D_{1}, \cdots, D_{k}$ $(k \leq \operatorname{dim} X-2)$ nef \mathbb{R}-Cartier divisors such that $D \cdot D^{\prime} \cdot D_{1} \cdots D_{k} \equiv_{w} 0$. Then $\left(a D+a^{\prime} D^{\prime}\right) \cdot D_{1} \cdots D_{k} \equiv_{w} 0$ for some real numbers $\left(a, a^{\prime}\right) \neq(0,0)$. Furthermore, if $D \cdot D_{1} \cdots D_{k} \not 三_{w} 0$, then $a^{\prime} \neq 0$ and $\left(a, a^{\prime}\right)$ is unique up to a scalar.

Proof. We may assume $n:=\operatorname{dim} X \geq 2$. If $D \cdot D_{1} \cdots D_{k} \equiv_{w} 0$, we simply take $\left(a, a^{\prime}\right)=(1,0)$. In the following, we assume that $D \cdot D_{1} \cdots D_{k} \not 三_{w} 0$ (and hence $\left.D_{1} \cdots D_{k} \not 三_{w} 0\right)$.

Fix ample Cartier divisors A_{1}, \cdots, A_{n-k-1} on X. Denote by

$$
\begin{gathered}
V:=\mathbb{R} D+\mathbb{R} D^{\prime} \text { and } \\
W:=\left\{x \in \mathrm{~N}^{1}(X) \mid x \cdot D_{1} \cdots D_{k} \cdot A_{1} \cdots A_{n-k-1}=0\right\}
\end{gathered}
$$

subspaces of $\mathrm{N}^{1}(X)$. Note that

$$
D \notin W \text { and } \widetilde{D}:=a D+a^{\prime} D^{\prime} \in V \cap W
$$

where $\quad a:=D^{\prime} \cdot D_{1} \cdots D_{k} \cdot A_{1} \cdots A_{n-k-1} \quad$ and $\quad a^{\prime}:=-D \cdot D_{1} \cdots D_{k}$. $A_{1} \cdots A_{n-k-1} \neq 0$. Then $\operatorname{dim}_{\mathbb{R}} V \cap W \leq 1$ and the uniqueness follows.

For each $1 \leq i \leq n-k-1$, consider the following bilinear form on $\mathrm{N}^{1}(X)$:

$$
q_{i}(x, y):=x \cdot y \cdot D_{1} \cdots D_{k} \cdot A_{1} \cdots A_{i-1} \cdot A_{i+1} \cdots A_{n-k-1} .
$$

Then it follows from Lemma 4.2 and $D \cdot D^{\prime} \cdot D_{1} \cdots D_{\underline{k}} \equiv_{w} 0$ that q_{i} is seminegative on W but semi-positive on V. Hence $q_{i}(\widetilde{D}, \widetilde{D})=0$.

For any $w \in W$ and $\lambda \in \mathbb{R}$, we have $q_{i}(\lambda \widetilde{D}-w, \lambda \widetilde{D}-w) \leq 0$. Then the inequality

$$
q_{i}(w, w)-2 \lambda q_{i}(\widetilde{D}, w) \leq 0
$$

holds for any $\lambda \in \mathbb{R}$ and $w \in W$. This happens only when $q_{i}(\widetilde{D}, w)=0$ for any $w \in W$.

Note that W and A_{i} span $\mathrm{N}^{1}(X)$ because W is a hyperplane of $\mathrm{N}^{1}(X)$ and $A_{i} \notin W$. Note also that $q_{i}\left(\widetilde{D}, A_{i}\right)=0$. Then

$$
q_{i}(\widetilde{D}, x)=\widetilde{D} \cdot D_{1} \cdots D_{k} \cdot A_{1} \cdots A_{i-1} \cdot x \cdot A_{i+1} \cdots A_{n-k-1}=0
$$

for any $x \in \mathrm{~N}^{1}(X)$. This implies that $V \cap W$ is independent of the choice of each A_{i}. So

$$
\widetilde{D} \cdot D_{1} \cdots D_{k} \cdot x_{1} \cdots x_{n-k-1}=0
$$

for any divisors $x_{1}, \cdots, x_{n-k-1} \in \mathrm{~N}^{1}(X)$, which means $\widetilde{D} \cdot D_{1} \cdots D_{k} \equiv_{w} 0$.

Proposition 4.4 (cf. [DS04, Lemme 4.4]). Let $f: X \rightarrow X$ be a surjective endomorphism of a normal projective variety X of dimension n.

Let $D, D^{\prime}, D_{1}, \cdots, D_{k}(k \leq n-2)$ be nef \mathbb{R}－Cartier divisors such that $D \cdot D_{1} \cdots D_{k} \not 三_{w} 0$ and $D^{\prime} \cdot D_{1} \cdots D_{k} \not 三_{w} 0$ ．Suppose $f^{*}\left(D \cdot D_{1} \cdots D_{k}\right) \equiv_{w}$ $\lambda D \cdot D_{1} \cdots D_{k}$ and $f^{*}\left(D^{\prime} \cdot D_{1} \cdots D_{k}\right) \equiv_{w} \lambda^{\prime} D^{\prime} \cdot D_{1} \cdots D_{k}$ for two real num－ bers $\lambda \neq \lambda^{\prime}$ ．Then $D \cdot D^{\prime} \cdot D_{1} \cdots D_{k} \not 三_{w} 0$ ．

Proof．Note that $n \geq 2$ since $\rho(X) \geq 2$ by the assumption．Suppose the contrary that $D \cdot D^{\prime} \cdot D_{1} \cdots D_{k} \equiv_{w} 0$ ．By Lemma 4．3，$\left(a D+a^{\prime} D^{\prime}\right)$ ． $D_{1} \cdots D_{k} \equiv_{w} 0$ for some $\left(a, a^{\prime}\right) \in \mathbb{R}^{*} \times \mathbb{R}^{*}$ unique up to a scalar．So for any \mathbb{R}－Cartier divisors H_{1}, \cdots, H_{n-k-2} ，we have

$$
\left(a D+a^{\prime} D^{\prime}\right) \cdot D_{1} \cdots D_{k} \cdot H_{1} \cdots H_{n-k-2}=0
$$

Hence，by the projection formula，we have

$$
\left(a \lambda D+a^{\prime} \lambda^{\prime} D^{\prime}\right) \cdot D_{1} \cdots D_{k} \cdot f^{*} H_{1} \cdots f^{*} H_{n-k-2}=0
$$

Note that $\left.f^{*}\right|_{N^{1}(X)}$ is invertible．Then $\left(a \lambda D+a^{\prime} \lambda^{\prime} D^{\prime}\right) \cdot D_{1} \cdots D_{k} \equiv_{w} 0$ ，a contradiction with the uniqueness of $\left(a, a^{\prime}\right)$ up to a scalar and $\lambda \neq \lambda^{\prime}$ ．

Now we state the main proposition in this section about the dynamical rigidity at first glance，which will be crucially used in Section 5 ．

Proposition 4．5．Let $f: X \rightarrow X$ be a surjective endomorphism of an n－ dimensional normal \mathbb{Q}－Gorenstein projective variety X of Fano type．Sup－ pose that the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$（without counting multiplicities）are distinct real positive numbers $\left\{\lambda_{1}, \cdots, \lambda_{r}\right\}$ with $r \geq n$ ．Then the following hold．

1）$\rho(X)=n=r$ ．
2） $\operatorname{Nef}(X)$ is generated by base－point－free divisors D_{1}, \cdots, D_{n} such that $f^{*} D_{i} \sim \lambda_{i} D_{i}$.
3）For each i, λ_{i} is a positive integer，$D_{i}^{2} \equiv_{w} 0$ and $\kappa\left(X, D_{i}\right)=1$ ．
4）$D_{1} \cdots D_{n}>0$ and $\operatorname{deg} f=\lambda_{1} \cdots \lambda_{n}$ ．
5） $\operatorname{Nef}(X)=\mathrm{PE}^{1}(X)$ ．In particular，X is a Fano variety．
Proof．It is trivial if $n=\operatorname{dim}(X)=1$ ．Assume that $n \geq 2$ ．
By Lemma 2．4， $\operatorname{Nef}(X)$ is generated by base－point－free divisors D_{1}, \cdots, D_{m} ．Note that $m \geq \rho(X) \geq r \geq n$ ．Since $\left.f^{*}\right|_{\mathbb{N}^{1}(X)}$ is linearly in－ vertible and $\operatorname{Nef}(X)$ is $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$－invariant，$\left(f^{s}\right)^{*}$ fixes all the extremal rays $R_{D_{1}}, \cdots, R_{D_{m}}$ of $\operatorname{Nef}(X)$ for some $s>0$ ．Therefore，by Lemma 2．6，we may
assume that $f^{*} D_{i} \equiv \lambda_{i} D_{i}$ for $1 \leq i \leq n$ and $f^{*} D_{i} \equiv \mu_{i} D_{i}$ for $n+1 \leq i \leq m$ with $\mu_{i} \in\left\{\lambda_{1}, \cdots, \lambda_{r}\right\}$ ．Since D_{i} is integral，λ_{i} is an integer．

We apply Proposition 4.4 several times．Since $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{1} \neq \lambda_{3}$ ，we have $D_{1} \cdot D_{2} \not 三_{w} 0$ and $D_{1} \cdot D_{3} \not 三_{w} 0$ ．Since $\lambda_{1} \lambda_{2} \neq \lambda_{1} \lambda_{3}$ ，we further have $D_{1} \cdot D_{2} \cdot D_{3} \not 三_{w} 0$ ．Repeating the same argument，we have $D_{1} \cdot D_{2} \cdots D_{n-1}$ ． $D_{n} \neq 0$ and $\operatorname{deg} f=\lambda_{1} \cdots \lambda_{n}$ by the projection formula．So（4）is proved．

Suppose $m>n$ ．Note that D_{m} and D_{n} are nef and linearly inde－ pendent in $\mathrm{N}^{1}(X)$ ．Then $D_{m} \cdot D_{n} \not \equiv_{w} 0$ by Lemma 4．1．Similarly，D_{m} ． $D_{n-2} \not 三_{w} 0$ ．Hence $D_{m} \cdot D_{n} \cdot D_{n-2} \not 三_{w} 0$ by Proposition 4．4．Repeatedly， we have $D_{m} \cdot D_{n} \cdot D_{n-2} \cdots D_{1} \neq 0$ ．Applying the projection formula，we have $\operatorname{deg} f=\mu_{m} \lambda_{1} \cdots \lambda_{n-2} \lambda_{n}$ ，which implies $\mu_{m}=\lambda_{n-1}$ ．By the same argu－ ment after replacing D_{n} by D_{n-1} ，our $D_{m} \cdot D_{n-1} \cdot D_{n-2} \cdots D_{1} \neq 0$ and thus $\mu_{m}=\lambda_{n}=\lambda_{n-1}$ ，a contradiction．In particular，$m=\rho(X)=r=n$ ．

Replacing D_{m} by D_{i} in the above argument，we have $D_{i}^{2} \equiv_{w} 0$ for each i ．Since D_{i} is base point free，$\kappa\left(X, D_{i}\right)=1$ ．Note that $\operatorname{Pic}_{\mathbb{Q}}(X) \cong \mathrm{NS}_{\mathbb{Q}}(X)$ ． Then we have $f^{*} D_{i} \sim \lambda_{i} D_{i}$ after replacing D_{i} by a suitable multiple．So （1）－（3）are proved．

Let $D \in \partial \operatorname{Nef}(X)$ ．Then without loss of generality，by（2），we may write $D=\sum_{i=1}^{n-1} a_{i} D_{i}$ with $a_{i} \geq 0$ ．By（3），$D^{n}=0$ and thus D is not big．So $\operatorname{Nef}(X)=\mathrm{PE}^{1}(X)$ ．Note that $-K_{X}$ is a big \mathbb{Q}－Cartier divisor．Then $-K_{X}$ is further ample．So（5）is proved．

5．Proof of Theorem 1.6

In this section，we prove Theorem 1.6 and use Notation 5.1 throughout this section．

Notation 5．1．Let X be a smooth projective variety which is rationally connected of dimension n ．Let

$$
f: X \rightarrow X
$$

be a surjective endomorphism such that the eigenvalues of $\left.f^{*}\right|_{\mathrm{N}^{1}(X)}$（without counting multiplicities）are n distinct real numbers

$$
\Lambda:=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}
$$

which are greater than 1 ．

Proposition 5.2. There exist f-periodic prime divisors D_{1}, \cdots, D_{n} such that:

1) each D_{i} is a smooth Fano projective variety and $f^{*} D_{i} \sim \lambda_{i} D_{i}$;
2) there exist unique (up to isomorphism) f-equivariant fibrations

$$
\phi_{i}: X \rightarrow Y_{i} \cong \mathbb{P}^{1}
$$

with $\left.f\right|_{Y_{i}}$ being λ_{i}-polarized. Each D_{i} is a smooth fibre of ϕ_{i}; and
3) replacing f by a positive power, $\left.\left(\left.f\right|_{D_{i}}\right)^{*}\right|_{N^{1}\left(D_{i}\right)}$ has eigenvalues $\Lambda \backslash\left\{\lambda_{i}\right\}$.

Proof. Since f is int-amplified (cf. [Men20, Theorem 1.1]), X is of Fano type by Theorem 1.1. By Proposition 4.5, X is Fano, $\rho(X)=n$, and there are n base-point-free effective divisors $D_{i} \neq 0$ such that $f^{*} D_{i} \sim \lambda_{i} D_{i}$ and $\operatorname{Nef}(X)$ is generated by D_{1}, \cdots, D_{n}.

We denote by

$$
\phi_{i}: X \rightarrow Y_{i}
$$

the Iitaka fibration of $\left(X, D_{i}\right)$. Then $D_{i}=\phi_{i}^{*} H_{i}$ for some ample \mathbb{R}-Cartier divisor H_{i} on Y_{i}. By Proposition 4.5, $\operatorname{dim}\left(Y_{i}\right)=\kappa\left(X, D_{i}\right)=1$. Since X is rationally connected, $Y_{i} \cong \mathbb{P}^{1}$. For any curve C with $\phi_{i}(C)$ being a point, by the projection formula, we have

$$
D_{i} \cdot f_{*} C=f^{*} D_{i} \cdot C=\lambda_{i} D_{i} \cdot C=\lambda_{i} H_{i} \cdot\left(\phi_{i}\right)_{*} C=0
$$

Then $f(C)$ is also contracted by ϕ_{i}. By the rigidity lemma (cf. Deb01, Lemma 1.15]), ϕ_{i} is f-equivariant and denote by $g_{i}:=\left.f\right|_{Y_{i}}$. Note that g_{i} is then λ_{i}-polarized.

Suppose $p_{i}: X \rightarrow Z_{i} \cong \mathbb{P}^{1}$ is another f-equivariant fibration such that $\left.f\right|_{Z_{i}}$ is λ_{i}-polarized. Let F_{i} be the general fibre of p_{i}. Then p_{i} is the Iitaka fibration of $\left(X, F_{i}\right)$ and $f^{*} F_{i} \sim \lambda_{i} F_{i}$. Then F_{i} lies in the extremal ray $R_{D_{i}}$ and hence p_{i} and ϕ_{i} are the same up to isomorphism. We may replace D_{i} by a general fibre of ϕ_{i}. Then D_{i} is smooth and f-periodic. So (2) is satisfied.

By the adjunction formula,

$$
-K_{D_{i}}=-\left.\left(K_{X}+D_{i}\right)\right|_{D_{i}} \sim-\left.K_{X}\right|_{D_{i}}
$$

is ample. So D_{i} is Fano and (1) is satisfied.
By [Fak03, Theorem 5.1], g_{i} has Zariski dense periodic points. So we may further replace D_{i} by an f-periodic one. After a suitable iteration of f,
our $\left.f\right|_{D_{i}}$ is a surjective endomorphism of D_{i} for each i. By Proposition 4.5, $D_{1} \cdots D_{n}>0$. So $\left.D_{j}\right|_{D_{i}} \not \equiv 0$ for $j \neq i$, and we have

$$
\left.\left(\left.f\right|_{D_{i}}\right)^{*}\left(\left.D_{j}\right|_{D_{i}}\right) \sim \lambda_{j} D_{j}\right|_{D_{i}}
$$

for $j \neq i$. As a consequence, $\left.\left(\left.f\right|_{D_{i}}\right)^{*}\right|_{\mathrm{N}^{1}\left(D_{i}\right)}$ has at least $n-1$ distinct real eigenvalues $\left\{\lambda_{1}, \cdots, \widehat{\lambda_{i}}, \cdots, \lambda_{n}\right\}$. Further, all the eigenvalues of $\left.\left(\left.f\right|_{D_{i}}\right)^{*}\right|_{\mathrm{N}^{1}\left(D_{i}\right)}$ are positive integers after replacing f by a power, since $\operatorname{Nef}\left(D_{i}\right)$ is a rational polyhedron. So (3) is satisfied by applying Proposition 4.5 for D_{i}.

Proposition 5.3. There are f-equivariant Fano contractions

$$
\pi_{i}: X \rightarrow X_{i}, 1 \leq i \leq n
$$

of K_{X}-negative extremal rays, such that:

1) The eigenvalues of $\left.\left(\left.f\right|_{X_{i}}\right)^{*}\right|_{N^{1}\left(X_{i}\right)}$ are $\Lambda \backslash\left\{\lambda_{i}\right\}$.
2) π_{i} is a conic bundle and X_{i} is a smooth Fano variety.

Proof. We apply Proposition 5.2 and use the same notation there. First note that $\sum_{i=1}^{n} D_{i}$ is ample and

$$
\left(\sum_{i=1}^{n} D_{i}\right)^{n}=(n!) D_{1} \cdots D_{n}>0
$$

So we have

$$
D_{1} \cap \cdots \cap \widehat{D_{i}} \cap \cdots \cap D_{n} \neq \emptyset
$$

Let C_{i} be an irreducible curve of $D_{1} \cap \cdots \cap \widehat{D_{i}} \cap \cdots \cap D_{n}$. By Proposition 4.5, X is Fano. Then we have

$$
K_{X} \cdot C_{i}<0 \text { and } D_{j} \cdot C_{i}=0
$$

for $j \neq i$ (recall that $D_{i}^{2} \equiv_{w} 0$). Since the space spanned by nef $D_{1}, \cdots, \widehat{D_{i}}, \cdots, D_{n}$ is an f^{*}-invariant hyperplane of $\mathrm{N}^{1}(X)$, its dual space is f_{*}-invariant 1-dimensional and contains $R_{C_{i}}$ as an extremal ray in $\overline{\mathrm{NE}}(X)$. Therefore, $R_{C_{i}}$ induces an f-equivariant contraction (cf. KM98, Theorem
3.7])

$$
\pi_{i}: X \rightarrow X_{i}
$$

for $1 \leq i \leq n$. By Proposition $4.5(5), \operatorname{Nef}(X)=\operatorname{PE}^{1}(X)$. So it follows from Lemma 2.5 that π_{i} is a Fano contraction, i.e., $\operatorname{dim} X_{i}<\operatorname{dim} X$. By the cone theorem (cf. [KM98, Theorem 3.7]), for any $j \neq i, D_{j}=\pi_{i}^{*} L_{j}$ for some Cartier divisor L_{j} on X_{i}. Then $\left(\left.f\right|_{X_{i}}\right)^{*} L_{j} \equiv \lambda_{j} L_{j}$. By Proposition 4.5. $\rho(X)=n$ and hence

$$
\rho\left(X_{i}\right)=\rho(X)-1=n-1
$$

So the set of eigenvalues of $\left.\left(\left.f\right|_{X_{i}}\right)^{*}\right|_{\mathrm{N}^{1}\left(X_{i}\right)}$ contains $\Lambda \backslash\left\{\lambda_{i}\right\}$ and hence coincides with it (cf. Proposition 4.5). This implies (1).

Consider the morphism

$$
\psi: X \rightarrow X_{i} \times Y_{i}
$$

induced from $\pi_{i}: X \rightarrow X_{i}$ and $\phi_{i}: X \rightarrow Y_{i}$ (cf. Proposition 5.2). Denote by $p_{1}: X_{i} \times Y_{i} \rightarrow X_{i}$ and $p_{2}: X_{i} \times Y_{i} \rightarrow Y_{i}$ the two projections. Let

$$
H:=p_{1}^{*}\left(\sum_{j \neq i} L_{j}\right)+p_{2}^{*}\left(\phi_{i}\left(D_{i}\right)\right)
$$

be a Cartier divisor on $X_{i} \times Y_{i}$. Then $\psi^{*} H=\sum_{i=1}^{n} D_{i}$ is ample and hence ψ contracts no curve of X. Note that

$$
\operatorname{dim}\left(X_{i} \times Y_{i}\right)=\operatorname{dim}\left(X_{i}\right)+1 \leq \operatorname{dim}(X)
$$

So ψ is a finite surjective morphism and we have

$$
\operatorname{dim}\left(X_{i}\right)=\operatorname{dim}(X)-1
$$

Now both ψ and p_{1} are equi-dimensional. Then $\pi_{i}=p_{1} \circ \psi$ is also equidimensional. By And85, Theorem 3.1], π_{i} is a conic bundle and X_{i} is smooth. Note that X_{i} is rationally connected. Applying Proposition 4.5 together with (1) for X_{i}, we further see that X_{i} is a Fano variety. So (2) is proved.

Proof of Theorem 1.6. One direction is simple, for example we may take

$$
f=f_{1} \times \cdots \times f_{n}
$$

where $f_{i}([a: b])=\left[a^{i+1}: b^{i+1}\right]$.

Now we consider another direction and show by induction on $n=$ $\operatorname{dim}(X)$. It is trivial if $n=1$. If $n=2$, by Proposition 4.5, X is a smooth Fano surface of Picard number 2 with $\operatorname{Nef}(X)=\operatorname{PE}^{1}(X)$. Then $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. From now on, suppose Theorem 1.6 holds for $n-1$ with $n \geq 3$.

We use the same notation as in Propositions 5.2 and 5.3 . By induction, we have

$$
X_{i} \cong D_{i} \cong\left(\mathbb{P}^{1}\right)^{\times(n-1)}
$$

Note that $\left.f\right|_{X_{i}}$ splits (cf. Remark 2.7) and for $j \neq i$, there are f-equivariant natural projections

$$
p_{j}: X_{i} \cong\left(\mathbb{P}^{1}\right)^{\times(n-1)} \rightarrow Z_{j} \cong \mathbb{P}^{1}
$$

such that $\left.f\right|_{Z_{j}}$ is λ_{j}-polarized. We may assume $Z_{j}=Y_{j}$ and $p_{j} \circ \pi_{i}=\phi_{j}$ by the uniqueness property in Proposition 5.2. Then $D_{1} \cap \cdots \cap \widehat{D_{i}} \cap \cdots \cap D_{n}$ intersects transversally and is a general fibre ℓ_{i} of π_{i}. In particular, we have

$$
d:=D_{1} \cdots D_{n}=D_{i} \cdot \ell_{i}
$$

and $D_{i} \cdot \ell_{j}=0$ for $i \neq j$ since $D_{i}^{2} \equiv_{w} 0$. Note that $K_{X} \cdot \ell_{i}=-2$. Since D_{1}, \cdots, D_{n} is a basis for $\mathrm{N}^{1}(X)$, we may write

$$
K_{X} \equiv \sum_{i=1}^{n} a_{i} D_{i}
$$

for some rational numbers a_{i}. Intersecting the above numerical equivalence with ℓ_{i}, we have $a_{i}=-2 / d$ for each i and thus

$$
-d K_{X} \equiv 2 \sum_{i=1}^{n} D_{i}
$$

Therefore,

$$
\left(-d K_{X}\right)^{n-1} \cdot D_{1}=2^{n-1}(n-1)!d
$$

From another aspect, we apply the adjunction formula

$$
K_{D_{1}}=\left.\left(K_{X}+D_{1}\right)\right|_{D_{1}}=\left.K_{X}\right|_{D_{1}}
$$

and note that

$$
\left(-K_{D_{1}}\right)^{n-1}=2^{n-1}(n-1)!
$$

since $D_{1} \cong\left(\mathbb{P}^{1}\right)^{\times(n-1)}$. Then

$$
\left(-d K_{X}\right)^{n-1} \cdot D_{1}=\left(-d K_{D_{1}}\right)^{n-1}=2^{n-1}(n-1)!d^{n-1}
$$

Therefore, $d^{n-1}=d$ and hence $d=1$ since we assumed $n \geq 3$.
Consider the morphism

$$
\psi: X \rightarrow X_{1} \times Y_{1} \cong\left(\mathbb{P}^{1}\right)^{\times n}
$$

induced from $\pi_{1}: X \rightarrow X_{1}$ and $\phi_{1}: X \rightarrow Y_{1}$. Note that

$$
\operatorname{deg} \psi=D_{1} \cdot \ell_{1}=d=1
$$

So the theorem is proved.

Acknowledgements

The authors would like to thank Professor De-Qi Zhang for many inspiring discussions, and the anonymous referee for suggestions to improve the paper. The first author is supported by Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014), a National Natural Science Fund, and a Research Fellowship of KIAS. The second author is supported by a President's Graduate Scholarship of NUS.

References

[And85] T. Ando, On extremal rays of the higher-dimensional varieties, Invent. Math. 81 (1985), no. 2, 347-357.
[BCHM10] C. Birkar, P. Cascini, C. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468.
[BG17] A. Broustet and Y. Gongyo, Remarks on log Calabi-Yau structure of varieties admitting polarized endomorphisms, Taiwanese J. Math. 21 (2017), no. 3, 569-582.
[BH14] A. Broustet and A. Höring, Singularities of varieties admitting an endomorphism, Math. Ann. 360 (2014), no. 1-2, 439-456.
[BMSZ18] M. Brown, J. McKernan, R. Svaldi and H. Zong, A geometric characterization of toric varieties, Duke Math. J. 167 (2018), no. 5, 923-968.
[Cam92] F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539-545.
[CMZ20] P. Cascini, S. Meng and D.-Q. Zhang, Polarized endomorphisms of normal projective threefolds in arbitrary characteristic, Math. Ann. 378 (2020), no. 1-2, 637-665.
[Deb01] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, 2001.
[DS04] T.-C. Dinh and N. Sibony, Groupes commutatifs d'automorphismes d'une variété kählérienne, Duke Math. J. 123 (2004), no. 2, 311-328.
[Fak03] N. Fakhruddin, Questions on self-maps of algebraic varieties, J. Ramanujan Math. Soc., 18 (2003), no. 2, 109-122.
[GKP16] D. Greb, S. Kebekus and T. Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016), no. 10, 1965-2004.
[HN11] J. M. Hwang and N. Nakayama, On endomorphisms of Fano manifolds of Picard number one, Pure Appl. Math. Q, 7 (2011), no. 4, 1407-1426.
[JZ23] J. Jia and G. Zhong, Amplified endomorphisms of Fano fourfolds, Manuscripta Math. 172 (2023), no. 1-2, 567-598.
[KM98] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Univ. Press, 1998.
[KMM92] J. Kollár, Y. Miyaoka and S. Mori, Rationally connected varieties, J. Alg. Geom. 1 (1992), 429-448.
[Men20] S. Meng, Building blocks of amplified endomorphisms of normal projective varieties, Math. Z. 294 (2020), no. 3, 1727-1747.
[Men23] S. Meng, On endomorphisms of projective varieties with numerically trivial canonical divisors, Internat. J. Math. 34 (2023), no. 1, Paper No. 2250093, 27 pp.
[MZ18] S. Meng and D.-Q. Zhang, Building blocks of polarized endomorphisms of normal projective varieties, Adv. Math. 325 (2018), 243-273.
[MZ19] S. Meng and D.-Q. Zhang, Characterizations of toric varieties via polarized endomorphisms, Math. Z. 292 (2019), no. 3-4, 12231231.
[MZ20a] S. Meng and D.-Q. Zhang, Semi-group structure of all endomorphisms of a projective variety admitting a polarized endomorphism, Math. Res. Lett. 27 (2020), no. 2, 523-549.
[MZ20b] S. Meng and D.-Q. Zhang, Normal projective varieties admitting polarized or int-amplified endomorphisms, Acta Math. Vietnam. 45 (2020), no. 1, 11-26.
[MZ22] S. Meng and D.-Q. Zhang, Kawaguchi-Silverman conjecture for certain surjective endomorphisms, Doc. Math. 27 (2022), 16051642.
[MZZ22] S. Meng, D.-Q. Zhang and G. Zhong, Non-isomorphic endomorphisms of Fano threefolds, Math. Ann. 383 (2022), no. 3-4, 15671596.
[MM81] S. Mori and S. Mukai, Classification of Fano 3-folds with $B_{2} \geq 2$, Manuscripta Math. 36, 1981.
[Nak02] N. Nakayama, Ruled surfaces with non-trivial surjective endomorphisms, Kyushu J. Math. 56 (2002), 433-446.
[PS09] Yu. G. Prokhorov and V.V. Shokurov, Towards the second main theorem on complements, J. Algebraic Geom. 18 (2009), no. 1, 151-199.
[San20] K. Sano, Dynamical degree and arithmetic degree of endomorphisms on product varieties, Tohoku Math. J. (2) 72 (2020), no. 1, 1-13.
[Yos21] S. Yoshikawa, Structure of Fano fibrations of varieties of varieties admitting an int-amplified endomorphism, Adv. Math. 391 (2021), Paper No. 107964, 32 pp.
[Zha16] D.-Q. Zhang, n-dimensional projective varieties with the action of an abelian group of rank $n-1$, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8849-8872.
[Zho21] G. Zhong, Int-amplified endomorphisms of compact Kähler spaces, Asian J. Math. 25 (2021), no. 3, 369-392.

School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) Shanghai Key Laboratory of PMMP East China Normal University, Shanghai 200241, China
School of Mathematics, Korea Institute For Advanced Study 85 Hoegiro, Dongdaemungu Seoul 02455, Republic of Korea E-mail address: smeng@math.ecnu.edu.cn

Department of Mathematics, National University of Singapore Singapore 119076, Republic of Singapore
E-mail address: zhongguolei@u.nus.edu
Received February 26, 2021
Accepted November 8, 2021

