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Rigidity of rationally connected smooth

projective varieties from

dynamical viewpoints

Sheng Meng and Guolei Zhong

Let X be a rationally connected smooth projective variety of di-
mension n. We show that X is a toric variety if and only if X
admits an int-amplified endomorphism with totally invariant ram-
ification divisor. We also show that X ∼= (P1)×n if and only if X
admits a surjective endomorphism f such that the eigenvalues of
f∗|N1(X) (without counting multiplicities) are n distinct real num-
bers greater than 1.

1. Introduction

We work over an algebraically closed field k of characteristic 0. Let X be a
smooth projective variety which is rationally connected, i.e., any two general
points of X can be connected by a chain of rational curves; see [Cam92]
and [KMM92]. A natural interest is to characterize such varieties in terms
of some dynamic assumptions.

Let f : X → X be a surjective endomorphism. Then f∗ induces an in-
vertible linear map on N1(X) := NS(X)⊗Z R where NS(X) is the Néron-
Severi group of X. In this paper, we focus on the case when all the eigen-
values of f∗|N1(X) have modulus greater than 1. Such f is also known to be
int-amplified, i.e., f∗L− L is ample for some ample Cartier divisor L; see
[Men20, Theorem 1.1]. It is a natural generalization of the q-polarized en-
domorphism, i.e., f∗H ∼ qH for some ample Cartier divisor H and integer
q > 1.

To the best knowledge of the authors, the int-amplified assumption is
necessary for one to get restrictions on the rigidity of X. Roughly speaking,
we want to exclude the effects of automorphisms. On the one hand, given a
non-isomorphic surjective endomorphism f on a variety, it is easy to obtain
a new non-isomorphic surjective endomorphism by taking the product of f
and an automorphism of another arbitrary variety, in which case, one can

589



✐

✐

“10-Zhong” — 2023/9/6 — 18:30 — page 590 — #2
✐

✐

✐

✐

✐

✐

590 S. Meng and G. Zhong

get little information on this new variety. In general, more complicated situ-
ations rather than the product case may occur; see [Men20, Example 10.2].
On the other hand, we are concerned about the periodic points of such non-
isomorphic endomorphisms. Fakhruddin showed in [Fak03, Theorem 5.1]
that amplified endomorphism (i.e., f∗L− L is ample for not necessarily am-
ple L) has countable and Zariski dense periodic points. This property is also
called PCD (over an uncountable field of characteristic 0) as studied by the
first author in [Men23]. However, there exist amplified (and hence PCD)
automorphisms which can be easily constructed on the abelian varieties of
product type (cf. [Men23, Theorem 6.2, Example 6.6]).

In [Men20, Theorem 1.10], the first author proved the equivariant min-
imal model program (MMP) for int-amplified endomorphisms (cf. [MZ20a,
Definition 2.1]), generalizing an early result for polarized endomorphisms by
Zhang and the first author (cf. [MZ18, Theorem 1.8]). We refer to [MZ18],
[CMZ20], [Men20], [MZ20a], [MZ20b], [Zho21] for details and further gener-
alizations about equivariant MMP. In this way, Yoshikawa further proved the
following result, answering partially a conjecture of Broustet and Gongyo
(cf. [BG17, Conjecture 1.2]). It is also the initial point of this paper.

Theorem 1.1 ([Yos21, Corollary 1.4]). A rationally connected smooth
projective variety X is of Fano type if it admits an int-amplified endomor-
phism (cf. Notation 2.1).

When X is a rationally connected smooth projective surface admitting
a non-isomorphic endomorphism, it was proved by Nakayama [Nak02, The-
orem 3] that X is then a toric surface, answering affirmatively a conjecture
proposed by Sato (cf. [Nak02, Conjecture 2]). Note that every toric variety is
of Fano type (cf. Notation 2.1); however, there exist many non-rational Fano
varieties. Based on Theorem 1.1, we ask the following question which is a
higher dimensional analogue of Sato’s conjecture; see also [Fak03, Question
4.4] for the polarized case. We note that Question 1.2 is known for Fano
threefolds (see [MZZ22, Theorem 1.4]) and for Fano fourfolds admitting a
conic bundle structure (see [JZ23, Theorem 1.4]).

Question 1.2. Let X be a rationally connected smooth projective variety
admitting an int-amplified endomorphism. Is X a toric variety?

Remark 1.3 (Motivation and Difficulties for Question 1.2). We note
that toric varieties usually have lots of dynamically interesting symmetries
(cf. [Nak02]), and our Question 1.2 here is sort of a converse direction to it.
In general, given a non-isomorphic surjective endomorphism on a rationally
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connected smooth projective variety (or even a Fano manifold) X, it is very
difficult to find a big torus on X; hence a positive answer to Question 1.2
reveals a very deep symmetric essence shared by toric varieties and int-
amplified endomorphisms. In this paper, we shall show two situations from
the aspects of geometry and cohomology in which Question 1.2 holds.

The following question proposed by Zhang and the first author aimed to
generalize the results for polarized endomorphisms in [HN11, Theorem 2.1]
and [MZ19, Corollary 1.4] to the int-amplified case.

Question 1.4 ([MZ22, Question 10.1]). Let f : X → X be an int-
amplified endomorphism of a rationally connected smooth projective vari-
ety. Suppose there is an f−1-invariant reduced divisor D such that f |X\D :
X\D → X\D is étale. Is (X,D) a toric pair?

However, due to a gap of the slope semistability, Zhang and the first
author can only deal with the case when f∗|N1(X) has at most two eigenvalues
in [MZ22, Theorem 10.6]. We strongly recommend [MZ22, Section 10] for a
detailed explanation. In this paper, we will mainly focus on overcoming this
gap and answer Question 1.4 affirmatively.

Theorem 1.5. Let X be a rationally connected smooth projective variety
with D a reduced divisor. Then (X,D) is a toric pair if and only if X admits
an int-amplified endomorphism f such that f |X\D : X\D → X\D is étale.

In [Men20, Theorem 1.11], replacing f by a suitable power, f∗|N1(X)

can be viewed as a diagonal matrix diag[λ1, · · · , λρ], where ρ := ρ(X) =
dimRN1(X) and λi are (possibly the same) integers greater than 1. Here, ρ
can be arbitrarily large in general, even if n = dim(X) is fixed. Nevertheless,
the number r of eigenvalues of f∗|N1(X) (without counting multiplicities)
is bounded by n; see Proposition 4.5. Note that if r = 1, then f is the
usual polarized endomorphism. For another extremal case when r = n, we
show the strongest splitting rigidity of X. The key idea is to show that
the equivariant MMP of X involves only with (conic bundle type) Fano
contractions of smooth Fano varieties, and then we are able to apply the
adjunction formula in the most comfortable way and prove by induction on
the dimension of X.
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Theorem 1.6. Let X be a rationally connected smooth projective variety
of dimension n. Then

X ∼= (P1)×n

if and only if X admits a surjective endomorphism f such that the eigenval-
ues of f∗|N1(X) (without counting multiplicities) are n distinct real numbers
greater than 1.

Remark 1.7. In the proof of Theorem 1.6, we get a finite surjective mor-
phism

ψ : X → (P1)×n

with ρ(X) = n and all the effective divisors of X being nef. The remaining
main difficulty is to show that ψ is an isomorphism or simply X ∼= (P1)×n.
When n = ρ(X) = 2, we haveX ∼= P1 × P1 by an easy observation of smooth
Fano surfaces. However, for the higher dimensional cases, this is in general
not true without dynamical concerns. For example, when n = ρ(X) = 3,
there exists a double cover ψ whose branch locus is a divisor of tridegree
(2, 2, 2) (cf. [MM81, Table 3]). Such X admits three different Fano contrac-
tions to P1 × P1 which are conic bundles with non-empty discriminant locus
(i.e., the contraction morphisms are not smooth). In particular, we have
X ̸∼= P1 × P1 × P1.

At the end of this section, we propose the following splitting question
for the general 1 ≤ r ≤ n which reduces Question 1.2 to the polarized case.
Question 1.8 is not true in the general settings of smooth projective varieties;
see examples in [Men20, Section 10].

Question 1.8. Let f : X → X be a surjective endomorphism of a rationally
connected smooth projective variety such that the eigenvalues of f∗|N1(X)

(without counting multiplicities) are distinct integers λ1, · · · , λr greater than
1. Will we have

X ∼= X1 × · · · ×Xr

where each Xi is a smooth projective variety of Fano type and f splits to
f |Xi

which is λi-polarized?

2. Preliminary

Notation 2.1. Let X be a projective variety. We use the following notation
throughout this paper.
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Pic(X) the group of Cartier divisors of X modulo linear equivalence
∼

Pic◦(X) the neutral connected component of Pic(X)
NS(X) Pic(X)/Pic◦(X), the Néron-Severi group of X
≡ the numerical equivalence for R-Cartier divisors
≡w the weak numerical equivalence for r-cycles. Two r-cycles C1

and C2 are said to be weakly numerically equivalent (denoted
by C1 ≡w C2) if (C1 − C2) · L1 · · ·Lr = 0 for all Cartier di-
visors Li on X; cf. [MZ18, Definition 2.2] and the references
therein.

N1(X) NS(X)⊗Z R, the space of R-Cartier divisors modulo the nu-
merical equivalence ≡

Nr(X) the space of r-cycles modulo weak numerical equivalence ≡w

ρ(X) dimRN1(X), the Picard number of X
κ(X,D) the Iitaka dimension of a Q-Cartier divisor D
Nef(X) the cone of nef classes in N1(X)
PE1(X) the cone of pseudo-effective classes in N1(X)

NE(X) the cone of pseudo-effective classes in N1(X)

• The above cones are (f∗)±1-invariant for any surjective endomorphism
f : X → X.

• A surjective endomorphism f : X → X is q-polarized if f∗H ∼ qH
for some ample Cartier divisor H and integer q > 1, or equivalently
if f∗B ≡ qB for some big R-Cartier divisor B and integer q > 1
(cf. [MZ18, Proposition 3.6]).

• A surjective endomorphism f : X → X is int-amplified if f∗L− L = H
for some ample Cartier divisors L and H, or equivalently if f∗L− L =
H for some big R-Cartier divisors L and H (cf. [Men20, Theorem 1.1]).

• We say that a normal projective variety X is of Fano type, if there
exists an effective Weil Q-divisor ∆ on X such that the pair (X,∆) has
at worst klt singularities and −(KX +∆) is ample (cf. [PS09, Lemma-
Definition 2.6]). If ∆ = 0, we say that X is a Fano variety.

• A finite surjective morphism is quasi-étale if it is étale in codimension
one.

• We say that a normal variety X is a toric variety if X contains an
algebraic torus T = (k∗)n as an (affine) open dense subset such that
the natural multiplication action of T on itself extends to an action on
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the whole variety. In this case, let D := X\T , which is a divisor; the
pair (X,D) is said to be a toric pair.

• Let (X,∆) be a log pair. Write ∆ =
∑

i aiDi with each ai > 0 and Di

being distinct irreducible divisors. Denote by

⟨∆⟩ := ⌊∆⌋+ ⌈2∆⌉ − ⌊2∆⌋ =
∑

i:ai>1/2

Di.

A decomposition of ∆ is an expression of the form
∑k

i=1 aiSi ≤ ∆
where Si ≥ 0 are Z-divisors and ai ≥ 0 for each i. The complexity
of this decomposition is n+ r − d, where r is the rank of the vector
space spanned by S1, S2, · · · , Sk in the space of Weil R-divisors mod-
ulo algebraic equivalence and d =

∑
ai. The complexity c = c(X,∆)

of (X,∆) is the infimum of the complexity of any decomposition of ∆
(cf. [BMSZ18, Definition 1.1]).

In what follows, we prepare several preliminary results for the use of
our proofs. First, the following theorem gives a geometric characterization
of toric varieties involving the complexity by Brown, MCKernan, Svaldi and
Zong.

Theorem 2.2 ([BMSZ18, Theorem 1.2]). Let X be a proper variety of
dimension n and let (X,∆) be a log canonical pair such that −(KX +∆) is
nef. If

∑
aiSi is a decomposition of complexity c less than one, then there

is a divisor D such that (X,D) is a toric pair, where D ≥ ⟨∆⟩ and all but
⌊2c⌋ components of D are elements of the set {Si | 1 ≤ i ≤ k}.

We give a simple version of Theorem 2.2, which is enough for our appli-
cation.

Theorem 2.3 ([MZ19, Remark 4.4 (1)]). Let X be a smooth projective
variety of dimension n and let D =

∑d
i=1Di be a reduced divisor such that

(X,D) is a log canonical pair and KX +D ≡ 0. Suppose the complexity
c(X,D) ≤ 0. Then (X,D) is a toric pair.

The following result is well-known due to the cone theorem.

Lemma 2.4 (cf. [KM98, Theorem 3.7], [BCHM10, Corollary 1.3.2]).
Let X be a normal projective variety of Fano type. Then Nef(X) is generated
by finitely many base point free (extremal) Cartier divisors.



✐

✐

“10-Zhong” — 2023/9/6 — 18:30 — page 595 — #7
✐

✐

✐

✐

✐

✐

Dynamical rigidity 595

Lemma 2.5. Let X be a projective variety with Nef(X) = PE1(X). Then
any generically finite surjective morphism π : X → Y to a projective variety
Y is finite.

Proof. Let π : X → Y be a generically finite surjective morphism. Fixing an
ample Cartier divisor H on Y , we have that π∗H is big and thus ample by
assumption. So π does not contract any curve and hence π is finite. □

Lemma 2.6. Let f : X → X be a surjective endomorphism of a normal
projective variety such that all the eigenvalues of f∗|N1(X) are positive real
numbers. Suppose that (fm)∗D ≡ λmD for some λ > 0 and integer m ≥ 1.
Then f∗D ≡ λD.

Proof. We may assume D ̸≡ 0 and m ≥ 2. Let φ := f∗|N1(X) and we regard
φ as a matrix. Note that D ∈ ker(φm − λm) and

φm − λm =

m−1∏

i=0

(φ− λ · ξim),

where ξm is a primitive m-th root of unity. Suppose that D ̸∈ ker(φ− λ).
Then there exists 1 ≤ j ≤ m− 1 such that

D̃ :=

(
j−1∏

i=0

(φ− λ · ξim)

)
(D) ̸≡ 0 and (φ− λ · ξjm)(D̃) ≡ 0.

Note that λ · ξjm is not a positive real number but an eigenvalue of φ. So we
get a contradiction. □

Remark 2.7. Let X := C1 × · · · × Cn with each Ci
∼= P1. Let f : X → X

be a surjective endomorphism. Then replacing f by a power, we have

f = f1 × · · · × fn

where each fi : Ci → Ci is a surjective endomorphism. Moreover, if all the
eigenvalues of f∗|N1(X) are already positive real numbers, then we don’t
need to replace f by a power above by Lemma 2.6. Note that this kind of
splitting result holds true when each Ci is a normal projective variety with
H1(Ci,OCi

) = 0; see [San20, Theorem 4.6].
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3. Proof of Theorem 1.5

In this section, we shall answer Question 1.4 affirmatively. LetX be a normal
projective variety andD a reduced divisor onX. Let j : U →֒ X be a smooth
open subset of X with codim (X\U) ≥ 2 and D ∩ U being a normal crossing
divisor. Denote by

Ω̂1
X(logD) := j∗Ω

1
U (logD ∩ U)

where Ω1
U (logD ∩ U) is the locally free sheaf of germs of logarithmic 1-forms

over U with poles only along D ∩ U . Note that Ω̂1
X(logD) is a reflexive

coherent sheaf on X which is independent of the choice of U .
First, with the same notations as above, we recall the following two

results which are borrowed from [MZ19] and [MZ22], and will be used in the
proof of Theorem 1.5.

Theorem 3.1 (cf. [MZ19, Theorem 4.5]). Let X be a normal projective
variety of dimension n, and D a reduced divisor of X. Then the complexity
(cf. Notation 2.1)

c(X,D) ≤ n+ q̃(X)− h0(X, Ω̂1
X(logD))

where q̃(X) := q(X̃) = h1(X̃,OX̃) with X̃ being a smooth projective model
of X.

Proposition 3.2 (cf. [MZ22, Proposition 10.3]). Let f : X → X be an
int-amplified endomorphism of a normal projective variety X which is of
dimension n ≥ 2 and smooth in codimension 2. Let H be an ample Cartier
divisor and D ⊆ X a reduced divisor. Suppose that f−1(D) = D and f |X\D :
X\D → X\D is quasi-étale. Then

c1(Ω̂
1
X(logD)) ·Hn−1 = c1(Ω̂

1
X(logD))2 ·Hn−2 = c2(Ω̂

1
X(logD)) ·Hn−2 = 0.

We follow the idea of [MZ22, Proposition 10.5] to prove the next propo-
sition.

Proposition 3.3. Let f : X → X be an int-amplified endomorphism of a
normal projective variety, which is of dimension n, of Fano type and smooth
in codimension two. Let H be an ample Cartier divisor and D ⊆ X a reduced
divisor. Suppose that f−1(D) = D and f |X\D : X\D → X\D is quasi-étale.

Then Ω̂1
X(logD) is H-slope semistable.
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Proof. By Lemma 2.4, Nef(X) is generated by finitely many nef divisors. Re-
placing f by a power, we may assume f∗ fixes each extremal ray of Nef(X).
Then, there exist nef divisors D1, · · · , Dk on X such that f∗Di ≡ λiDi and

H ≡
k∑

i=1
aiDi with each ai > 0.

Suppose the contrary that Ω̂1
X(logD) is not H-slope semistable. We

consider the maximal destabilizing subsheaf F ⊆ Ω̂1
X(logD) with respect to

H such that

µH(F) :=
c1(F) ·Hn−1

rankF
> µH(Ω̂1

X(logD)) = 0.

Note that the last equality is due to Proposition 3.2. Since H ≡
∑
aiDi with

each ai > 0, there exists a summand Di1 · · ·Din−1
of Hn−1 such that

c1(F) ·Di1 · · ·Din−1
> 0.

Then Di1 · · ·Din−1
̸≡w 0 and there exists a nef Cartier divisor Dl such that

f∗Dl = λlDl and Di1 · · ·Din−1
·Dl > 0.

So deg f = λi1 · · ·λin−1
· λl by the projection formula. Since all the Dij are

nef, we have

s = sup {c1(F) ·Di1 · · ·Din−1
| F ⊆ Ω̂1

X(logD)} <∞.

Note that λl > 1 (cf. [Men20, Theorem 1.1]). Then for some k ≫ 1 and g :=
fk, we get the following inequality by the projection formula

c1(g
∗F) ·Di1 · · ·Din−1

= λkl · c1(F) ·Di1 · · ·Din−1
> s.

Let U be a smooth open subset in X such that codim(X\U) ≥ 3 and
D ∩ U is a normal crossing divisor (cf. [MZ22, Proposition 10.2]). Let j :
g−1(U) →֒ X be the inclusion map and G := j∗((g

∗F)|g−1(U)). Then we have

c1(G) ·Di1 · · ·Din−1
= c1(g

∗F) ·Di1 · · ·Din−1
> s.

Note that (g∗F)|g−1(U) ⊆ (g∗Ω̂1
X(logD))|g−1(U)

∼= Ω̂1
X(logD)|g−1(U), the lat-

ter of which is a locally free sheaf. Since codim(X\g−1(U)) ≥ 2 and j∗ is left
exact, G is a coherent subsheaf of Ω̂1

X(logD). So we get a contradiction. □
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Proof of Theorem 1.5. Let n = dim(X). Suppose (X,D) is a toric pair and
denote by T := X\D ∼= (k∗)n the big torus. Then the power map

T → T via (x1, · · · , xn) 7→ (xq1, · · · , x
q
n)

extends to a surjective endomorphism f : X → X; see [Nak02, Lemma 4].
By the construction, the morphism f sends any divisor D to qD via the
pull-back; hence f is q-polarized.

For another direction, X first is of Fano type by Theorem 1.1. If
dim(X) = 1, then X ∼= P1 and D is a divisor of two distinct points. Assume
that n := dim(X) ≥ 2. By Propositions 3.2, 3.3 and [GKP16, Theorem 1.20],
the reflexive sheaf of germs of logarithmic 1-forms Ω̂1

X(logD) is free of rank
n since X is simply connected. In particular, h0(X, Ω̂1

X(logD)) = n. Now,
we compute the complexity c(X,D) of the pair (X,D). By Theorem 3.1,

c(X,D) ≤ n+ q̃(X)− h0(X, Ω̂1
X(logD)),

where q̃(X) is the irregularity of a smooth projective model of X. Since X
is smooth and rationally connected, q̃(X) = q(X) = 0 (cf. [Deb01, Corollary
4.18]). Therefore,

c(X,D) ≤ n+ 0− n = 0.

Since D is f−1-invariant with f being an int-amplified endomorphism, it
follows from [BH14, Theorem 1.4] and [Men20, Lemma 3.11] that (X,D)
is a log canonical pair by noticing that the non-lc center of (X,D) is f−1-
invariant and hence empty. By the ramification divisor formula, since f |X\D

is étale, we have

KX +D = f∗(KX +D).

So KX +D ≡ 0 by [Men20, Theorem 1.1]. Finally, applying Theorem 2.3 to
the pair (X,D) with all the assumptions therein verified, we see that (X,D)
is a toric pair, and our theorem is thus proved. □

4. Dynamics with Hodge index theorem

We begin with the following type of Hodge index theorem which is known
to experts.

Lemma 4.1 (cf. [DS04, Corollarie 3.2] or [Zha16, Lemma 3.2]). Let
X be a normal projective variety. Let D1 ̸≡ 0 and D2 ̸≡ 0 be two nef R-
Cartier divisors such that D1 ·D2 ≡w 0. Then D1 ≡ aD2 for some a > 0.
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Proof. We may assume n := dim(X) ≥ 2. Let H be a very ample Cartier
divisor on X. Let S be a general surface on X such that Hn−2 ≡w S. Then
D1|S ·D2|S = D1 ·D2 ·H

n−2 = 0. By the Hodge index theorem on S, we
have D1|S ≡ aD2|S for some a > 0. Therefore,

(D1 − aD2) ·H
n−1 = (D1 − aD2)

2 ·Hn−2 = 0.

By [Zha16, Lemma 3.2], D1 ≡ aD2. □

We slightly generalize [Zha16, Claim 3.3] (also cf. [DS04, Théorème 3.3])
to the following, which states the semi-negativity of the generalized Hodge
index theorem.

Lemma 4.2. Let X be a normal projective variety of dimension n and M
some R-Cartier divisor. Let D1, · · · , Dn−1 be nef R-Cartier divisors such
that D1 · · ·Dn−1 ̸≡w 0 andM ·D1 · · ·Dn−1 = 0. ThenM2 ·D1 · · ·Dn−2 ≤ 0.

Proof. We may assume n ≥ 2. Write Di = lim
m→∞

Di,m with Di,m ample R-

Cartier divisors for each i. Fix an ample Cartier divisor H on X. Since
H ·D1,m · · ·Dn−1,m > 0, we have

(M + r(m)H) ·D1,m · · ·Dn−1,m = 0

for some unique real number r(m). Therefore,

(M + r(m)H)2 ·D1,m · · ·Dn−2,m ≤ 0

by the negativity in [Zha16, Claim 3.3]. By the assumption D1 · · ·Dn−1 ̸≡w

0, we have H ·D1,m · · ·Dn−1,m > 0 and hence lim
m→∞

r(m) = 0. Therefore,

M2 ·D1 · · ·Dn−2 ≤ 0

by letting m→ ∞. □

The following lemma is known in [DS04, Corollaire 3.5] for the case of
compact Kähler manifolds. We follow the idea there and reprove it in the
algebraic context.

Lemma 4.3. Let X be a normal projective variety, and D,D′, D1, · · · , Dk

(k ≤ dimX − 2) nef R-Cartier divisors such that D ·D′ ·D1 · · ·Dk ≡w 0.
Then (aD + a′D′) ·D1 · · ·Dk ≡w 0 for some real numbers (a, a′) ̸= (0, 0).
Furthermore, if D ·D1 · · ·Dk ̸≡w 0, then a′ ̸= 0 and (a, a′) is unique up to
a scalar.
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Proof. We may assume n := dimX ≥ 2. If D ·D1 · · ·Dk ≡w 0, we simply
take (a, a′) = (1, 0). In the following, we assume thatD ·D1 · · ·Dk ̸≡w 0 (and
hence D1 · · ·Dk ̸≡w 0).

Fix ample Cartier divisors A1, · · · , An−k−1 on X. Denote by

V := RD + RD′ and

W := {x ∈ N1(X) | x ·D1 · · ·Dk ·A1 · · ·An−k−1 = 0}

subspaces of N1(X). Note that

D ̸∈W and D̃ := aD + a′D′ ∈ V ∩W

where a := D′ ·D1 · · ·Dk ·A1 · · ·An−k−1 and a′ := −D ·D1 · · ·Dk ·
A1 · · ·An−k−1 ̸= 0. Then dimR V ∩W ≤ 1 and the uniqueness follows.

For each 1 ≤ i ≤ n− k − 1, consider the following bilinear form on
N1(X):

qi(x, y) := x · y ·D1 · · ·Dk ·A1 · · ·Ai−1 ·Ai+1 · · ·An−k−1.

Then it follows from Lemma 4.2 and D ·D′ ·D1 · · ·Dk ≡w 0 that qi is semi-
negative on W but semi-positive on V . Hence qi(D̃, D̃) = 0.

For any w ∈W and λ ∈ R, we have qi(λD̃ − w, λD̃ − w) ≤ 0. Then the
inequality

qi(w,w)− 2λqi(D̃, w) ≤ 0

holds for any λ ∈ R and w ∈W . This happens only when qi(D̃, w) = 0 for
any w ∈W .

Note that W and Ai span N1(X) because W is a hyperplane of N1(X)
and Ai ̸∈W . Note also that qi(D̃, Ai) = 0. Then

qi(D̃, x) = D̃ ·D1 · · ·Dk ·A1 · · ·Ai−1 · x ·Ai+1 · · ·An−k−1 = 0

for any x ∈ N1(X). This implies that V ∩W is independent of the choice of
each Ai. So

D̃ ·D1 · · ·Dk · x1 · · ·xn−k−1 = 0

for any divisors x1, · · · , xn−k−1 ∈ N1(X), which means D̃ ·D1 · · ·Dk ≡w 0.
□

Proposition 4.4 (cf. [DS04, Lemme 4.4]). Let f : X → X be a sur-
jective endomorphism of a normal projective variety X of dimension n.
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Let D,D′, D1, · · · , Dk (k ≤ n− 2) be nef R-Cartier divisors such that
D ·D1 · · ·Dk ̸≡w 0 and D′ ·D1 · · ·Dk ̸≡w 0. Suppose f∗(D ·D1 · · ·Dk) ≡w

λD ·D1 · · ·Dk and f∗(D′ ·D1 · · ·Dk) ≡w λ
′D′ ·D1 · · ·Dk for two real num-

bers λ ̸= λ′. Then D ·D′ ·D1 · · ·Dk ̸≡w 0.

Proof. Note that n ≥ 2 since ρ(X) ≥ 2 by the assumption. Suppose
the contrary that D ·D′ ·D1 · · ·Dk ≡w 0. By Lemma 4.3, (aD + a′D′) ·
D1 · · ·Dk ≡w 0 for some (a, a′) ∈ R∗ × R∗ unique up to a scalar. So for any
R-Cartier divisors H1, · · · , Hn−k−2, we have

(aD + a′D′) ·D1 · · ·Dk ·H1 · · ·Hn−k−2 = 0.

Hence, by the projection formula, we have

(aλD + a′λ′D′) ·D1 · · ·Dk · f
∗H1 · · · f

∗Hn−k−2 = 0.

Note that f∗|N1(X) is invertible. Then (aλD + a′λ′D′) ·D1 · · ·Dk ≡w 0, a
contradiction with the uniqueness of (a, a′) up to a scalar and λ ̸= λ′. □

Now we state the main proposition in this section about the dynamical
rigidity at first glance, which will be crucially used in Section 5.

Proposition 4.5. Let f : X → X be a surjective endomorphism of an n-
dimensional normal Q-Gorenstein projective variety X of Fano type. Sup-
pose that the eigenvalues of f∗|N1(X) (without counting multiplicities) are
distinct real positive numbers {λ1, · · · , λr} with r ≥ n. Then the following
hold.

1) ρ(X) = n = r.

2) Nef(X) is generated by base-point-free divisors D1, · · · , Dn such that
f∗Di ∼ λiDi.

3) For each i, λi is a positive integer, D2
i ≡w 0 and κ(X,Di) = 1.

4) D1 · · ·Dn > 0 and deg f = λ1 · · ·λn.

5) Nef(X) = PE1(X). In particular, X is a Fano variety.

Proof. It is trivial if n = dim(X) = 1. Assume that n ≥ 2.
By Lemma 2.4, Nef(X) is generated by base-point-free divisors

D1, · · · , Dm. Note that m ≥ ρ(X) ≥ r ≥ n. Since f∗|N1(X) is linearly in-
vertible and Nef(X) is f∗|N1(X)-invariant, (f

s)∗ fixes all the extremal rays
RD1

, · · · , RDm
of Nef(X) for some s > 0. Therefore, by Lemma2.6, we may
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assume that f∗Di ≡ λiDi for 1 ≤ i ≤ n and f∗Di ≡ µiDi for n+ 1 ≤ i ≤ m
with µi ∈ {λ1, · · · , λr}. Since Di is integral, λi is an integer.

We apply Proposition 4.4 several times. Since λ1 ̸= λ2 and λ1 ̸= λ3, we
have D1 ·D2 ̸≡w 0 and D1 ·D3 ̸≡w 0. Since λ1λ2 ̸= λ1λ3, we further have
D1 ·D2 ·D3 ̸≡w 0. Repeating the same argument, we have D1 ·D2 · · ·Dn−1 ·
Dn ̸= 0 and deg f = λ1 · · ·λn by the projection formula. So (4) is proved.

Suppose m > n. Note that Dm and Dn are nef and linearly inde-
pendent in N1(X). Then Dm ·Dn ̸≡w 0 by Lemma 4.1. Similarly, Dm ·
Dn−2 ̸≡w 0. Hence Dm ·Dn ·Dn−2 ̸≡w 0 by Proposition 4.4. Repeatedly,
we have Dm ·Dn ·Dn−2 · · ·D1 ̸= 0. Applying the projection formula, we
have deg f = µmλ1 · · ·λn−2λn, which implies µm = λn−1. By the same argu-
ment after replacing Dn by Dn−1, our Dm ·Dn−1 ·Dn−2 · · ·D1 ̸= 0 and thus
µm = λn = λn−1, a contradiction. In particular, m = ρ(X) = r = n.

Replacing Dm by Di in the above argument, we have D2
i ≡w 0 for each

i. Since Di is base point free, κ(X,Di) = 1. Note that PicQ(X) ∼= NSQ(X).
Then we have f∗Di ∼ λiDi after replacing Di by a suitable multiple. So
(1)–(3) are proved.

Let D ∈ ∂Nef(X). Then without loss of generality, by (2), we may

write D =
n−1∑
i=1

aiDi with ai ≥ 0. By (3), Dn = 0 and thus D is not big. So

Nef(X) = PE1(X). Note that −KX is a big Q-Cartier divisor. Then −KX

is further ample. So (5) is proved. □

5. Proof of Theorem 1.6

In this section, we prove Theorem 1.6 and use Notation 5.1 throughout this
section.

Notation 5.1. Let X be a smooth projective variety which is rationally
connected of dimension n. Let

f : X → X

be a surjective endomorphism such that the eigenvalues of f∗|N1(X) (without
counting multiplicities) are n distinct real numbers

Λ := {λ1, · · · , λn}

which are greater than 1.
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Proposition 5.2. There exist f -periodic prime divisors D1, · · · , Dn such
that:

1) each Di is a smooth Fano projective variety and f∗Di ∼ λiDi;

2) there exist unique (up to isomorphism) f -equivariant fibrations

ϕi : X → Yi ∼= P1

with f |Yi
being λi-polarized. Each Di is a smooth fibre of ϕi; and

3) replacing f by a positive power, (f |Di
)∗|N1(Di) has eigenvalues Λ\{λi}.

Proof. Since f is int-amplified (cf. [Men20, Theorem 1.1]), X is of Fano type
by Theorem 1.1. By Proposition 4.5, X is Fano, ρ(X) = n, and there are n
base-point-free effective divisors Di ̸= 0 such that f∗Di ∼ λiDi and Nef(X)
is generated by D1, · · · , Dn.

We denote by

ϕi : X → Yi

the Iitaka fibration of (X,Di). Then Di = ϕ∗iHi for some ample R-Cartier
divisor Hi on Yi. By Proposition 4.5, dim(Yi) = κ(X,Di) = 1. Since X is
rationally connected, Yi ∼= P1. For any curve C with ϕi(C) being a point, by
the projection formula, we have

Di · f∗C = f∗Di · C = λiDi · C = λiHi · (ϕi)∗C = 0.

Then f(C) is also contracted by ϕi. By the rigidity lemma (cf. [Deb01,
Lemma 1.15]), ϕi is f -equivariant and denote by gi := f |Yi

. Note that gi
is then λi-polarized.

Suppose pi : X → Zi
∼= P1 is another f -equivariant fibration such that

f |Zi
is λi-polarized. Let Fi be the general fibre of pi. Then pi is the Iitaka

fibration of (X,Fi) and f∗Fi ∼ λiFi. Then Fi lies in the extremal ray RDi

and hence pi and ϕi are the same up to isomorphism. We may replace Di by
a general fibre of ϕi. Then Di is smooth and f -periodic. So (2) is satisfied.

By the adjunction formula,

−KDi
= −(KX +Di)|Di

∼ −KX |Di

is ample. So Di is Fano and (1) is satisfied.
By [Fak03, Theorem 5.1], gi has Zariski dense periodic points. So we

may further replace Di by an f -periodic one. After a suitable iteration of f ,
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our f |Di
is a surjective endomorphism of Di for each i. By Proposition 4.5,

D1 · · ·Dn > 0. So Dj |Di
̸≡ 0 for j ̸= i, and we have

(f |Di
)∗(Dj |Di

) ∼ λjDj |Di

for j ̸= i. As a consequence, (f |Di
)∗|N1(Di) has at least n− 1 dis-

tinct real eigenvalues {λ1, · · · , λ̂i, · · · , λn}. Further, all the eigenvalues of
(f |Di

)∗|N1(Di) are positive integers after replacing f by a power, since
Nef(Di) is a rational polyhedron. So (3) is satisfied by applying Proposi-
tion 4.5 for Di. □

Proposition 5.3. There are f -equivariant Fano contractions

πi : X → Xi, 1 ≤ i ≤ n

of KX-negative extremal rays, such that:

1) The eigenvalues of (f |Xi
)∗|N1(Xi) are Λ\{λi}.

2) πi is a conic bundle and Xi is a smooth Fano variety.

Proof. We apply Proposition 5.2 and use the same notation there. First note

that
n∑

i=1
Di is ample and

(

n∑

i=1

Di)
n = (n!)D1 · · ·Dn > 0.

So we have

D1 ∩ · · · ∩ D̂i ∩ · · · ∩Dn ̸= ∅.

Let Ci be an irreducible curve of D1 ∩ · · · ∩ D̂i ∩ · · · ∩Dn. By Proposi-
tion 4.5, X is Fano. Then we have

KX · Ci < 0 and Dj · Ci = 0

for j ̸= i (recall that D2
i ≡w 0). Since the space spanned by nef

D1, · · · , D̂i, · · · , Dn is an f∗-invariant hyperplane of N1(X), its dual space is
f∗-invariant 1-dimensional and contains RCi

as an extremal ray in NE(X).
Therefore, RCi

induces an f -equivariant contraction (cf. [KM98, Theorem
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3.7])

πi : X → Xi

for 1 ≤ i ≤ n. By Proposition 4.5 (5), Nef(X) = PE1(X). So it follows
from Lemma 2.5 that πi is a Fano contraction, i.e., dimXi < dimX. By
the cone theorem (cf. [KM98, Theorem 3.7]), for any j ̸= i, Dj = π∗i Lj for
some Cartier divisor Lj on Xi. Then (f |Xi

)∗Lj ≡ λjLj . By Proposition 4.5,
ρ(X) = n and hence

ρ(Xi) = ρ(X)− 1 = n− 1.

So the set of eigenvalues of (f |Xi
)∗|N1(Xi) contains Λ\{λi} and hence coin-

cides with it (cf. Proposition 4.5). This implies (1).
Consider the morphism

ψ : X → Xi × Yi

induced from πi : X → Xi and ϕi : X → Yi (cf. Proposition 5.2). Denote by
p1 : Xi × Yi → Xi and p2 : Xi × Yi → Yi the two projections. Let

H := p∗1(
∑

j ̸=i

Lj) + p∗2(ϕi(Di))

be a Cartier divisor on Xi × Yi. Then ψ
∗H =

n∑
i=1

Di is ample and hence ψ

contracts no curve of X. Note that

dim(Xi × Yi) = dim(Xi) + 1 ≤ dim(X).

So ψ is a finite surjective morphism and we have

dim(Xi) = dim(X)− 1.

Now both ψ and p1 are equi-dimensional. Then πi = p1 ◦ ψ is also equi-
dimensional. By [And85, Theorem 3.1], πi is a conic bundle andXi is smooth.
Note thatXi is rationally connected. Applying Proposition 4.5 together with
(1) for Xi, we further see that Xi is a Fano variety. So (2) is proved. □

Proof of Theorem 1.6. One direction is simple, for example we may take

f = f1 × · · · × fn,

where fi([a : b]) = [ai+1 : bi+1].
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Now we consider another direction and show by induction on n =
dim(X). It is trivial if n = 1. If n = 2, by Proposition 4.5,X is a smooth Fano
surface of Picard number 2 with Nef(X) = PE1(X). Then X ∼= P1 × P1.
From now on, suppose Theorem 1.6 holds for n− 1 with n ≥ 3.

We use the same notation as in Propositions 5.2 and 5.3. By induction,
we have

Xi
∼= Di

∼= (P1)×(n−1).

Note that f |Xi
splits (cf. Remark 2.7) and for j ̸= i, there are f -equivariant

natural projections

pj : Xi
∼= (P1)×(n−1) → Zj

∼= P1

such that f |Zj
is λj-polarized. We may assume Zj = Yj and pj ◦ πi = ϕj by

the uniqueness property in Proposition 5.2. Then D1 ∩ · · · ∩ D̂i ∩ · · · ∩Dn

intersects transversally and is a general fibre ℓi of πi. In particular, we have

d := D1 · · ·Dn = Di · ℓi

and Di · ℓj = 0 for i ̸= j since D2
i ≡w 0. Note that KX · ℓi = −2. Since

D1, · · · , Dn is a basis for N1(X), we may write

KX ≡
n∑

i=1

aiDi

for some rational numbers ai. Intersecting the above numerical equivalence
with ℓi, we have ai = −2/d for each i and thus

−dKX ≡ 2

n∑

i=1

Di.

Therefore,

(−dKX)n−1 ·D1 = 2n−1(n− 1)!d.

From another aspect, we apply the adjunction formula

KD1
= (KX +D1)|D1

= KX |D1

and note that

(−KD1
)n−1 = 2n−1(n− 1)!
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since D1
∼= (P1)×(n−1). Then

(−dKX)n−1 ·D1 = (−dKD1
)n−1 = 2n−1(n− 1)!dn−1

Therefore, dn−1 = d and hence d = 1 since we assumed n ≥ 3.
Consider the morphism

ψ : X → X1 × Y1 ∼= (P1)×n

induced from π1 : X → X1 and ϕ1 : X → Y1. Note that

degψ = D1 · ℓ1 = d = 1.

So the theorem is proved. □
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