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Abstract: The Duistermaat-Heckman formula for their induced measure on
a moment polytope is nowadays seen as the Fourier transform of the Atiyah-
Bott/Berline-Vergne localization formula, applied to the T -equivariant Liou-
ville class. From this formula one does not see directly that the measure is
positive, and vanishes outside the moment polytope.
In [Knutson99] we gave a formula for the Duistermaat-Heckman measure
whose terms are all positive and compactly supported, using a Morse de-
composition. Its derivation required that the stable and unstable Morse
strata intersect transversely.
In this paper, we remove this very restrictive condition, at the cost of working
with an “iterated” Morse (or BiaÃlynicki-Birula) decomposition. This leads
in a natural way to a simplicial complex of “closure chains”, which in the
toric variety case is just a pulling triangulation of the moment polytope.
To handle the singularities of the closed strata we restrict to the projective
algebraic setting. Conversely, this allows us to work from the beginning with
singular projective schemes over algebraically closed ground fields.

Received January 28, 2008.

Supported by an NSF grant.



502 Allen Knutson

Contents

1. Background, and statement of results 502

1.1. The basic formula 505

1.2. Examples of ∆(X, S) 507

1.3. The coefficients vγ 515

1.4. Integrating more general classes 516

2. Background on D-H measures and B-B decompositions 518

2.1. D-H measures and equivariant Chow theory 518

2.2. B-B decompositions 521

3. Proofs of the main theorems 525

3.1. Supporting fixed points and closure chains in the B-B decomposition 525

3.2. The main theorems 531

4. Constraints on the coefficients vγ 537

4.1. An easy case of the multiplicities v(Z)(f0,f1),Y 537

4.2. Linear relations among the {vγ} 538

4.3. Assembling the coefficients {vγ} 541

Acknowledgements 542

References 542

1. Background, and statement of results

Let X ⊆ PV be a projective algebraic variety over an algebraically closed field,
invariant under the linear action of a torus T on V . Then (as in [BP90]) there
is an associated Duistermaat-Heckman measure DH(X, T) on the dual t∗ of
the Lie algebra, the weak limit as n → ∞ of the Dirac measures

∑

µ∈T∗⊆t∗

dim (µ-weight space in Γ(X;O(n)))

ndim X−dim T
δµ/n.
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As shown in [BP90], this measure DH(X, T) is supported on the convex hull
of the weights of T acting on the lines O(1)|x∈XT over the fixed points, and
is a piecewise-polynomial times Lebesgue measure on that polytope, called the
moment polytope. It is a pleasant way to encode the asymptotics of the T -
representation Γ(X;O(n)), n → ∞.

In the simplest case, T = 1, this gives a Dirac measure times the leading
coefficient deg X/(dimX)! of the Hilbert polynomial. More generally, the value of
this function at a interior integral point p of this polytope is the leading coefficient
of the Hilbert polynomial of the geometric invariant theory quotient X//pT , with
the linearization on O(1) twisted by the character −p.1 (One can also extend
this definition to rational p, and we will state a more general result of this type
in proposition 1.2.)

If T ′ → T is a homomorphism (e.g. the inclusion of a subtorus), then there is a
natural map t∗ → t ′∗ taking DH(X, T) to DH(X, T ′). For example, the T ′ = 1 case
lets one compute the degree using the total mass of the Duistermaat-Heckman
measure.

The polytope and measure are named for their origins in the case that the
base field is C [DH82]. If one chooses a Hermitian metric on V invariant under
the compact subgroup TR of T , then there is a moment map ΦT : X → t∗ whose
image is exactly the moment polytope, and DH(X, T) is the pushforward along
ΦT of the Liouville measure on the (smooth part of the) variety X. One property
of this map ΦT is that for f ∈ XT , the value ΦT (f) ∈ T∗ is the T -weight on the
line O(1)|f; as such we will use ΦT (f) to denote this weight even when the base
field is not C (though ΦT (x) will not be defined for x /∈ XT ).

Hereafter we assume the fixed point set XT is isolated. Under this assumption
Duistermaat and Heckman gave a formula for their measure as an alternating sum
over XT (this version is from [GLS88, proposition 3.3 and its preceding theorem]):

Theorem. [DH82, GLS88] Let X be a compact symplectic manifold of dimension
2n with symplectic form ω and Liouville measure [ωn], and T -moment map ΦT :

X → t∗.

1The quotient X//pT may only carry a 1-dimensional sheaf, rather than a line bundle, but this

does not affect the definitions in any appreciable way.
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For each fixed point f ∈ XT , let λf
1, . . . , λ

f
n be the weights of T acting on the

tangent space TfX. Pick ~v ∈ t such that 〈~v, λf
i〉 6= 0 for all f ∈ XT , i = 1, . . . n. (In

particular each λf
i 6= 0, which is the condition that XT is isolated.)

Then the measure DH(X, T) := (ΦT )∗(
[ωn]
n! ) on the moment polytope ΦT (X)

equals the sum

∑

f∈XT

sign

(
n∏

i=1

〈~v, λi
f〉

)
(Cf)∗

(
Lebesgue measure on the orthant Rn

≥0

)

where Cf : Rn → t∗ is the affine-linear map

Cf : Rn → t∗, (r1, . . . , rn) 7→ ΦT (f) +

n∑

i=1

ri sign
(
〈~v, λi

f〉
)

λi
f

which is proper when restricted to Rn
≥0.

In particular each term is supported on a noncompact polyhedral cone, and
much cancelation occurs to produce a compactly supported answer.

However, note that once one has computed DH(X, T), one can use the re-
striction 1 ↪→ T to compute the symplectic volume

∫
X eω of X. There are two

interesting subtleties in this restriction. One is that we can’t pass from T to
the trivial group and then apply the theorem, because we lose the “XT isolated”
condition. The other is that the total mass of DH(X, T) can’t be computed term-
by-term, since the mass of each term is infinite. (This latter problem can be fixed
rather crudely by cutting t∗ with a half-space chosen to contain ΦT (X), or even
just to contain the point at which one wishes to evaluate DH(X, T).)

We mention that one can see from the above formula (or more directly) that
if the kernel of T ’s action on X is finite, i.e. at some (hence every) fixed point f

the {λi
f} rationally span t∗, then DH(X, T) is Lebesgue measure times a piecewise-

polynomial function, called the Duistermaat-Heckman function.

In their very influential paper [AB84], Atiyah and Bott (at the same time as
Berline and Vergne in [BV84]) gave a formula for the integration of equivariant
cohomology classes on a compact T -manifold, and showed that the Duistermaat-
Heckman formula is the special case of integrating the exponential of the equi-
variant symplectic form ω̃ := ω − ΦT .
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Theorem. [AB84, BV84] Let X be a compact oriented manifold, and α ∈ H∗
T (X),

where T acts on X with isolated fixed points XT , and as above let λf
1, . . . , λ

f
n be the

weights of T acting on the tangent space TfX for each fixed point f ∈ XT .

Then the pushforward of α along the map X → pt, denoted
∫

X α ∈ H∗
T (pt) ∼=

Sym(T∗), can be computed as
∫

X
α =

∑

f∈XT

α|f∏n
i=1 λi

f

where the right-hand side formally lives in the ring of fractions of the polynomial
ring Sym(T∗). Here α|f ∈ H∗

T (f) ∼= H∗
T (pt) denotes the pullback of α along the

T -equivariant inclusion {f} ↪→ X.

By definition, the equivariant cohomology ring H∗
T (X) is the direct sum of the

groups Hi
T (X). But the AB/BV formula obviously extends to elements of the

direct product
∏

i Hi
T (X), such as exp(ω̃). Then

∫

X
exp(ω̃) =

∑

x∈XT

exp (−ΦT (x))∏n
i=1 λi

x

.

It is very tempting to Fourier transform term-by-term, turning exp(−ΦT (f)) into
δΦT (f), and the division by λi

f into integration in the λi
f direction. Making proper

sense of this (fixing the constant of integration, one might say) requires the choice
of ~v from the Duistermaat-Heckman theorem, and flipping of those weights for
which 〈~v, λi

f〉 < 0. That done, the Duistermaat-Heckman theorem (in the [GLS88]
form above) follows.

1.1. The basic formula. Hereafter we work in the algebro-geometric setting,
largely to avoid questions relating to singularities of certain subsets of X; our
localization theorem will thus be for equivariant Chow classes (see e.g. [Br97]).
On the plus side, we will not require any smoothness assumption on X itself;
hereafter, throughout the paper, X will always denote a projective scheme (except
for a brief discussion in section 1.4). If the components of X are of varying
dimension, dimX means the maximum thereof.

Our main result is a different formula for the Duistermaat-Heckman measure,
in which all the terms are themselves positive, and perforce compactly supported.
Rather than maps of the orthant to t∗, the terms will be based on maps of the
standard n-simplex {~v ∈ Rn

≥0 :
∑

i vi ≤ 1} to t∗.
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Fix a one-parameter subgroup2 S : Gm → T such that XS = XT . Then the
BiaÃlynicki-Birula stratum [BB76], hereafter B-B stratum, Xf is defined as
the locally closed subset

Xf := {x ∈ X : lim
z→0

S(z) · x = f}

(considered with the reduced scheme structure, i.e., as a set). It is easy to see that
X =

∐
f∈XT Xf; this is called the B-B decomposition of X (or more precisely,

the pair (X, S)), and is the algebraic analogue of a Morse decomposition.

Unfortunately, this is usually not a stratification: the closure Xf is usually not
a union of strata {Xg} (one example to be given in section 1.2.2). Consequently,
the combinatorics of the finite set XT is much richer than just a partially ordered
set (though it is3 that, by taking the transitive closure of “g ≥ f if g ∈ Xf”).
Define Xf0,...,fk

inductively by

X∅ := X, Xf0,...,fk
:= Xf0,...,fk−1

∩ Xfk
.

Call a nonrepeating sequence γ = (f0, . . . , fk−1) a closure chain if Xf0,...,fk
is

nonempty, or equivalently, if Xf0,...,fk
3 fk. Obviously this implies f0 < f1 <

. . . < fk, hence one can think of γ as just a set, with the partial order on XT

“remembering” the order on γ.

It is easy to see that the set of closure chains forms a simplicial complex ∆(X, S)

(meaning, any subset of a closure chain is itself one). Note that Xf0,...,fk−1
∩ Xfk

is itself a B-B stratum, namely
(
Xf0,...,fk−1

)
fk

in Xf0,...,fk−1
, and hence connected

when nonempty. We christen the set of all these subsets
{(

Xf0,...,fk−1

)
fk

}
the

iterated B-B filtration of (X, S). Our most nontrivial result (proposition 3.1)
about the complex ∆(X, S) is that it is equidimensional when X is.

At this point, we can give a weak statement of our version of the Duistermaat-
Heckman formula. It will be in terms of the simplicial complex ∆(X, S), which
does not depend on the projective embedding, and some coefficients {vγ ∈ N}

2While this S, or rather its associated coweight, bears superficial similarity to the vector ~v ∈ t

needed in the Duistermaat-Heckman theorem, its usage will be substantially different.
3This statement is quite nonobvious, actually, as it uses projectivity in a crucial way: otherwise

one can glue two P1s together, each one carrying the standard action of Gm, but each one’s ~0

glued to the other one’s ~∞. Even smooth counterexamples have been constructed [Ju77]. In

the smooth projective case, this statement appears in [BB76], and more generally can be proven

with the technique of lemma 2.4, though we will never use it directly.
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that do. We defer a precise definition of these coefficients until theorem 2, and
until then this is a sort of existence result.

Theorem 1. Let X ⊆ PV be a subscheme invariant under the linear action of a
torus T on the vector space V. Assume that the fixed point set XT is finite, and
let S : Gm → T be a one-parameter subgroup with XS = XT , with which to define
the complex ∆(X, S) of closure chains.

The longest a closure chain γ may be is 1 + dimX elements. (If X is equidi-
mensional, then every maximal closure chain is indeed this long.) To each such
closure chain γ, and depending on the projective embedding, there is associated
a positive integer vγ, such that the Duistermaat-Heckman measure of X can be
calculated as

DH(X, T) =
∑
γ

vγ (Cγ)∗ (Lebesgue measure on the standard n-simplex)

where Cγ is the unique affine-linear map Rn → t∗ taking the vertices of the
standard simplex to {ΦT (f) : f ∈ γ}.

In particular, to determine the value at a point p, we need only sum over those
γ such that p lies in the convex hull of {ΦT (f) : f ∈ γ}.

Note that the Duistermaat-Heckman measure is not sensitive to components
of lower dimension (geometric or embedded), so one may freely replace X by
the union of its primary components of top dimension. It matters little because
though this replacement may shrink ∆(X, S), it doesn’t change the set of faces γ

summed over (as follows from corollary 3.1 and proposition 3.1).

As we explained after the Duistermaat-Heckman theorem, it is very tricky to
turn their formula into one for the symplectic volume (or in the algebraic situ-
ation, the degree). Whereas here, since the individual terms have finite volume,
we can forget the T -action term by term and obtain the formula deg(X) =

∑
γ vγ.

We refine this sum in section 4.3.

1.2. Examples of ∆(X, S).

1.2.1. Flag manifolds. In the case that the B-B decomposition is a stratification,
then each nonempty

(
Xf0,...,fk−1

)
fk

is just Xfk
, and any chain f0 < . . . < fk in the

partial order is a closure chain. So the complex ∆(X, S) of closure chains is just
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the “order complex” of this poset XT . Under a slightly stronger assumption, the
theorem 1 here is an algebro-geometric version of theorem 1 in our earlier paper
[Kn99], proven there for symplectic manifolds with no algebraicity condition.

Our inspiration for that formula was the case X = G/P a generalized flag man-
ifold, where the B-B decomposition is the Bruhat decomposition [Ak81] and the
partial order is the Bruhat order. In this case the order complex is homeomorphic
to a ball [BW82].

Each space Γ(G/P;O(n)) is an irreducible representation of G, so the exact
formula for the T -equivariant Hilbert function (not just its asymptotics) is given
by the Kostant multiplicity formula or the Littelmann path formula, one case
of which was the Lakshmibai-Seshadri conjecture. As explained in [Kn99], the
asymptotics of the Kostant and Lakshmibai-Seshadri formulae reproduce respec-
tively the Duistermaat-Heckman theorem (this special case being Heckman’s the-
sis) or theorem 1.

All the same analysis goes over to Schubert varieties inside flag manifolds, not
just the flag manifolds themselves. The resulting formula for degrees of Schubert
varieties is closely related to the one in [PS], and more distantly to the one in
[Du03].

1.2.2. Toric varieties. Let X be the complex toric variety associated to an integral
polytope P ⊆ t∗. Each of the subsets Xf0,...,fk

,
(
Xf0,...,fk−1

)
fk

in the iterated B-
B filtration of X maps under the moment map ΦT onto a corresponding subset
Pf0,...,fk

,
(
Pf0,...,fk−1

)
fk

of P, which will be easier to visualize.

The choice S : Gm ↪→ T defines an “up” direction on P; the condition XT = XS

says that each edge (hence each face) has a top vertex and a bottom vertex.
Then Pf (resp. Pf) is the union of those open faces (resp. closed faces) of P

whose bottom vertex is f. If P is a simple polytope, meaning that there are only
dimP edges from each vertex (equivalently, X has at worst orbifold singularities),
then Pf contains only one maximal face, but this is not always true: consider
P an octahedron almost balanced on one corner, tilted over a little. Then the
lowest of the four points on the equator has Pf = two triangles.

In this case ∆(X, S) is a well-known triangulation of P (a “pulling triangulation”
by pulling the vertices starting from the bottom). More precisely, the maps Cγ



A Compactly Supported Formula for Equivariant Localization ... 509

from the standard simplex to t∗ are embeddings, and their images in t∗ exactly
cover P.

We illustrate in the case P a truncated right triangle, so X a Hirzebruch surface
F1, where one can already see the B-B decomposition fail to be a stratification
[BB76, example 1]. Pictured left-to-right are P, its B-B decomposition, and
∆(XP, S).

a

d

b
c

a

d

b
c

a

d

b
c

The closure of Xc is not a union of strata (it intersects but doesn’t contain Xb)
and even though b ∈ Xc, a ∈ Xb, we don’t have a ∈ Xc nor a triangle in ∆(XP, S)

containing {a, b, c}. The coefficient on vγ is the volume of the convex hull of
ΦT (γ) ⊆ P, which partly motivated the choice of the letter v.

1.2.3. Stanley-Reisner schemes. In both the flag manifold and toric variety exam-
ples, the simplicial complexes ∆(X, S) were very special: they were homeomorphic
to balls. In this section we show that in the general case, any simplicial com-
plex may arise. The following examples do not provide interesting applications
of theorem 1, but are good for testing one’s intuition about closure chains.

Let ∆ be an arbitrary simplicial complex on the vertex set 1, . . . , n, and let
V = An. To each face F in ∆, we associate the coordinate projective subspace
X(F) ⊆ PV that uses only those coordinates. Then let X(∆) = ∪F∈∆X(F) be the
union of those coordinate projective subspaces. This X(∆) is the (projective)
Stanley-Reisner scheme of ∆, whose coordinate ring is the (homogeneous)
Stanley-Reisner ring of ∆. It is invariant under the torus T that scales each
coordinate independently.

Let ΦS : {1, . . . , n} ↪→Z be strictly increasing. (Really the important condition
is injectivity, but by permuting 1, . . . , n we can obtain this convenient stronger
condition.) Then there is a corresponding action of Gm on PV , by

S(z) · [x1, . . . , xn] :=
[
zΦS(1)x1, . . . , z

ΦS(i)xi, . . . , z
ΦS(n)xn

]
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which fixes X(∆). The condition that ΦS is injective says that the only S-fixed
points on PV are the coordinate points (actually it is enough that ΦS(f) 6= ΦS(g)

for each edge {f, g} ∈ ∆).

Proposition 1.1. Let ∆,X(∆),ΦS, S be as above. Then the associated simplicial
complex of closure chains is just ∆. In particular, every finite simplicial complex
arises in this way.

Proof. Identify the fixed points
{
[0, . . . , 0, 1, 0, . . . , 0]

}
with 1, . . . , n. Then it is

easy to show that

X(∆)i = X(∆)i ∩
{
[x1, . . . , xn] : xi 6= 0

}
where X(∆)i =

⋃

F∈∆, min(F)=i

X(F).

(This would be more irritating to state without having first made ΦS strictly
increasing.) From this, one can show inductively that

X(∆)f0,...,fk
=

⋃ {
X(F) : F ∈ ∆, F = {f0, . . . , fk, larger numbers}

}

so the left side is nonempty iff {f0, . . . , fk} is the initial string of a face of ∆, i.e.
iff it is a face of ∆. ¤

When theorem 1 is applied to X(∆), each mysterious coefficient vF is just 1,
the degree of the projective variety X(F).

1.2.4. Some tricky behavior. We first mention a geometric subtlety of the def-
inition of closure chain. Plainly Xf0,...,fk

is contained in Xf0,...,fk−1
∩ Xfk

, since
it is defined as the closure of Xf0,...,fk−1

∩ Xfk
. But it can be strictly smaller,

as we will show by example in a moment. One can show that if Xf0,...,fk
had

instead been defined as Xf0,...,fk−1
∩ Xfk

, then the (similarly larger) complex of
closure chains would be a “clique complex”, meaning, the largest simplicial com-
plex with a given set of 1-faces. For example, order complexes of posets are clique
complexes, where the 1-faces {a, b} specify comparability of a and b.

The smallest simplicial complex that isn’t a clique complex is a hollow triangle
(the clique complex would be the solid triangle). The corresponding Stanley-
Reisner scheme is X = {[a, b, c] : abc = 0} ⊆ P2. Taking S(z) · [a, b, c] :=

[a, zb, z2c], the B-B strata are

X[1,0,0] = {[1, b, 0]} ∪ {[1, 0, c]}, X[0,1,0] = {[0, 1, c]}, X[0,0,1] = {[0, 0, 1]}
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and the complex of closure chains is the desired hollow triangle. In this example,
we see the claimed geometric subtlety at X[1,0,0],[0,1,0] = {[0, 1, 0]}, contrasted with
the strictly larger X[1,0,0] ∩ X[0,1,0] = {[0, 1, 0], [0, 0, 1]}.

Another interesting (for other reasons) example in the plane is X = {[a, b, c] :

b(ac − b2) = 0}, invariant under the same S as above, and we take T = S.
This has two S-fixed points {[1, 0, 0], [0, 0, 1]}, and the complex of closure chains
is an interval. (The unique vγ turns out to be 3, the degree of X.) Whereas the
geometry of X – a line union a conic, meeting transversely at the two S-fixed
points – would seem to suggest that the more appropriate complex would be an
oval, made with two intervals glued together at both ends (their vγs being 1 for
the line and 2 for the conic).

However, that is not a simplicial complex (in which faces are determined by
their set of vertices), but falls under the slightly more general notion of simplicial
poset. We did not need this richer notion to formulate theorem 1, but we will use
it in the K-theory version [Kn], based on ideas from [Kn06].

Having just described a simplicial complex (the clique complex above) that is
slightly larger than we need, the reader may wonder whether the complex ∆(X, S)

might still be larger than necessary. One sign that the complex is a good one
is that the coefficients vγ in theorem 1 are strictly positive, so no term may
be omitted. Another is that in the toric variety case discussed in the previous
section, the supports of the terms are disjoint, so the vγ can’t even be adjusted
to leave some term out. Another indication of ∆(X, S)’s minimality will come in
proposition 3.1.

1.2.5. A Bott-Samelson manifold. Bott-Samelson manifolds provide examples of
∆(X, S) that are not homeomorphic to balls, despite X being irreducible. Consider
the variety X ⊂ Gr1(C3)×Gr2(C3)×Gr1(C3) of triples of subspaces, with inci-

dences specified by the Hasse diagram X =

{
(V1, V2, V

′
1) :

〈e1, e2〉 V2

| \ / \

〈e1〉 V1 V ′
1

}

where {e1, e2, e3} denote the standard basis of C3.

This is the “1-2-1 Bott-Samelson manifold”; one way to think of it is as a walk
from the base flag (〈e1〉, 〈e1, e2〉) to other flags, by changing the line, then the
plane, then the line again. It carries an action of the diagonal matrices T inside
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GL3(C) (indeed, of the upper triangulars). There are 23 = 8 T -fixed points, in
which V1, V2, V

′
1 are coordinate subspaces. They are indexed by subsets of the

word 121, where a letter is included if the corresponding subspace is different
from the previous choice.

The Bott-Samelson is a blowup of the flag manifold, via the map (V1, V2, V
′
1) 7→

(0 < V ′
1 < V2 < C3). The exceptional locus will turn out to be X1−−. As such,

X’s moment polytope is a subpolytope of that of the flag manifold, and we draw
it below:

−21121

12− −2−

1−11− − − −1 − − − top

bot

Our one-parameter subgroup S : C× → T will be S(z) = diag(1, z, z2). Then the
top (most repellent) point is (〈e1〉, 〈e1, e2〉, 〈e1〉), and the bottom is (〈e2〉, 〈e2, e3〉, 〈e3〉).

The closures of the B-B strata are easy to compute:

X121 = X

X−21 = {V1 = 〈e1〉}, X12− = {V1 = V ′
1}, X−2− = {V1 = V ′

1 = 〈e1〉}

X1−− = {V2 = 〈e1, e2〉}, X−−1 = X1−− ∩ X−21, X1−1 = X1−− ∩ {V ′
1 = 〈e1〉}

X−−− = {V1 = V ′
1 = 〈e1〉, V2 = 〈e1, e2〉}

To check that each Xf is as claimed, note that it is T -invariant, and has the
right local behavior at f (an easy tangent space calculation on Xf, which is smooth
because X is smooth). So far this guarantees that the B-B stratum Xf is open
inside the purported Xf. But then note that each Xf is irreducible, hence is the
closure of Xf.

Note that this is not a stratification, as X12− 6⊃ X1−−. Rather,

X12−,1−− = {V1 = V ′
1, V2 = 〈e1, e2〉}.

This is the diagonal of X1−−
∼= (CP1)2, whereas X−−1, X1−1 are its two axes.
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It remains to compute ∆(X, S). Because X121 = X, the point 121 will be a
“cone point”, meaning that ∆(X, S) is a cone from that point. Put another way,
it is uninteresting, so let’s leave it out for now.

Since the top point − − − is in every stratum closure, it also will be a cone
point. (While bot being a cone point occurs whenever X is irreducible, top being
a cone point is much more a surprise; top is not a cone point for most toric
varieties, such as the Hirzebruch surface in section 1.2.2.)

The complex ∆(X, S) is then the double cone (from 121 and − − −) on the
1-complex depicted below:

−2−
1−− 1−1

12−

−−1−21

This ∆(X, S) is not homeomorphic to a ball, though it is Cohen-Macaulay. We
do not know how often this latter conclusion holds.

If the opposite B-B stratification is used (z → ∞ rather than z → 0, switching
the roles of bot and top), it turns out that there is only the one cone point −−−.
This ∆(X, S−1), depicted below without its cone point, is again Cohen-Macaulay
though not homeomorphic to a ball.
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1.2.6. The punctual Hilbert scheme of four points in C2. The Hilbert scheme of
n points in the complex plane is defined very concretely as the set of ideals in
C[x, y] of codimension n. It is, miraculously, smooth (Fogarty’s theorem) and
has received a lot of attention recently, such as in our reference [Ha02].

The subscheme in which the n points all sit at the origin is even more concrete:
each ideal contains (x, y)n, so can be considered an ideal in C[x, y]/(x, y)n, and
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hence a point in the Grassmannian Gr(n
2)

(C[x, y]/(x, y)n). This subscheme turns
out to be irreducible (another miracle), though not smooth.

The T acting is the diagonal matrices from GL2(C), which acts on the ring
and hence on the set of ideals. The fixed points are the ideals I generated by
monomials, and are indexed by partitions of n as follows: the set of pairs {(a, b) :

xayb /∈ I} ⊂ N2 is automatically a partition.

We draw the T -moment polytope for this action on the punctual Hilbert scheme
of 4 points at the origin of the plane, labeling each vertex by its partition. We
put edges to indicate the T -invariant P1s, though we won’t make direct use of
them.

From Northwest to Southeast, these vertices are the ideals (y4, x), (y3, xy, x2),
(y2, x2), (y2, xy, x3), and (y, x4).

Let S : C× → GL(2) be the one-parameter subgroup z 7→ diag(z, z2), so (y4, x)

is the top and (y, x4) the bottom. We now describe the closures of the B-B strata
on the Hilbert scheme:4

X(y4,x) = {(y4, x)} X(y3,xy,x2) = {(y4, xy, x2, Ax + By3)}

X(x2,y2) = {(y4, xy2, x2, Ax + By2 + Cxy + Dy3, Axy + By3)}

X(y2,xy,x3) = {(y3, y2x, yx2, x3, Bx2 + Cxy + Dy2, Ex2 + Fxy + Gy2)}

X(y,x4) = X

where not both of A,B are zero, and (B,C, D), (E, F,G) are linearly independent.
As these strata are not smooth, these claims are harder to check, but we do not
take space to do so here.

4The obvious terminology for these is “Gröbner basins”.



A Compactly Supported Formula for Equivariant Localization ... 515

Since X is irreducible, bot = (y, x4) is a cone point in the complex ∆(X, S),
but top is not one as top /∈ X(y2,xy,x3). The complex is pictured below, without
the cone point:

1.3. The coefficients vγ. We now give a recurrence on a family {v(Z)(f0,...,fk),Y}

of natural numbers, where Y is an irreducible component of Zf0,...,fk
of codimen-

sion k in Z, in order to give a quick definition of the {vγ}.

If X is irreducible, it has a unique open B-B stratum, and we denote the fixed
point in that stratum min(X). Lemma 2.4 then implies the following: there exists
a unique T -invariant hyperplane section of X supported on X \ Xmin(X). It is at
this point that the projective embedding of X is finally felt: the scheme structure
on this hyperplane section gives multiplicities on the components of X \ Xmin(X),
and these multiplicities are building blocks in the definition of the {vγ}.

Theorem 2. Let Z vary over the class of T -invariant subschemes of PV with ZT

isolated, and Y over the irreducible components of Zf0,...,fk
of codimension k in

Z. (There will only exist such Y if (f0, . . . , fk) is a closure chain, and usually not
even then.)

Then there exists a unique assignment
{
(Z, (f0, . . . , fk), Y) 7→ v(Z)(f0,...,fk),Y ∈ N

}

satisfying the following conditions:

(1) For 0 ≤ j ≤ k (though we will only use j = 0, 1):

v(Z)(f0,...,fj,...,fk),Y =
∑

Yj⊆Zf0,...,fj
, Yj⊇Y

v(Z)(f0,...,fj),Yj
v(Yj)(fj,...,fk),Y

where the sum is over components Yj of Zf0,...,fj
of codimension j in Z.

(2) v(Z)(min(Z)),Y is the multiplicity of Y as a component of Z.
(3) If Z is reduced and irreducible, and Y is a component of Z \ Zmin(Z), then

v(Z)(min(Z),min(Y)),Y is the multiplicity of Y in the T -invariant hyperplane
section of Z supported on Z \ Zmin(Z).

The coefficients vγ from theorem 1 can be calculated as vγ=(f0,...,fdim X) = v(X)γ,{fdim X}.
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Unfortunately these multiplicities v(Z)(min(Z),min(Y)),Y can be very difficult to
compute in examples, particularly if Z is singular at min(Y). In section 4.2 we
prove some linear relations on the {vγ} to help constrain them.

1.4. Integrating more general classes. One of the advances of [AB84, BV84]
was to give a formula for integrating more general classes than just exp(ω̃). When
X is a symplectic manifold, one application of this equivariant integration is to
perform ordinary integration on symplectic/GIT quotients X//pT of X. Recall
[Ki86] that for p a regular value of the moment map ΦT , there is a surjective Kir-
wan map κ : H∗

T (X)³ H∗(X//pT), whose kernel can be computed by computing
integrals on X//pT . That can be done as follows:

Proposition 1.2. [Gu94] Assume the setup X,ΦT of the Duistermaat-Heckman
theorem, and let p ∈ ΦT (X) be a regular value, so the symplectic reduction X//pT

is an orbifold with its own symplectic form ωp. Let α ∈ H∗
T (X).

Then the Fourier transform of
∫

X α exp(ω̃) is a measure supported on ΦT (X),
equal to Lebesgue measure times a polynomial in a neighborhood of p, whose
value at p is

∫
X//pT κ(α) exp(ωp). In particular, if deg(α) = dim(X//pT) then

the Fourier transform is a piecewise constant function (times Lebesgue measure)
whose value at p is

∫
X//pT κ(α).

This is also used as [GM06, theorem 3.2].

The case α ∈ H∗
T (pt), studied in [GS95], is already interesting, even though∫

α exp(ω̃) = α
∫

exp(ω̃). In this case, to compute the Fourier transform, we can
first compute the D-H measure and then apply the differential operator α̂· that
is Fourier dual to multiplication by α. Since DH(X, T) is a piecewise-polynomial
times Lebesgue measure, this distribution can be very complicated along the
breaks; it will thus be very convenient for us that the proposition above only
requires that we understand it at generic p.

We now give a formula for these distributions at generic p, in the same terms
as in theorem 1, and afterward discuss the case of general α ∈ H∗

T (X), or really
α ∈ AT∗ (X).

Given a list v := (v1, . . . , vn) of vectors in V and a number k ∈ N, define
a partial fractions schema as an injection σ : {1, . . . , k} ↪→{1, . . . , n} such that
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(vj : j 6= σ(1), . . . , σ(k)) spans V (so in particular k ≤ n−dimV), and that for each
i = 1, . . . , k, one has that σ(i) is in the lex-first basis in (vj : j 6= σ(1), . . . , σ(i−1)).

Given also a subset M ⊆ v with n − k elements, define the partial fractions
k-tensor τv,M as the sum

τv,M =
∑

σ
σ({1,...,k})=v\M

vσ(1)⊗ · · ·⊗vσ(k) ∈ (V∗)⊗k

over all partial fractions schemata σ whose image is the complement of M, where
vσ(i) ∈ V∗ denotes the dual basis element to vσ(i) in that lex-first basis in {vj : j /∈
σ(1, . . . , i − 1)}.

Finally, given a pair (γ ′ ⊆ γ) of closure chains, with γ ′ = (f0, . . . , fk) and
|γ| = 1 + dimX, let τγ ′,γ denote the partial fractions k-tensor τ(vi),M where
V = T∗ ⊕ ZD, vi = D + ΦT (fi), and M = γ ′.

Theorem 3. Assume the setup of theorem 1, and associate the same positive
integers vγ to closure chains of length 1 + dimX. To each closure chain γ ′ with
1 + dimX − k elements, we associate the tensor

vγ ′ :=
∑

γ⊇γ ′
vγ τγ ′,γ, γ ∈ ∆(X, S), |γ| = 1 + dimX

where τγ ′,γ is the partial fractions tensor defined above.

Let (α1, . . . , αk) ∈ T∗ ∼= A1
T (pt) be a list of T -weights, so

∏k
i=1 αi ∈ Ak

T (pt) is a
homogeneous class of degree k. Then near any point of p ∈ t∗ in general position,
the Fourier transform of multiply-by-α, applied to DH(X, T), can be calculated as

∑

γ ′∈∆(X,S)

|γ ′|=1+dim X−k

(
vγ ′ · (α1⊗ · · ·⊗αk)

)
(Cγ ′)∗

(Lebesgue measure on the standard (n − k)-simplex)

where Cγ is the unique affine-linear map Rn−k → t∗ taking the vertices of the
standard simplex to {ΦT (f) : f ∈ γ ′}. (“General position” means here that p does
not lie in the convex hull of fewer than 1 + dim T elements of ΦT (XT ).)

In particular, to determine the value at a point p in general position, we need
only sum over those γ ′ such that p lies in the convex hull of {ΦT (f) : f ∈ γ ′}.
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The next step beyond α ∈ H∗
T (pt) is α of the form

∑
i αi[Xi], where αi ∈

H∗
T (pt) and each Xi ⊆ X is a T -invariant oriented submanifold. Then

∫

X
α exp(ω̃) =

∫

X

(∑

i

αi[Xi]

)
exp(ω̃) =

∑

i

αi

∫

X
[Xi] exp(ω̃) =

∑

i

αi

∫

Xi

exp(ω̃).

The Chow setting that we work in for the rest of the paper is closer to equivariant
homology than cohomology, and has a very appealing feature [Br97, theorem
2.1]: every class α ∈ AT∗ (X) is of the form

∑
i αi ∩ [Xi], for {Xi} some T -invariant

subvarieties. Since theorem 3 makes no smoothness assumption, it can be applied
to the Xi individually.

We admit here that the statement of theorem 3 is probably too unwieldy to
see much direct use. We included it mainly to emphasize that, thanks to [Br97,
theorem 2.1], an analogue of theorem 1 for general classes α ∈ AT∗ (X) follows in
some sense automatically from the α = 1 case already treated.

2. Background on D-H measures and B-B decompositions

In this section we assemble some results, well-known to the experts, on Duister-
maat-Heckman measures and BiaÃlynicki-Birula decompositions, making little claim
to originality. The closest reference we could find for the B-B results was [He81].

2.1. D-H measures and equivariant Chow theory. We first recast the cal-
culation of the D-H measure of X in terms of the equivariant Chow class of the
affine cone X̂. This is desirable largely in that it lets us trade X’s multiple fixed
points for a single fixed point at the origin (though even when X is smooth, X̂

won’t be, so we can’t use arguments that depend on smoothness). The base
ring A∗

T (pt) ∼= Sym(T∗) ∼= H∗
T (pt) is the same, and the intuition and results for

Chow classes are well developed. Our references for equivariant Chow theory are
[Br97, Br98].

All of our equivariant Chow classes will live on vector spaces. When Z ⊆ W

for W a vector space, we will write [Z ⊆ W] for the corresponding class in
A∗

T (W) ∼= Sym(T∗). Usually W will be our ambient space V , and then we will
denote [Z ⊆ V ] simply by [Z].

The only facts we need about equivariant Chow classes are these trivial gen-
eralizations from ordinary Chow theory:
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Proposition 2.1. Let a torus U act on a vector space V, preserving a subscheme
Y and a hyperplane H = {b = 0}, with λ ∈ U∗ the U-weight on the line V/H.
For any U-invariant subscheme Z ⊆ V, let [Z] ∈ A∗

U(V) denote the associated
equivariant Chow class.

• If Y contains no components in H, i.e. if b is not a zero divisor on Y,
then [H ∩ Y] = [H][Y] = λ [Y].
Conversely, if Y ⊆ H then [Y] = [H][Y ⊆ H], and = [H][Y × L] where L is
a U-invariant complement in V to H.

• If {Yi} are the top-dimensional geometric components of Y, occurring with
multiplicities {mi ∈ N}, then [Y] =

∑
i mi[Yi].

• If there exists a closed subscheme F ⊆ V × S whose projection to the
connected base S is flat, and whose fibers are U-invariant subschemes two
of whom are Y and Y ′, then [Y] = [Y ′].

The condition in the first is very easy to check when Y is reduced and irre-
ducible, and the second lets one reduce to that case. Joseph described this same
recursion on his polynomials in [Jo97].

In fact we will work with the (T ×Gm)-action on V , where the multiplicative
group Gm acts by rescaling, with weight denoted D. Our base ring is thus the
larger polynomial ring A∗

T×Gm
(pt) = Sym(T∗)[D], and all the weights {D+λ, λ ∈

T∗} live in an open half-space, making it easy to define Fourier transforms.

Proposition 2.2. Let X ⊆ PV be a projective scheme invariant under the action
of a torus T on V. Let X̂ ⊆ V be the affine cone over X, considered as a (T×Gm)-
space.

Let e~0
X̂ := [X̂]

/
[~0] be the equivariant multiplicity [Ro89] of X̂ (at ~0), where

[X̂], [~0] ∈ A∗
T×Gm

(V) denote the (T×Gm)-equivariant classes, and e~0
X̂ lives in the

ring of fractions. (The denominator [~0] is the product of the weights of T × Gm

on V.)

Assume now for convenience that T acts locally freely on X. (We can achieve
this by breaking X into components, and quotienting T by the kernel of the action.)
Let fX : t∗ × R → R be the piecewise-homogeneous-polynomial function such that
fX(~v, r) = 0 for r ≤ 0, fX(~v, r) = rdim X−dim T fX(~v/r, 1) for r > 0, and fX(~v, 1)

is the Duistermaat-Heckman function. Then fX and e~0
X̂ are related by Fourier

transform.
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Proof. This is an easy version of [Ro89, theorem 2.1], though that is stated for
the more difficult complex-analytic case.

One cheap proof in our algebro-geometric setting here is to note that both
[X̂] and DH(X, T) are constant in locally free T -equivariant families, such as pro-
vided by Gröbner degenerations to monomial schemes, and both behave addi-
tively under the decomposition of X into its top-dimensional components Xi with
multiplicities mi. The components of monomial schemes are T -invariant linear
subspaces. We are thus reduced to checking the easy case that X̂ ≤ V is a T -
invariant linear subspace; both sides become 1/

∏
(D + λ) where λ runs (with

multiplicity) over the the T -weights in the vector space X̂. ¤

In section 4.2, we will use the following proposition to constrain the coefficients
{vγ}.

Proposition 2.3. Continue the notation of proposition 2.2.

Let f ∈ XT , and assume that the ΦT (f)-weight space L in V is one-dimensional
(i.e. PL = f). Let CfX ⊆ TfPV denote the normal cone at f in Y and the tangent
space at f to PV, respectively. The (T -invariant) tangent cone carries a Chow
class [CfX ⊆ TfPV ] ∈ A∗

T (TfPV) ∼= Sym(T∗). Denote by [{~0} ⊆ TfX] ∈ A∗
T (TfX)

the evident Chow class (a product of T -weights).

Then specializing the following rational functions in A∗
T×Gm

(pt) at D = −ΦT (f),
we have

[X̂]/[0× L] ≡ [CfX ⊆ TfPV ]/[{~0} ⊆ TfPV ]

where neither side involves division by 0.

Proof. Let T ′ ≤ T ×Gm be the pointwise stabilizer of L, so (T ′)∗ can be naturally
identified with (T∗ × ZD)/〈D + ΦT (f)〉. Let H be the unique T -invariant com-
plement to L, so (0, 1) ∈ H × {1} ⊆ V provides a T ′-invariant model for an open
neighborhood of f ∈ PV .

We can regard the flat degeneration of X̂ to CLX̂ (whose relation to CfX we
discuss in a moment) as an embedded degeneration inside V , as follows. Let Q :

Gm → GL(H⊕L) act by Q(z)·(h, `) := (zh, `). Then the flat limit limz→∞ Q(z)·X̂
is easily identified with CLX̂. By proposition 2.1, we get an equation

[X̂] = [CLX̂] ∈ A∗
T×Gm

(V).
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We can similarly identify the flat limit limz→∞ Q(z)·(X̂∩(H×{1})) with C(0,1)(X̂∩
(H× {1})). Using the (Q× T ′)-equivariant model H× {1} above, this can in turn
be T ′-equivariantly identified with CfX.

Consider now the projection π : CLX̂ ³ L, where each fiber π−1(`) is a sub-
scheme of H. Since π is Gm-equivariant, the fibers are constant except for possibly
the fiber over 0. So CLX̂ is supported on

(
π−1(1)× L

)∪ (
π−1(0)× 0

)
. Therefore

[CLX̂] = [π−1(1)× L] + (D + ΦT (f))q

for some polynomial q ∈ A∗
T×Gm

(H), where the factor D+ΦT (f) comes from [0 ∈
L]. (This q is not necessarily the class of π−1(0), but a sum over its components,
with some multiplicities we will not determine.) Since H⊕ L ³ L is Q-invariant,
π−1(1) ∼= C(0,1)(X̂ ∩ (H × {1})) ∼= CfX. Chaining these together, and working
modulo D + ΦT (f), we get

[X̂] ≡ [CfX ⊆ TfX] mod D + ΦT (f).

We can T ′-equivariantly identify TfPV ∼= Hom(L, V/L) ∼= V/L. Dividing both
sides of this last equation by the T ′-weights in that space produces the formula
we seek. ¤

2.2. B-B decompositions. In the next few lemmas we will study B-B decom-
positions using S-orbit closures.

Lemma 2.1. Let b ∈ V∗, thought of as an element of Γ(X;O(1)), be an S-weight
vector of weight k ∈ Z. Let f ∈ XS be a fixed point, and recall ΦS(f) ∈ Z denotes
the weight of S on O(1)|f.

• If k > ΦS(f), then b vanishes at f.
• If k < ΦS(f), then b vanishes on all of Xf.
• If k = ΦS(f), then on Xf, b is unique up to scale.
• If b does not vanish at f (so k = ΦS(f)), then b does not vanish on Xf.

Proof. We start with the case X = P1, f = ~0, and therefore Xf = P1 \ ~∞. Let h

be the order of the global stabilizer subgroup scheme {z ∈ F× : S(z) · ~1 = ~1}. An
S-equivariant line bundle L on P1 is classified by its degree d, and the S-weight on
the fiber over 0, in this case ΦS(f). Then the weights in the representation Γ(P1;L)

are (ΦS(f),ΦS(f) + h, . . . , ΦS(f) + dh), and each weight space is 1-dimensional.
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In particular, if k < ΦS(f), the weight k does not occur in this space of sections.
So b is the zero section. This proves the second statement (still for X = P1).

For the others, note that the weight ΦS(f)+ ih section vanishes at f to order i.
This proves the first statement, and this plus the 1-dimensionality together prove
the third. For the fourth, note that the only S-covariant section that doesn’t
vanish at f is the i = 0 one, which vanishes only at ~∞, hence not on Xf. This
settles X = P1.

Now we consider the case of general X. Let x be a point of Xf. Define an
S-equivariant map F× → PV by z 7→ S(z) · x, and use the projectivity of X to
extend to an S-equivariant map P1 → PV (which takes 0 7→ f since x ∈ Xf). Pull
back O(1) to P1 and apply the previous analysis. ¤

Most of the published results about B-B decompositions concern the case that
X is smooth, or at least normal, with the following as a rare exception:

Lemma 2.2. [Ko78, section 2] Define the opposite B-B decomposition X =∐
f Xf using the inverse action of S on X, S ′(z) := S(z−1). Then for each f ∈ XS,

dimXf + dimXf ≥ dimX.

Konarski also handles the case when XS is not isolated, which gives an extra
term we may omit. He only states the lemma (as a corollary to theorem 3, the
normal case) for the case X irreducible (or at least, “a variety”), but this gener-
alizes easily: when X =

⋃
i X(i) is the decomposition into irreducible components

then Xf =
⋃

X(i)f, X
f =

⋃
X(i)f, so

dimXf + dimXf = max
i

dimX(i)f + max
j

dimX(j)f

≥max
i

(
dimX(i)f + dimX(i)f

)
≥ max

i
dimX(i) the irreducible case

= dimX.

To see a (normal) example where the inequality is strict, tilt a square pyramid
P up on one edge, and let f be the apex, with Pf, Pf both being triangles. Then
the inequality is 2 + 2 > 3.

Say that X has a unique supporting fixed point if X = Xf for some f ∈ XT .
This will be part of a more general definition in the next section, but is an
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important enough special case that we introduce the notation min(X) = f for it.
If X 6= Xf for any f ∈ XT , then min(X) is undefined.

Most authors using B-B decompositions remark somewhere that if X is irre-
ducible, it has a unique supporting fixed point, called the sink. (Proof: exactly
one B-B stratum Xf is open, and X is the closure of that Xf.) Irreducibility is an
unnatural condition for us, as any nonempty Xf0,...,fi

also has a unique supporting
fixed point, fi, though it may be reducible even when X itself is irreducible (see
the tilted octahedron example in section 1.2.2).

Corollary 2.1. Let X have a unique supporting fixed point, and let f ∈ XS, f 6=
min(X).

Then there exists a map β : P1 → X, S-equivariant with respect to the standard
action of Gm on P1, such that β(∞) = f 6= β(0). Moreover

ΦS(β(∞)) − ΦS(β(0)) = deg β · deg β(P1)

meaning the degree of the map β to its image, times the projective degree of its
image curve.

In particular each f 6= min(X) has ΦS(f) > ΦS(min(X)).

Proof. The assumption on X says X = Xmin(X), and the assumption on f says
Xf ⊆ Xmin(X) \ Xmin(X). Hence dim Xf < dimX. By lemma 2.2, dim Xf > 0, so
there exists a point x ∈ Xf \ {f}, automatically not S-invariant. Define the map
β : P1 → Xf by extending

β : z 7→ S(z) · x, z ∈ Gm

so β(∞) = f by choice of x. Then by the same analysis as in lemma 2.1 (and
with the same notation h, d), ΦS(β(∞)) − ΦS(β(0)) = hd.

This shows that for each f 6= min(X), there exists some other g ∈ XS (namely
g = β(0)) such that ΦS(f) > ΦS(g). By induction on the finite set ΦS(XT ), for
each f 6= min(X) we have ΦS(f) > ΦS(min(X)). ¤

The assumption of projectivity is very clearly necessary here, since otherwise
X could be P1 with 0 and ∞ identified. (The reason that X is sometimes assumed
to be normal, as in much of [Ko78], is to ensure that T -invariant affine open sets
on it possess closed equivariant affine embeddings.)
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Lemma 2.3. Assume X has a unique supporting fixed point min(X). Let W ≤ V

be the smallest linear subspace containing X̂. Then the ΦT (min(X))-weight space
in W is 1-dimensional.

Proof. Obviously we may shrink V to W from the outset.

To see that the weight space is nonzero, consider h ∈ V∗ as an element of
Γ(X;O(1)), and choose an h that does not vanish at min(X). (We know such an h

exists because X is projectively embedded, rather than merely carrying an ample
line bundle.) Expand h as a sum of T -weight vectors; at least one of them must
not vanish at min(X), and let b be that term. Note that we can determine the
T -weight of b – it must be the T -weight on the line O(1)|f.

By assumption X = Xmin(X). Then the last conclusion of lemma 2.1 gives us
the uniqueness of b up to scale. ¤

An even smaller W will be used in proposition 2.4.

Results like the following are often attributed to [He81] (at least for X smooth
irreducible), but I was not able to locate an exact reference therein. The last
part is quite close to [BB76, theorem 3] (again, only stated for the smooth case,
though his proof generalizes).

Lemma 2.4. Let X ⊆ PV, T, S be as in theorem 1. Assume X has a unique
supporting fixed point. Then there is a T -invariant hyperplane PH in PV not
containing min(X), and the subscheme PH ∩ X does not depend on the choice of
PH. As a set, PH ∩ X =

⋃
f6=min(X) Xf.

Proof. Existence of the desired PH, or equivalently, of a T -weight vector b not
vanishing at min(X), is given by lemma 2.3, which also gives the uniqueness of
PH ∩ X.

By corollary 2.1, ΦS(f) > ΦS(min(X)) for each f 6= min(X). Then by lemma
2.1, b vanishes on Xf, and doesn’t vanish on Xmin(X). Hence PH∩X =

⋃
f6=min(X) Xf

as a set. ¤

It is really in this lemma that the assumption of isolated fixed points becomes
crucial. Thanks to this lemma, to cut down from X to the union of smaller B-B
strata (or a scheme supported thereon) it suffices to take a hyperplane section,
which by proposition 2.2 will let us inductively compute equivariant Chow classes.
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The following result is, in some sense, a tightest possible version of lemma 2.3.
Essentially the same idea was used in [Br98, proofs of theorem 17 and corollary
19]. We won’t need it for the proofs of the main theorems, but it will appear in
section 4.2.

Proposition 2.4. Let W ≤ V be the linear span of the points XT , and pick a
T -equivariant projection β̂ : V ³ W. Then the induced map β : X → PW is
well-defined (has no basepoints), finite, and T -equivariant.

Proof. If ~v ∈ X̂ \~0, then P~v ∈ Xf for some f ∈ XT . Let K := ker β̂. Since the line
over f is not contained in K, there is an element of K⊥ ≤ V∗ not vanishing at f,
and hence (as explained in the proof of lemma 2.3) a T -weight vector bf ∈ K⊥

not vanishing at f. By lemma 2.1 the function bf doesn’t vanish on Xf.

Hence the subscheme {~v ∈ X̂ : 〈b,~v〉 = 0 ∀b ∈ K⊥} is supported at the origin
(and therefore of finite length), which shows the lack of basepoints. Since the
map X̂ → W is dilation-equivariant, the fiber over ~0 is the largest fiber, which
shows the finiteness of the map. The T -equivariance is clear. ¤

When X is reduced, the map β : X → PW is termed a branchvariety of PW in
[AK], where we studied families of such maps. This will also be the point of view
in [Kn].

Theorem 4 below will be a formula for the equivariant multiplicity [X̂]/[~0], with
a surprisingly small actual denominator. As in [Br98, proofs of theorem 17 and
corollary 19], one can use proposition 2.4 to predict already that the denominator
divides

∏
f∈XT (D + ΦT (f)), though to carry this out would involve introducing

some definitions (e.g. the D-H measures of modules and cycles) we do not take
space for here.

3. Proofs of the main theorems

Throughout section 3.1 we work with algebraic sets, rather than schemes, and
do not bother to include the caveat “as a set” after each claimed equality.

3.1. Supporting fixed points and closure chains in the B-B decompo-
sition. Call f ∈ XS a supporting fixed point if the B-B stratum Xf contains
an open set in X. Since the B-B decomposition is into finitely many strata, one
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of them must contain an open set, so every B-B decomposition has a supporting
fixed point. In the Stanley-Reisner case X = X(∆), the point i is a support-
ing fixed point iff there exists a facet (meaning, a maximal face) F ∈ ∆ with
min(F) = i.

When X has a unique supporting fixed point (e.g. X irreducible), Xmin X is
actually open in X, rather than merely containing an open set. But more generally
this can fail: for an example let X = ProjC[x1, x2, x3]

/〈x1x3〉 be the Stanley-
Reisner scheme of a union of two intervals, and f = 2. (Perhaps the term “sink”
should be reserved for those f with open Xf.) If we had required this more
restrictive condition in the definition of supporting fixed point, we wouldn’t have
lemmas 3.1 or 3.3.

Lemma 3.1. Let F ⊆ XT be the set of supporting fixed points. Then X =⋃
f∈F Xf =

⋃
f∈F Xf.

In particular, if X has only one supporting fixed point min(X), then X = Xmin(X)

(matching the terminology from section 2.2).

Proof. The proof is pure point-set topology. If X \ Y ( X, then Y contains the
nonempty open set X\X \ Y. Contrapositively, if Y1 = Y doesn’t contain an open
set in X, then X \ Y1 is dense in X.

If Y2 ⊆ X, Y2 ∩ Y1 = ∅ also contains no open set in X, then it contains no open
set in X \ Y1, so X \ (Y1 ∪ Y2) is dense in X \ Y1, hence dense in X.

Repeating this, we can remove finitely many subsets that each contain no open
set in X, with the remainder still dense in X. Hence X \

⋃
f/∈F Xf is dense in X. By

the B-B decomposition, this subset is
⋃

f∈F Xf.

Finally, X ⊇ ⋃
f∈F Xf ⊇ ∪f∈FXf = X, hence all three are equal. ¤

Lemma 3.2. Let Y ⊆ X be closed and S-invariant, e.g. if Y is an irreducible
component of X. Then Y has a B-B decomposition, with Yf = Y ∩ Xf for f ∈ YS

(as noted in [BB76]). Each closure chain γ for Y is a closure chain for X, with
γ ⊆ YS.
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Proof. Since Gm is connected, its action on the set of components of X is trivial,
which is why irreducible components are S-invariant. The next claim is tautolog-
ical:

Yf =

{
y ∈ Y : lim

z→0
S(z) · y = f

}
=

{
y ∈ X : y ∈ Y, lim

z→0
S(z) · y = f

}
= Y ∩ Xf.

Obviously the closure chains γ for Y have γ ⊆ YS, and Yγ ⊆ Xγ; thus each closure
chain for Y is a closure chain for X. ¤

The converse is not true: it is often the case that γ ⊆ YS is not a closure chain
for Y ⊆ X even though it is a closure chain for X, and this can happen even when
Y is irreducible (consider Y = F1 as in section 1.2.2, with X = Y ∪ P1 intersecting
at the points a, c). Our best partial converse will be corollary 3.1 below.

Lemma 3.3. If Y ⊆ X is an irreducible component, then its unique supporting
fixed point min(Y) is also a supporting fixed point of X. In particular, every
irreducible component of Xf contains f.

Proof. If Y is a component, it contains an open set Y◦ in X, so it must meet some
Xf for f a supporting fixed point, and we may pick y ∈ Y◦ ∩Xf. Since Y is closed
and S-invariant, limz→0 S(z) · y = f lies in Y.

Since Y◦ ∩ Xf contains a nonempty open set in Y (irreducible), it is dense. It
is contained in Y ∩ Xf, which by lemma 3.2 is Yf, and this makes f a supporting
fixed point of Y. Since Y is irreducible, it is the unique such. ¤

The second half of the following lemma is very similar to one in [BB76], where
it is only proven under the assumption that each intersection Xf∩Xg is transverse.

Lemma 3.4. Assume X has a unique supporting fixed point, and let f ∈ XS,
f 6= min(X). Then dimXf < dimX. Consequently, any closure chain for X has at
most 1 + dimX elements.

Proof. This can be proven using lemma 2.4, or even more directly, as we do now.

Xf ⊆ X \ Xmin(X) = Xmin(X) \ Xmin(X)

and the right-hand side has lower dimension than Xmin(X). Then dimXf =

dimXf < dimXmin(X).
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Now let (f0, . . . , fm) be a closure chain for X. Then

Xf0
) Xf0,f1

) . . . ) Xf0,...,fm

where by its construction, Xf0,...,fi
has a unique supporting fixed point fi. Hence

by the above, the dimensions of these spaces are strictly decreasing in this chain,
and there must therefore be at most 1 + dimX of them. ¤

To define the coefficients vγ of theorem 1, we will need a refinement of the
notion of closure chain, which we develop in a series of lemmas.

Lemma 3.5. Let γ = ((f0 ∈ Y0), (f1 ∈ Y1), . . . , (fm ∈ Ym)) be a list of pairs
(fi ∈ XT , Yi ⊆ X) such that each Yi≥0 is an irreducible component of (Yi−1)fi

,
interpreting Y−1 as X. Assume also that γ = (f0, . . . , fm) is nonrepeating.

Then γ = (f0, . . . , fm) is a closure chain, and we call γ a witness to γ in X.

If Y ⊆ X is a component, then any witness to a closure chain in Y is a witness to
the same closure chain in X. Conversely, any witness γ = ((f0 ∈ Y0), . . . , (fm ∈ Ym))

to a closure chain in X is a witness in Y too, if Y ⊇ Y0.

Proof. We need to show that Xf0,...,fm 6= ∅. So we show inductively that each
Yk ⊆ Xf0,...,fk

. First,

Y0 = (Y0)f0
= (Y0) ∩ Xf0

⊆ Xf0
using lemma 3.2.

Then for i > 0, using lemma 3.2 and induction,

Yi ⊆ (Yi−1)fi
= Yi−1 ∩ Xfi

⊆ Xf0,...,fi−1
∩ Xfi

= Xf0,...,fi
.

So Xf0,...,fm ⊇ Ym and hence is nonempty, making γ a closure chain.

Note that the sequence (Yi) is weakly decreasing, since Yi ⊆ (Yi−1)fi
⊆ Yi−1 =

Yi−1. Hence the conditions Yi ⊆ X are equivalent to Y0 ⊆ X. The final condition
is that Y0 is a component of Xf0

.

The second and third claims are then tautological, as the definition of witness
only involves the ambient space in the condition Y0 ⊆ X. ¤

We make two remarks about the definition. The (fi) in a witness can be
recovered from the (Yi) as fi = min(Yi), but it seems unnatural to leave the (fi)

out of the definition as it doesn’t simplify the axioms on the (Yi). Also, one could
formulate a weaker notion of witness, a chain of varieties in which each Yi is
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S-invariant and irreducible with min(Yi) = fi, just not necessarily a component.
But the following lemma suggests that we will not need this greater generality.

Lemma 3.6. Every closure chain γ = (f0, . . . , fm) has witnesses, and only
finitely many thereof.

Proof. The proof of existence is by induction on m. If m = 0 then this is easy:
pick some component Y0 of Xf0

, and apply lemma 3.3 to know that f0 = min(Y0).

Now assume m > 0. Tautologically, (f1, . . . , fm) is a closure chain of Xf0,f1
, and

so has a witness ((f1 ∈ Y1), . . . , (fm ∈ Ym)) by induction. Since Y1 is irreducible,
we may choose an irreducible component Y0 of Xf0

containing it. By lemma 3.3,
f0 = min(Y0).

It remains to show that Y1 ⊆ (Y0)f1
. (It will automatically be a component,

since it is a component of the larger Xf0,f1
.) Since f1 = min(Y1), it is enough

to show (Y1)f1
⊆ (Y0)f1

= Y0 ∩ Xf1
(by lemma 3.2), and indeed we know that

Y1 ⊆ Y0 and (Y1)f1
⊆ Xf1

.

If one imagines enumerating witnesses to a given closure chain by picking Y0,
then Y1, etc., then at each stage one picks an irreducible component of a projective
scheme, which means finitely many choices. (Sometimes the scheme is empty and
there are zero choices, if one has made a bad choice along the way; this is why
we didn’t use this argument to show existence.) ¤

Corollary 3.1. If X =
⋃

i Xi is the decomposition into irreducible components,
then ∆(X, S) =

⋃
i ∆(Xi, S).

Proof. For each closure chain γ ∈ ∆(X, S), pick a witness γ, and an irreducible
component Xi of X containing the Y0 from γ. ¤

Since DH(X, T) =
∑

Xi
DH(Xi, T) (for {Xi} the top-dimensional primary com-

ponents), and theorem 1 gives each side of this equation as a sum over top-
dimensional faces of the corresponding complexes, one might expect this union of
the complexes to be disjoint on the top-dimensional faces. It need not be, as the
second example in section 1.2.4 shows. In [Kn], it will indeed be a disjoint union
of some simplicial posets that refine the simplicial complexes presented here.

Our main interest in witnesses is in the case m = dimX, as these are the only
γ that contribute in the formula in theorem 1.
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Lemma 3.7. Let γ = ((f0 ∈ Y0), . . . , (fdim X ∈ Ydim X)) be a witness. Then Y0 is
a top-dimensional component of X, each Yi+1 is a Weil divisor in Yi, and Ydim X

is the singleton {fdim X}.

Proof. By lemma 3.4 dimYi + 1 ≤ dimYi−1, so dim Yi + i ≤ dimY0. Hence

dimX ≤ dimYdim X + dimX ≤ dimYi + i ≤ dimY0 + 0 ≤ dimX,

making each one an equality: dimYi = dimX − i.

In particular, Ydim X is 0-dimensional. It is also irreducible, and contains fdim X.
¤

As mentioned earlier, for purposes of computing the D-H measure of X we
may assume X is equidimensional. Under that assumption, we now show (though
we won’t make use of it) that maximal closure chains are maximum, i.e. have
1 + dimX elements.

Proposition 3.1. If X is equidimensional, then so is ∆(X, S) (the first as a
reduced scheme, the second as a simplicial complex).

In particular, if the B-B decomposition is a stratification, then the poset (XT ,≥)

is a ranked poset, with the ranking given by f 7→ dimX − dimXf.

Proof. Let γ be a maximal closure chain, and pick a witness

γ = ((f0 ∈ Y0), . . . , (fm ∈ Ym))

to γ using lemma 3.6. We wish to show m = dimX.

We claim Y0 must be a component of X. For otherwise, we could pick a
component Y ⊆ X properly containing it, and stick min(Y) at the beginning of γ,
contradicting γ’s maximality. By X’s equidimensionality, dimY0 = dimX.

As in the proof of lemma 3.4, dimYi ≤ dimX − i for each i. We claim now
that this is an equality. Otherwise, let i be the least such that the inequality
is strict; by the previous paragraph we know i > 0. So dim Yi < dimYi−1 − 1.
By lemma 2.4, Yi is contained inside the hyperplane section Yi−1 \ (Yi−1)fi−1

.
So we can pick a component Z of Yi−1 \ (Yi−1)fi−1

containing Yi. Since Yi−1 \

(Yi−1)fi−1
is pure of codimension 1 inside Yi−1, Z properly contains Yi−1. Now

((f0 ∈ Y0), . . . , (fi−1 ∈ Yi−1), (min(Z) ∈ Z), (fi ∈ Yi), . . . , (fm ∈ Ym)) is a witness,
so by interposing min(Z) we have extended γ, contradiction.
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Finally, we claim Ym is a point. Otherwise, the hyperplane section Ym\(Ym)fm

is nonempty, so we can pick a component Ym+1 of it and extend γ at the end,
contradiction.

Hence m = dimX − dimYm = dimX − 0, as was to be shown. ¤

This proposition is another sign of the minimality of ∆(X, S), in the follow-
ing sense. Theorem 1 only makes use of the top-dimensional faces of ∆(X, S).
Proposition 3.1 says (in the case that one has thrown out the lower-dimensional
components) that ∆(X, S) only has those faces implied by those top-dimensional
ones, with no extraneous maximal-but-not-maximum faces.

In [Kn] we will give a degeneration-based proof of proposition 3.1, which will
enable us to prove the following additional result: if X is equidimensional and
connected in codimension one (e.g. if X is irreducible), then so too is ∆(X, S).

We made special mention in proposition 3.1 of the stratification case, as one
can use this to show the known but perhaps surprising fact that the poset of
K-orbits on a flag manifold G/B, for K a symmetric subgroup of G, is a ranked
poset. This poset is also that of the B-orbits on G/K, which is an order ideal in
the poset of B-orbits on the wonderful compactification of G/K [DCP73]. Those
orbits are given by a B-B decomposition, and this proposition then provides the
proof.

3.2. The main theorems. We first define a refinement of the {vγ}, using the
witnesses γ = ((f0 ∈ Y0), (f1 ∈ Y1), . . . , (fdim X ∈ Ydim X)) to γ. Hereafter in this
section, γ will denote a witness ((f0 ∈ Y0), (f1 ∈ Y1), . . . , (fk ∈ Yk)) with the con-
dition dimYi = dimX − i for i = 0, . . . , k, though not until later will we assume
k = dimX.

Let mγ,0 denote the multiplicity of Y0 as a component of X. For each i > 0, use
lemma 2.4 to choose some T -invariant PH that misses fi−1, with which to (well-)
define the subscheme Yi−1 ∩ PH. This hyperplane section is equidimensional of
dimension dimYi−1−1 = dimYi, and we can let mγ,i denote the multiplicity of Yi

as a component of it. (In a moment we will prove that it is indeed a component,
i.e. that mγ,i > 0.) Then define

v(X)γ :=

k∏

i=0

mγ,i and vγ=(f0,...,fdim X) :=
∑

γ={(f0∈Y0),...,(fdim X∈Ydim X)}

vγ.
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(The latter sum is a finite sum by lemma 3.6.)

Lemma 3.8. The numbers {mγ,i}, {v(X)γ}, and {vγ} are all strictly positive.

Proof. Fix a witness γ and an i > 0. Pick an S-invariant hyperplane PH not
containing fi−1. By lemma 2.4, Yi−1 ∩ PH ⊇ (Yi−1)fi

, and that contains Yi. As
explained above, the dimensions match so Yi is a component of Yi−1 ∩ PH. This
shows that mγ,i > 0.

(In fact this is the principal place that we use algebraic geometry/Chow theory
rather than topology/homology, where the singularities made the orientation5

issues look particularly fearsome.)

Thus each v(X)γ is a product of positive integers, hence positive. By lemma
3.6, each γ has some witness γ, thus vγ is a nonempty sum of positive integers,
hence positive. ¤

That mγ,0 has such a different definition from mγ,i>0 is a hint that X should
perhaps be required to be reduced from the beginning, as in [AK]; it will indeed
be so in [Kn].

We first prove an analogue of theorem 1 for equivariant Chow classes, and
then give the straightforward equivalence with the stated theorem. Theorem 3
will also be a reasonably automatic consequence.

Theorem 4. Let X ⊆ PV, T, S be as in theorem 1. Let X̂ ⊆ V be the (T × Gm)-
invariant affine cone over X, and [X̂] ∈ A∗

T×Gm
(V) ∼= Sym(T∗)[D] its equivariant

Chow class. Then its equivariant multiplicity can be computed as follows:

[X̂]/[~0] =
∑
γ

vγ∏
f∈γ (D + ΦT (f))

considered as an element of the fraction field of the polynomial ring Sym(T∗)[D],
where γ ∈ ∆(X, S) varies over the maximum-length closure chains, and the vγ are
as defined above.

5Note added in proof: Susan Tolman has shown me a symplectic but nonalgebraic example in

which the multiplicities are indeed negative.
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Proof. By the definition of the vγ, the formula is obviously equivalent to the more
refined sum over maximum-length witnesses

[X̂]/[~0] =
∑

γ={(f0∈Y0),...,(fdim X∈Ydim X)}

vγ∏n
i=0 (D + ΦT (fi))

.

The interesting case is when X is reduced and irreducible; as we now show, it
is easy to handle the general case if granted this special one.

Let {X̂i} be the top-dimensional irreducible components of X̂ (similarly Xi of
X), occurring with multiplicities mi. For each witness γ in X, by lemmas 3.5
and 3.7 γ is a witness in Xi iff Y0 = Xi. Let vi

γ ∈ N denote the coefficient in the
(assumed) formula for [X̂i] if X̂i = Y0, and 0 otherwise. Unwinding the definitions,
we see miv

i
γ = vγ for X̂i = Y0, and is 0 otherwise; thus

∑
i miv

i
γ = vγ. Then

[X̂]/[~0] =
∑

i

mi [X̂i]/[~0] by proposition 2.1

=
∑

i

mi

∑

γ

vi
γ∏n

i=0 (D + ΦT (fi))
=

∑

γ

∑
i miv

i
γ∏n

i=0 (D + ΦT (fi))

=
∑

γ

vγ∏n
i=0 (D + ΦT (fi))

as claimed. In each sum γ varies over witnesses in X having the (by lemma 3.4)
maximum length, 1 + dimX.

Now assume that X is reduced and irreducible, and that the theorem has been
proven in dimensions < dimX (for both irreducible and reducible). Since X is
irreducible, it has a unique supporting fixed point.

By lemma 2.4, there exists a T -invariant hyperplane PH ≤ PV not containing
min(X), whose defining equation b = 0 is of (T × Gm)-weight D + ΦT (min(X)).
Since PH 63 min(X) and X is irreducible, PH contains no component of X. So by
proposition 2.1

(
D + ΦT (min(X))

)
[X̂] = [H ∩ X̂].

This H∩X̂ has dimension dimX−1 (in fact it is equidimensional), so by induction
its equivariant multiplicity has a formula of the form

[H ∩ X̂]/[~0] =
∑
γ

v ′γ∏n
i=0 (D + ΦT (fi))
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where γ varies over the maximum-length closure chains of PH∩X. (In this formula
we write v ′ rather than v because the formula is for H ∩ X̂, not X̂.)

Since X is irreducible, by lemma 3.7 Y0 = X in any maximum witness in X.
Hence the maximum witnesses in PH ∩ X and X correspond 1:1 under the map

α : ((f1 ∈ Y1), . . . , (fdim X ∈ Ydim X)) 7→ ((min(X) ∈ X), (f1 ∈ Y1), . . . , (fdim X ∈ Ydim X))

Since X is reduced, its multiplicity is 1, so v ′γ = vα(γ). Together,

[X̂]/[~0] =
1

D + ΦT (min(X))
[H ∩ X̂]/[~0]

=
1

D + ΦT (min(X))

∑

γ

v ′γ∏n
i=1 (D + ΦT (fi))

=
∑

α(γ)

vα(γ)∏n
i=0 (D + ΦT (fi))

where the left sum is over maximum-length witnesses for PH ∩ X, and as argued
above the right sum is over maximum-length witnesses for X. By lemma 3.8, the
coefficients are all positive. ¤

Proof of theorem 1. The rational function
∏

f∈γ (D + ΦT (f))−1 is the specializa-
tion of

∏n
i=0 x−1

i under the map xi 7→ D + ΦT (fi). Correspondingly, the Fourier
transform of

∏
f∈γ (D + ΦT (f))−1 is the image of Lebesgue measure on Rn+1

≥0

under the map (ξ0, . . . , ξn) 7→ ∑
i ξi (D + ΦT (fi)), where γ = (f0, . . . , fn).

Now proposition 2.2, applied to theorem 4, gives theorem 1. ¤

Recall that theorem 1 was stated as an existence result for a mysterious family
of coefficients {vγ}, that were then defined in theorem 2. The proof just given
didn’t explicitly use theorem 2’s family of coefficients, but rather the {vγ} con-
structed by summing over witnesses {vγ}. To prove theorem 2 we will show that
these two definitions of {vγ} agree.

Proof of theorem 2. We first show uniqueness, and thereby uncover a formula for
v(Z)(f0,...,fk),Y in terms of witnesses.

The j = 0 case of the recurrence is

v(Z)(f0,...,fk),Y =
∑

Y0⊆Zf0
, Y0⊇Y

v(Z)(f0),Y0
v(Y0)(f0,...,fk),Y .



A Compactly Supported Formula for Equivariant Localization ... 535

where in this and in the sums below, Yi varies over the irreducible components
of the space said to contain it. Then expand the last term, using the j = 1 case:

v(Z)(f0,...,fk),Y =
∑

Y0⊆Zf0
, Y0⊇Y

v(Z)(f0),Y0

∑

Y1⊆Zf0,f1
, Y1⊇Y

v(Y0)(f0,f1),Y1
v(Y1)(f1,...,fk),Y

=
∑

Y0⊆Zf0
,Y1⊆Zf0,f1

, Y1⊇Y

v(Z)(f0),Y0
v(Y0)(f0,f1),Y1

v(Y1)(f1,...,fk),Y .

Expanding the last term using the j = 1 expansion k − 1 more times, we get

v(Z)(f0,...,fk),Y =
∑

(Y0,...,Yk⊇Y):Yi⊆Zf0,...,fi

v(Z)(f0),Y0

k∏

i=1

v(Yi−1)(fi−1,fi),Yi
.

Assumptions (2) and (3) of the recurrence tie these to the definitions at the
beginning of section 3.2:

v(Z)(f0),Y0
= mγ,0, v(Yi−1)(fi−1,fi),Yi

= mγ,i

and so

v(Z)(f0,...,fk),Y =
∑

(Y0,...,Yk⊇Y):Yi⊆Zf0,...,fi

mγ,0

k∏

i=1

mγ,i

=
∑

(Y0,...,Yk⊇Y):Yi⊆Zf0,...,fi

v(Z)(f0∈Y0,...,fk∈Yk).

In particular, if Z = X and k = dimX so (by lemma 3.7) Y = {fk}, this says
v(X)(f0,...,fdim X),Y =

∑
γ v(X)γ =: v(X)γ, as we wanted to show.

So far we have shown that the recurrence has at most one solution (even using
only j ≤ 1), and that solution reproduces the {vγ} used in the proof of theorem 1.
It remains to show that this solution — summing over all ways to lift (f0, . . . , fk)

to a witness ending with Yk = Y — actually satisfies the recurrence, but this is
easy: extend to a witness by first choosing Yj, then choose the other {Yi} behind
and ahead Yj. ¤

Proof of theorem 3. Our goal is to understand
(

k∏

i=1

αi

)
[X̂] =

(
k∏

i=1

αi

) ∑
γ

vγ∏
f∈γ (D + ΦT (f))

=
∑
γ

vγ

∏k
i=1 αi∏

f∈γ (D + ΦT (f))

where the terms on the right are ready for multivariable partial fractions expan-
sion.



536 Allen Knutson

This will create many terms along the way of the form q/
∏

f∈Q (D + ΦT (f)),
whose Fourier transform is some complicated distribution supported on the cone
positively spanned by {D+ΦT (f) : f ∈ Q}. By the assumption that p is in general
position, we can drop any such term for which that set {D + ΦT (f) : f ∈ Q} does
not Q-span T∗ ⊕ ZD.

In the first step of this expansion, we write α1 as a linear combination of the
lex-first basis found in {D + ΦT (f) : f ∈ γ}. The coefficients involved are the
vσ(1) · α1 where σ(1) varies over that lex-first basis. (We are beginning to build
partial fractions schemata σ; so far we have specified the value at 1.) That gives
an initial expansion of

∏k
i=1 αi∏

f∈γ (D + ΦT (f))
=

(
k∏

i=2

αi

)
α1∏

f∈γ (D + ΦT (f))

=

(
k∏

i=2

αi

) ∑

σ(1)

vσ(1) · α1∏
f∈γ\{fσ(1)}

(D + ΦT (f))

At this point we must split into cases, because the lex-first basis in (D+ΦT (fi) :

i = 0, . . . ,dimX, i 6= σ(1)) depends on σ(1).

Each time we bring in an αi, we linearly expand it in the lex-first basis in the
remaining terms in the denominator. If there is no such basis, then as explained
above the term may be dropped. Partial fractions expansion then eats each term
from this basis in turn, and the choice of which one is recorded as σ(i); the
coefficient incurred is vσ(i) · αi. After doing this k times, the final coefficient on
1/

∏
f∈γ ′ (D + ΦT (f)) is a sum over partial fraction schemata σ, of the product

of vσ(i) · αi:
∏k

i=1 αi∏
f∈γ (D + ΦT (f))

=
∑
σ

(
vσ(1)⊗ · · ·⊗vσ(k)

) · (α1⊗ · · ·⊗αk)∏
f∈γ\{fσ(i)}

(D + ΦT (f))

=
∑

γ ′⊆γ

τγ ′,γ · (α1⊗ · · ·⊗αk)∏
f∈γ (D + ΦT (f))

up to terms dropped because, as explained above, they don’t affect the measure
near p.

We now sum over γ, then Fourier transform as in the proof above of theorem
1, and we arrive at the complicated statement of theorem 3. ¤
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4. Constraints on the coefficients vγ

4.1. An easy case of the multiplicities v(Z)(f0,f1),Y. There is an important
special case in which these multiplicities from theorem 2 are easy to compute.

Proposition 4.1. Let {v(Z)(f0,f1),Y} be as in theorem 2. By corollary 2.1, there
exists an S-equivariant map β : P1 → X such that β(∞) = f1 6= β(0).

Assume Z smooth at f1. Then the image of β is Zf1, a rational curve smooth
away from β(0).

Assume further that β(0) = f0. Then

v(Z)(f0,f1),Y = deg β(P1) =
ΦS(f1) − ΦS(f0)∣∣StabS(Zf1)

∣∣ =
ΦT (f1) − ΦT (f0)

−wt(Tf1
Zf1)

where StabS(Zf1) denotes the generic stabilizer subgroup scheme of S acting on
Zf1, and wt(Tf1

Zf1) denotes the T -weight on the tangent line Tf1
Zf1. (The nu-

merator is a multiple thereof.)

Proof. Since Z is smooth at f1, so are Zf1
, Zf1 , with dimZf1

+ dimZf1 = dimC

where C is the component of Z containing f1, and the intersection Zf1
∩Zf1 = {f1}

is transverse [BB76].

Since Zf1
is smooth and connected, its closure is irreducible, and Y is supposed

to be an irreducible component thereof. Hence Y = Zf1
and is smooth at f1. Sim-

ilarly Zf1 is irreducible and smooth at f1. Since Y is assumed to be codimension
1 in Z, we infer dim Zf1 = 1; since Zf1 contains the curve β(P1) they must be
equal.

Let b = 0 be the equation of a T -invariant hyperplane missing f0 (existence
guaranteed by lemma 2.4). We are attempting to determine the order of vanishing
of b along Y = Zf1 . By the transversality of the intersection Zf1

∩ Zf1 , we may
instead restrict b to β(P1), and determine the order of vanishing of b at the point
f1 ∈ β(P1).

This is the degree of the curve β(P1), computed in terms of ΦS in corollary
2.1. To compute in terms of ΦT requires that one extend the S-weight analysis
in lemma 2.1 to the T -weights, which is straightforward. ¤

The “β(0) = f0” condition in the proposition holds for flag manifolds (as
follows from the next lemma), but is is not otherwise automatic. If Z = F1 is the
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example from section 1.2.2, and Y = Zb, then Zf1 is the P1 connecting b and c;
it doesn’t make it down to d.

Corollary 4.1. Let X be smooth (and equidimensional), and assume each inter-
section X

g
f := Xf ∩ Xg is transverse. Then ∆(X, S) is the order complex of the

poset (XT ,≥).

Fix a maximal γ, and for each i = 1, . . . ,dimX, assume that Xfi−1
is smooth

at fi. Then each X
fi
fi−1

is a (possibly cuspidal) rational curve, and vγ =
∏dim X

i=1

deg X
fi
fi−1

.

Proof. In [BB76] it is proven that this transversality condition implies that the
B-B decomposition is a stratification. Hence Xf0,...,fk

= Xfk
as long as (f0, . . . , fk)

is a chain in (XT ,≥), so nonempty for each chain. Therefore ∆(X, S) is the order
complex.

We now show that under the S-equivariant map β : P1 → X
fi
fi−1

constructed
in proposition 4.1, we have β(0) = fi. For otherwise, Xfi−1

) Xβ(0) ) Xfi
, with

dimXfi
≤ dimXfi−1

−2 by lemma 3.4. But by lemma 3.7, dimXfi
= dimXfi−1

−1,
contradiction.

The rest is proposition 4.1 and the recurrence in theorem 2. ¤

This extra smoothness, of Xf at each g covering f, is known to hold for Schubert
varieties (essentially from their normality). However, this corollary was proven in
the symplectic situation [Kn99, theorem 1] without explicitly requiring this extra
smoothness, so perhaps it is automatic.

We describe this story (from [Kn99]) in the case that X is a flag manifold,
though to recapitulate it properly would involve introducing a great deal of wholly
standard notation, which we omit. When Y ⊂ Z are Schubert varieties Xwrβ

⊂
Xw ⊆ G/P projectively embedded in the G-representation Vλ, the coefficient is
v(Z)(f0,f1),Y = (wrβ ·λ−w ·λ)/β. This is easily derived from the Chevalley-Monk
rule for intersecting a Schubert variety with a hyperplane, and is the basic step
in [PS].

4.2. Linear relations among the {vγ}. The Duistermaat-Heckman function
is piecewise polynomial, as can be seen from either their formula or theorem
1. However, theorem 1 hugely overestimates the number of pieces – it predicts
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a great many walls between regions of different polynomials that turn out to
not actually be different. For example, in the case of a toric variety, the D-H
function is 1 on the entire polytope, but theorem 1 breaks the polytope into a
triangulation.

So anywhere within ΦT (X) that we know for some other reason there is not a
jump in the D-H function – and we shall look nearby ΦT (min(X)) – we get a linear
condition among the coefficients {vγ}. While the connection may be obscured by
the Fourier transform, the proposition following is essentially built on this idea.

Proposition 4.2. Assume X has a unique supporting fixed point min(X). Let
Cmin(X)X ⊆ Tmin(X)X denote the tangent cone to X at min(X), and the tangent
space to X at min(X), respectively. The (T -invariant) tangent cone carries a
Chow class [Cmin(X)X] ∈ A∗

T (Tmin(X)X) ∼= Sym(T∗). Denote by [{~0} ∈ Tmin(X)X] ∈
A∗

T (Tmin(X)X) the evident Chow class (a product of T -weights).

Then

∑
γ

vγ∏
f∈γ, f 6=min(X) (ΦT (f) − ΦT (min(X)))

=

[
Cmin(X)X ⊆ Tmin(X)X

]

[{~0} ∈ Tmin(X)X]
as ratios in Sym(T∗)

where the sum is over maximum-length closure chains in X.

Proof. By shrinking V to the linear span of X̂ and invoking lemma 2.3, we may
assume that the ΦT (min(X))-weight space in V is 1-dimensional. That lets us
invoke proposition 2.3, which says that

[X̂]/[0× L] ≡ [Cmin(X)X ⊆ Tmin(X)PV ]/[{~0} ∈ Tmin(X)PV ]

as rational functions in Sym(T∗)[D] specialized at D = −ΦT (f).

Theorem 4 gives us a formula for the left side of this equation, which specializes
at D = −ΦT (f) to the left side of the desired equation.

The right side is the equivariant multiplicity of X at min(X), which can be
computed inside either Tmin(X)PV or Tmin(X)X. ¤

Corollary 4.2. Assume in addition that there exists a set Q ⊆ XT of fixed points
such that the weights in Tmin(X)X, with repetition, are {ΦT (q)−ΦT (min(X)) : q ∈
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Q}. Then this formula can be rewritten inside Sym(T∗) as

∑
γ

vγ

∏

f∈XT \γ

(ΦT (f) − ΦT (min(X)))

= [Cmin(X)X ⊆ Tmin(X)X]
∏

f∈XT

f/∈Q∪{min(X)}

(ΦT (f) − ΦT (min(X))) .

Let σ̌ : T∗ → Z be a linear functional, and write ΦR := σ̌ ◦ΦT . Assume that
δ := {f ∈ XT : ΦR(f) = ΦR(min(X))} is a closure chain, and that δ 6⊆ Q∪{min(X)}.
Then ∑

γ⊇δ

vγ

∏

f∈XT \γ

(ΦR(f) − ΦR(min(X))) = 0

where the left side is a sum over maximum-length closure chains.

Proof. To get the first formula above, multiply both sides of the one from propo-
sition 4.2 by

∏
f∈XT , f 6=min(X) (ΦT (f) − ΦT (min(X))).

The functional σ̌ induces a homomorphism Sym(T∗) → Z, λ 7→ ρ(λ); applying
it to the first formula we get the equation

∑
γ

vγ

∏

f∈XT \γ

(ΦR(f) − ΦR(min(X)))

= [Cmin(X)X ⊆ Tmin(X)X]
∏

f∈XT

f/∈Q∪{min(X)}

(ΦR(f) − ΦR(min(X))) .

For any γ 6⊇ δ, one of the terms in the product
∏

f∈XT \γ (ΦR(f) − ΦR(min(X)))

is zero, so on the left side it is enough to sum over γ ⊇ δ.

By the condition δ 6⊆ Q∪ {min(X)}, one of the terms in the right-hand product
is zero. ¤

Some remarks:

• We used the notation ΦR because the Pontrjagin dual of σ̌ is a homo-
morphism R : Gm → T , whose moment map on the fixed points is this
ΦR.

• One can obtain many more such conditions by applying corollary 4.2 to
components of Xf0,...,fk

of codimension k in X, and using theorem 2.
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• If X is irreducible, we can study instead its image under the β from
proposition 2.4 (picking up a factor from the degree of β to its image). In
this smaller projective space, it is easy to see that a set Q as postulated
in corollary 4.2 must exist, even for Tmin(X)PV ≥ Tmin(X)X.

• If X has not only isolated fixed points but isolated fixed curves, as in
[GKM98], then this set Q exists canonically: take the T -fixed points
other than min(X) on the T -fixed curves passing through min(X). This
condition holds for flag manifolds and toric varieties, though not for the
Bott-Samelson manifold from section 1.2.5.

As usual, things are particularly simple for X a toric variety, where the simpli-
cial complex ∆(X, S) is a triangulation of the moment polytope P, whose vertices
correspond naturally to XT . The set Q can (and must) be taken to be the vertices
sharing an edge with min(X).

4.3. Assembling the coefficients {vγ}. The formula deg X =
∑

γ vγ mentioned
after theorem 1, summing over maximum-length closure chains, can be refined
to deg X =

∑
γ vγ summing over maximum-length witnesses. We now give an

inductive version of this formula.

Given a closure chain γ = (f0, . . . , fk) and a component Y of Xf0,...,fk
of dimen-

sion dimX − k (which requires γ to be the initial segment of a maximum-length
chain), define

vγ,Y :=
∑

γ=(f0∈Y0,...,fk∈Yk=Y)

v(X)γ

where the summands were defined in section 3.2. If k = dimX, then Y = {fdim X}

by lemma 3.7, and therefore vγ,Y is the vγ also defined in section 3.2.

Proposition 4.3. Fix γ = (f0, . . . , fk) and a component Y of Xf0,...,fk
of dimen-

sion dimX−k. Pick a T -invariant hyperplane PH not containing fk, and let {Zi}

be the irreducible components of Yk ∩ PH. Then

v(f0,...,fk),Y deg Y =
∑

i

v(f0,...,fk,min(Zi)),Zi
deg Zi.

Proof.

deg Yk = deg(Yk ∩ PH) =
∑

i

mi deg(Zi)
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where the mi are the multiplicities of the components Zi in the scheme Yk ∩ PH.
The result follows by unwinding the definition of v(X)γ. ¤
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