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Arithmetically Gorenstein Schubert Varieties

in a Minuscule G/P

J. Brown and V. Lakshmibai∗

Abstract: In this paper, we give a characterization of arithmetically Goren-
stein Schubert varieties in a minuscule G/P . We further give a nice com-
binatorial description of the arithmetically Gorenstein Schubert varieties in
the classical & orthogonal Grassmannians. We also prove the arithmetically-
Gorenstein property for SL(n)/Q,Q being any parabolic subgroup, in par-
ticular, the arithmetically-Gorenstein property for the flag variety SL(n)/B.
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Introduction

The main goal of this paper is to give a characterization of the arithmetically
Gorenstein Schubert varieties in a minuscule G/P .

Let K be the base field which we assume to be algebraically closed of arbitrary
characteristic. Let G be a semisimple, simply connected algebraic group over
K, T a maximal torus, and B a Borel subgroup containing T . Let W be the
Weyl group. For w ∈ W , let ew be the (T -fixed point) wB in G/B, and X(w)(=
Bew = BwB(modB)), the Schubert variety associated to w; more generally, for
a parabolic subgroup Q ⊇ B, we denote by XQ(w) (or just X(w), when there
is no room for confusion), the Schubert variety BwQ(modQ) associated to the
T -fixed point wQ in G/Q. While all Schubert varieties are Cohen-Macaulay
(cf.[22]), not all of the Schubert varieties are smooth; one has (thanks to the
works of several mathematicians during 1980’s & 1990’s) a complete classification
of smooth Schubert varieties (see [1] for a detailed account on this).
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The Gorenstein property is a geometric property in between Cohen-Macaulayness
and smoothness properties (see §1 for the definition of the Gorenstein property).
The problem of classifying the Gorenstein Schubert varieties is an open problem.
Recently, Woo and Yong (cf. [26]) have given a characterization of the (geo-
metrically) Gorenstein Schubert varieties in the flag variety SL(n)/B. In this
case (namely, G = SL(n)), we have a natural identification of W with the sym-
metric group Sn. In [26], the authors give a characterization of the Gorenstein
Schubert varieties in SL(n)/B in terms of certain “pattern avoidance” for the
associated permutations (in the same spirit as the “pattern avoidance” descrip-
tion for smoothness given in [16]). As a consequence, one obtains a combinatorial
characterization of the Gorenstein Schubert varieties in the Grassmannian (see
§3 for details); it should be remarked that we prove a stronger result than that of
[26] (see also [25]), namely, while in [25, 26], the authors give a characterization
of Gorenstein Schubert varieties, we give a characterization of the Gorenstein
property even for the cones over Schubert varieties (cf. Theorem 3.7). As a
consequence of Theorem 3.7, it turns out that a Schubert variety in the Grass-
mannian is arithmetically Gorenstein (for the Plücker embedding) if and only if
it is geometrically Gorenstein.

Let us now take a minuscule maximal parabolic subgroup P in a semi-simple
algebraic group G (see §1 for a complete list of minuscule maximal parabolics).
One usually refers to the corresponding G/P as a minuscule G/P , and the Schu-
bert varieties in G/P as minuscule Schubert varieties. If G = SL(n), then every
maximal parabolic is minuscule, and G/P is just a Grassmann variety. In this
case, a Schubert variety in G/P has a representation by a Young diagram (of
suitable width and height). Then by [26] (see also [25]), one obtains that a Schu-
bert variety in G/P is Gorenstein if and only if the outer corners of the associated
Young diagram lie on the same anti-diagonal. Now taking G to be SO(m) and P

to be the maximal parabolic subgroup associated to the right end root (one of the
two right end roots if m is even) in the Dynkin diagram (following the indexing of
the Dynkin diagram as in [3]), a Schubert variety in the orthogonal Grassmannian
SO(m)/P again has a representation by a (self-dual) Young diagram.

Our first main result (cf. Theorem 5.12) is a generalization of the combinatorial
characterization of Gorenstein Schubert varieties in a Grassmannian to the case of
an orthogonal Grassmannian. In Theorem 5.12, we show that a Schubert variety
in SO(m)/P is arithmetically Gorenstein if and only if the outer corners of the
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associated Young diagram lie on the same anti-diagonal. We now give a brief
sketch of the proof of this result. Given a maximal parabolic subgroup P , let L

be the ample generator of Pic G/P (∼= Z), the isomorphism classes of line bundles
on G/P . For the canonical projective embedding

X(w) ↪→ G/P ↪→ Proj(H0(G/P, L))

(X(w) being a Schubert variety in G/P ), let R(w) denote the homogeneous co-
ordinate ring of X(w). Now taking P to be minuscule, using the results of [23], we
have that R(w) is a graded Hodge algebra (“Hodge algebra” in the sense of [5]),
having a set of algebra generators indexed by H(w), the Bruhat poset of Schubert
subvarieties of X(w) (here, “poset” is the abbreviation for a partially ordered set).
Also, R(w) is Cohen-Macaulay (by [22, 21], Schubert varieties are arithmetically
Cohen-Macaulay and arithmetically normal). These facts together with a result
of Stanley (cf.[24], Theorem 4.4) giving a characterization of Gorenstein graded
Cohen-Macaulay domains (in terms of the Hilbert series) implies that R(w) is
Gorenstein if and only if the poset J(H(w)) of join-irreducibles of H(w) is a
ranked poset (i.e., all maximal chains in J(H(w)) have the same length). We
show (cf. §3) that the poset of join-irreducibles of H(w) (X(w) being a Schubert
variety in an orthogonal Grassmannian) is a ranked poset if and only if the outer
corners of the associated Young diagram lie on the same anti-diagonal. In the
remaining minuscule cases, if G is SP (2n) and P = P1 (the maximal parabolic
corresponding to the left end root in the Dynkin diagram, the indexing of the
Dynkin diagram being as in [3]), then G/P ∼= P2n−1; all of the Schubert varieties
in G/P are certain linear subspaces, and hence are smooth (and hence Gorenstein
and also arithmetically Gorenstein). If G is SO(2n), and P = P1 (the maximal
parabolic corresponding to the left end root), then one easily checks that the poset
of join-irreducibles of H(w) is a ranked poset for all Schubert varieties X(w) in
G/P . Hence all of the Schubert varieties are arithmetically Gorenstein. If G is
E6 or E7 and P is a minuscule parabolic (using the above criterion for Gorenstein
property), we have listed (cf. §6) the arithmetically Gorenstein Schubert varieties.

There is one important non-minuscule case for which also we prove the arith-
metic Gorenstein property, namely, the (partial) flag variety SL(n)/Q,Q being
any parabolic subgroup. Here again, the line of argument is the same as in the
minuscule case, namely, using the results of [17], we exhibit a Hodge algebra
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structure for the multi-homogeneous co-ordinate ring of SL(n)/Q, with a set of
algebra generators indexed by certain “Young lattices” (see §7 for details).

Gorenstein Schubert varieties in a minuscule G/P are also studied in [19],
wherein the author describes the Gorenstein locus of a Schubert variety in a
minuscule G/P , using the combinatorial tool introduced in [20]. It is not im-
mediately clear if our characterization of the arithmetically Gorenstein Schubert
varieties as described above could be deduced from the results of [19].

The paper is organized as follows. In §1, we give a resume of the standard
monomial basis for Schubert varieties in a minuscule G/P and establish the fact
that the homogeneous co-ordinate rings of minuscule Schubert varieties are in
fact Hodge algebras. In §2, we recall generalities on distributive lattices. In §3,
we present results on the arithmetic Gorenstein property for Schubert varieties in
the Grassmannian as well as for Schubert varieties in the minuscule G/P1 in types
C & D (here, P1 is the maximal parabolic subgroup corresponding to the left-end
root in the Dynkin diagram). In §4, we discuss the specific lattice associated to
the orthogonal Grassmannian. In §5, we present results for Schubert varieties in
an orthogonal Grassmannian. In §6, we give the complete list of arithmetically
Gorenstein Schubert varieties in the minuscule G/P ’s, G being E6 or E7. In §7,
we present results for the (partial) flag variety SL(n)/Q.

1. Schubert Varieties and Hodge Algebras

In this section we recall the standard monomial basis for the homogeneous
co-ordinate ring K[X] of a Schubert variety X in a minuscule G/P , and exhibit
the Hodge algebra structure for K[X].

Let G,T,B, W etc., be as in the introduction. Let R be the root system of
G relative to T ; let R+ (resp. S = {α1, · · · , αl}) be the set of positive (resp.
simple) roots in R relative to B (here, l is the rank of G). Let {ωi, 1 ≤ i ≤ l}
be the fundamental weights. Let X (T ) be the character group of T ; let (, ) a
W -invariant inner product on X(T )⊗R. Let P be a maximal parabolic subgroup
of G with ω as the associated fundamental weight; then it is well-known (see [10]
for example) that PicG/P (the isomorphism classes of line bundles on G/P ) is
isomorphic to Z, and we shall denote the ample generator of PicG/P by Lω. Then
PicG/B (which is free abelian of rank l) has a Z-basis given by {Lωi , 1 ≤ i ≤ l}.
Thus a line bundle L ∈ PicG/B may be written as L = L(λ), for a unique
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λ :=
∑l

i=1 aiωi, ai ∈ Z. Let WP be the Weyl group of P (note that WP is the
subgroup of W generated by {sα | α ∈ SP }). Let WP = W/WP . We have that
the Schubert varieties of G/P are indexed by WP , and thus WP can be given
the partial order induced by the inclusion of Schubert varieties. For generalities
on semisimple algebraic groups, we refer the reader to [2, 10].

1.1. Extremal weight vectors uw, pw: Let U (gC) be the universal enveloping
algebra of gC (here, gC is the Lie algebra of GC where GC is the group over C
with the same root data as G), U+ (gC) the subalgebra of U (gC) generated by
{Xα, α ∈ R+}. Let U+

Z (gC) be the Kostant Z-form (cf. [12]) of U+ (gC), namely,
the Z-subalgebra of U+ (gC) generated by

{
Xn

α

n!
, α ∈ R+, n ∈ Z+

}

Let λ be a dominant integral weight (i.e., λ =
∑l

i=1 aiωi, ai ∈ Z+), and let
V (λ) be the irreducible GC-module (over C) with highest weight λ. Let us fix
a highest weight vector u in V (λ). For w ∈ W , fix a representative nw for w in
NT (G) (the normalizer of T in G), and set uw = nw · u, and Vw,Z = U+

Z (g) uw;
note that uw is a T -weight vector of weight w(λ) (and is unique up to scalars).
One usually refers to w(λ) as the extremal weight in V (λ) corresponding to w, and
uw as an extremal weight vector. For any field K, let Vw,λ = Vw,Z ⊗K, w ∈ W .
Then VK(λ) := Vw0,λ(= Vw0,Z⊗K, w0 being the element of largest length in W ),
is the Weyl module corresponding to λ; for w ∈ W , Vw,λ is the Demazure module
corresponding to w (and λ). Note that for τ, w ∈ W,uτ ∈ Vw,λ ⇔ w ≥ τ . (This is
assuming λ to be regular, i.e., λ =

∑
aiωi, ai 6= 0, 1 ≤ i ≤ l. If λ is not regular,

then one should replace W by a set of representatives of W/Wλ,Wλ being the
stabilizer of λ in W ). Recall the following theorem:

Theorem 1.2.

(∗) H0 (G/B,L (λ)) ∼= VK (λ)∗ , H0 (X (w) , L (λ)) ∼= V ∗
w,λ.

See (for example) [10] for a proof.

The Vectors {pw, w ∈ W}: In view of equation (∗), we have {−w(λ), w ∈ W}
are weights in the T -module H0 (G/B,L (λ)) of multiplicity 1. Let us fix a
generator e for the one-dimensional weight space in H0 (G/B,L (λ)) of weight −λ

(note that e is a lowest weight vector). For w ∈ W , as above fix a representative
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nw for w in NT (G), and set pw = nw · e. Note that H0 (G/B,L (λ)) = VK (ι (λ)),
where ι := −w0 (in AutR) is the Weyl involution, and pw, w ∈ W are simply the
extremal weight vectors in VK (ι (λ)). Note also that the weight of pw is −w(λ).
Further, we have the following

Proposition 1.3. Let notations be as above. Let Q = Wλ. For τ, w ∈ W/WQ,
we have

(∗∗) pτ |XQ(w) 6= 0 ⇔ w ≥ τ

1.4. Minuscule Weights and Lattices.

Definition 1.5. A fundamental weight ω is called minuscule if 〈ω, β〉 (= 2(ω,β)
(β,β) ) ≤

1 for all β ∈ R+; the maximal parabolic subgroup associated to ω is called a
minuscule parabolic subgroup.

Following the indexing of the simple roots as in [3], we have the complete list
of minuscule weights for each type:

Type An : Every fundamental weight is minuscule
Type Bn : ωn

Type Cn : ω1

Type Dn : ω1, ωn−1, ωn

Type E6 : ω1, ω6

Type E7 : ω7.

There are no minuscule weights in types E8,F4, or G2.

Definition 1.6. A Schubert variety in a minuscule G/P will be called a minuscule
Schubert variety.

1.7. Standard monomial basis for minuscule Schubert varieties: Given
a maximal parabolic subgroup P , let L := Lω (the ample generator of PicG/P );
for w ∈ W/WP , we shall denote the restriction of L to X(w) also by just L. For
the canonical projective embedding

X(w) ↪→ G/P ↪→ Proj(H0(G/P, L))

(X(w) being a Schubert variety in G/P ), let R(w) denote the homogeneous co-
ordinate ring of X(w). We have a natural inclusion

R(w) ↪→ ⊕
m∈Z+

H0(X(w), Lm)
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In the case of a minuscule G/P , we have (cf. [23]) that the extremal weight
vectors {pw, w ∈ W/WP } form a K-basis for H0(G/P, L). Further, for τ, w ∈
W/WP , we have (cf. (∗∗))

pτ |X(w) 6= 0 ⇔ w ≥ τ

Hence we obtain that {pτ , τ ≤ w} is a basis for H0(X(w), L). In fact, a basis
has been constructed for H0(X(w), Lm) in terms of standard monomials on X(w)
(cf. [23]). We now recall this basis:

Definition 1.8. A monomial pτ1pτ2 · · · pτm , τi ∈ W/WP , 1 ≤ i ≤ m is standard
on X(w) if w ≥ τ1 ≥ . . . ≥ τm.

Proposition 1.9 (cf. [23]).

(1) Standard monomials on X(w) of degree m form a basis for H0(X(w), Lm),
m ∈ Z+.

(2) R(w)m = H0(X(w), Lm),m ∈ Z+, and thus R(w)m has a basis consisting
of standard monomials of degree m.

As an immediate consequence, we have the following

Lemma 1.10 (cf. [23]). Suppose τ, φ ∈ W/WP are such that τ, φ are not com-
parable. Writing

(†) pτpφ =
∑

cα,βpαpβ, cα,β ∈ K

where the right hand side is a sum of standard monomials, we have that any α >

both τ and φ, and any β < both τ and φ.

Proof. Restricting (†) to X(α), the right hand side is a non-zero sum of standard
monomials on X(α) (each term restricted to X(α) is either zero or remains stan-
dard on X(α), and the term pαpβ is non-zero on X(α)). Linear independence of
standard monomials implies that pτpφ|X(α) is non-zero. In particular, we obtain
α ≥ both τ and φ; in fact, we have that α > both τ and φ (note that α = τ

would imply τ ≥ φ which is not true). In a similar way, by considering w0τ , w0φ,
where w0 is the element of maximal length in W , we obtain that any β < both
τ and φ. ¤
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1.11. ASL:. In this subsection, we recall the definition (cf. [5, 8]) of Hodge
algebras or also known as algebras with straightening laws, abbreviated ASL.

Let H be a finite poset and N be the set of non-negative integers. A monomial
M on H is a map from H to N . The support of M is the set Supp(M) = {x ∈
H | M(x) 6= 0}; M is standard if Supp(M) is a chain in H (a chain is a totally
ordered subset, see Definition 2.2 below).

If R is a commutative ring, and we are given an injection ϕ : H ↪→R, then to
each monomial M on H we may associate

ϕ(M) :=
∏

x∈H

ϕ(x)M(x) ∈ R.

Definition 1.12. Let R be a commutative K-algebra. Suppose that H is a finite
poset with an injection ϕ : H ↪→ R. Then we call R a Hodge algebra or also an
algebra with straightening laws (abbreviated ASL) on H over K if the following
conditions are satisfied:

ASL-1 The set of standard monomials is a basis of the algebra R as a vector
space over K.

ASL-2 If τ and φ in H are incomparable and if

τφ =
∑

i

ai γi1γi2 · · · γiti ,

(where 0 6= ai ∈ K and γi1 ≤ γi2 ≤ · · · γiti) is the unique expression for
τφ ∈ R as a linear combination of distinct standard monomials (guaran-
teed by ASL-1), then γi1 ≤ τ, φ for every i.

1.13. ASL structure for homogeneous co-ordinate rings of minuscule
Schubert varieties: Let X(w) be a minuscule Schubert variety, and let R(w)
be its homogeneous co-ordinate ring (cf. 1.7). Let H(w) be the Bruhat poset of
Schubert subvarieties of X(w) (the partial order being given by inclusion). Then
in view of Proposition 1.9 and Lemma 1.10, we obtain the following

Proposition 1.14. The homogeneous coordinate ring R(w) for a Schubert vari-
ety X(w) in a minuscule G/P is an ASL (on H(w) over K).

1.15. Cohen-Macaulay & Gorenstein properties: Let (R, m) be a Noether-
ian local ring, and let k = R / m.
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Definition 1.16. The local ring (R, m) is Cohen-Macaulay if

Exti
R(k, R) = 0, for i < dimR; it is Gorenstein if in addition, we have,

Extdim R
R (k, R) = 1.

Definition 1.17. An algebraic variety X is Cohen-Macaulay at a point (resp.
Gorenstein at a point ) x ∈ X, if the stalk OX,x is Cohen-Macaulay (resp. Goren-
stein); X is Cohen-Macaulay (resp. Gorenstein), if it is Cohen-Macaulay (resp.
Gorenstein) at all x ∈ X.

Definition 1.18. A projective variety X = ProjS is arithmetically Cohen-
Macaulay (resp. arithmetically Gorenstein), if X̂(= Spec S), the cone over X, is
Cohen-Macaulay (resp. Gorenstein).

Remark 1.19. Note that the cone X̂ is Cohen-Macaulay (resp. Gorenstein), if
and only if it is so at its vertex. Also note that if X̂ is Cohen-Macaulay (resp.
Gorenstein), then so is X.

2. Distributive Lattices

Let (L,≤) be a finite partially ordered set. We shall suppose that L is bounded,
i.e., it has a unique maximal, and a unique minimal element, denoted 1̂ and 0̂
respectively. For µ, λ ∈ L, µ ≤ λ, we shall denote

[µ, λ] := {τ ∈ L, µ ≤ τ ≤ λ}
We shall refer to [µ, λ] as the interval from µ to λ.

Definition 2.1. The ordered pair (λ, µ) is called a cover (and we also say that
λ covers µ or µ is covered by λ) if [µ, λ] = {µ, λ}.
Definition 2.2. A chain is a totally ordered subset of a poset. We say that a
poset is ranked if all maximal chains have the same cardinality.

Definition 2.3. A lattice is a partially ordered set (L,≤) such that, for every
pair of elements x, y ∈ L, there exist elements x ∨ y and x ∧ y, called the join,
respectively the meet of x and y, defined by:

x ∨ y ≥ x, x ∨ y ≥ y, and if z ≥ x and z ≥ y, then z ≥ x ∨ y,

x ∧ y ≤ x, x ∧ y ≤ y, and if z ≤ x and z ≤ y, then z ≤ x ∧ y.

Clearly, the operation ∨ (resp. ∧) is commutative and associative.
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Definition 2.4. A lattice is called distributive if the following identities hold:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (1)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). (2)

Definition 2.5. Given a lattice L, a subset L′ ⊂ L is called a sublattice of L if
x, y ∈ L′ implies x ∧ y ∈ L′, x ∨ y ∈ L′.

Definition 2.6. An element z of a lattice L is called join-irreducible (respectively
meet-irreducible) if z = x∨y (respectively z = x∧y) implies z = x or z = y. The
set of join-irreducible (respectively meet-irreducible) elements of L is denoted
by J (L) (respectively M (L)), or just by J (respectively M) if no confusion is
possible.

Definition 2.7. A subset I of a poset P is called an ideal of P if for all x, y ∈ P ,

x ∈ I and y ≤ x imply y ∈ I.

Theorem 2.8 (Birkhoff). Let L be a distributive lattice with 0̂, and P the poset
of its nonzero join-irreducible elements. Then L is isomorphic to the lattice of
ideals of P , by means of the lattice isomorphism

α 7→ Iα := {τ ∈ P | τ ≤ α}, α ∈ L.

The following Lemma is easily checked.

Lemma 2.9. With the notations as above, we have

(a) J = {τ ∈ L | there exists at most one cover of the form (τ, λ)}.
(b) M = {τ ∈ L | there exists at most one cover of the form (λ, τ)}.

Lemma 2.10 (cf. [14]). Let (τ, λ) be a cover in L. Then Iτ equals Iλ∪̇{β} for
some β ∈ J (L).

Give N× N the lattice structure

(α1, α2) ∧ (β1, β2) = (δ1, δ2), (α1, α2) ∨ (β1, β2) = (γ1, γ2),

where δi = min{αi, βi}, γi = max{αi, βi}.

Definition 2.11. Let J be a finite, distributive sublattice of N×N, such that if
α covers β in J , then α covers β in N×N as well. Then we say J is a grid lattice.
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Remark 2.12 (cf [9]). Let P be a maximal parabolic subgroup; if P is minuscule
then W/WP is a distributive lattice; further, for any τ ∈ W/WP , the Bruhat poset
H(τ) of Schubert subvarieties of X(τ) is a distributive sublattice of W/WP .

Definition 2.13. For P a minuscule parabolic subgroup, we call L = W/WP a
minuscule lattice.

It is shown in [4] that the poset of join-irreducibles of W/WP (P being a
minuscule maximal parabolic subgroup) is a grid lattice.

3. A characterization of the Gorenstein property

Let L be a distributive lattice, and R a graded ASL domain on L over a field
K. Further, let

deg(α) + deg(β) = deg(α ∨ β) + deg(α ∧ β)

for all α, β ∈ L. We have the following characterization of the Gorenstein prop-
erty for R:

Theorem 3.1 (cf. §3 of [8]). R is Gorenstein if and only if J(L) is a ranked
poset.

Remark 3.2. The above theorem was first a result of Stanley (cf. [24]), later
generalized by Buchweitz.

Arithmetically Gorenstein Schubert varieties in a Grassmannian: Using
the above Theorem and Proposition 1.14, we shall give a characterization of the
Gorenstein property for the cones over Schubert varieties in a Grassmannian; as
a byproduct, we obtain an alternate proof of the result of [25, 26] on Gorenstein
Schubert varieties in a Grassmannian.

Fix two positive integers d, n, d < n; let Gd,n be the Grassmann variety con-
sisting of the d-dimensional subspaces of Kn. Let G = SLn(K), and Pd be the
maximal parabolic subgroup in G:

Pd =

{(
∗ ∗

0n−d×d ∗

)
∈ G

}

We have an identification Gd,n = G/Pd; further, W/WPd
may be identified with

Id,n = {i = (i1, . . . , id) | 1 ≤ i1 < . . . < id ≤ n}
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(see, for example [13] for details). For τ ∈ Id,n, let X(τ) be the associated
Schubert variety in Gd,n. For the Plücker embedding

X(τ) ↪→ Gd,n ↪→ Proj (ΛdKn)∗

let R(τ) be the homogeneous co-ordinate ring of X(τ). Then by Proposition
1.14 and Remark 2.12, we have that R(τ) is a graded domain which is an ASL
on H(τ) over K, H(τ) being as in Remark 2.12. Hence by Theorem 3.1, X(τ)
is arithmetically Gorenstein if and only if J(τ) (the poset of join-irreducibles in
H(τ)) is a ranked poset.

Proposition 3.3. Let τ ∈ Id,n. Then X(τ) is arithmetically Gorenstein if and
only if τ consists of intervals I1, I2, · · · , Is where

It = [xt, yt], 1 ≤ t ≤ s, xt+1 − yt = yt + 2− xt, 1 ≤ t ≤ s− 1

(Here, [xt, yt] denotes the set {xt, xt+1, · · · , yt−1, yt})

The proof is similar to (and simpler than) that of Lemma 5.6 in §5.

3.4. Outer-corner description. (cf. [26]) To a τ ∈ Id,n, we associate a Young
diagram (or also a partition) λτ as follows: Let τ = (τ1, · · · , τd) (as a d-tuple).
Set

λτ
r = τr − r, ∀ 1 ≤ r ≤ d.

Thus we write λτ = (λτ
d, · · · , λτ

1); when there is no room for confusion, we drop
the superscript and just write λ.

Let us write λ as a Young diagram, and place the bottom left corner of the
first row (λ1) at (0, 0) on the grid; then each block is a square of unit 1. Thus
our diagram will be d-units high, and λd-units wide.

Definition 3.5. The partition λ satisfies the outer corner condition if all of the
outer corners lie on a line of slope 1; we also refer to this as “the outer corners
of λ lie on the same antidiagonal” (same terminology as in [26]).

Example 3.6. Let n = 14, d = 6, τ = (3, 4, 5, 9, 11, 12), and thus λτ = (6, 6, 5, 2, 2, 2).
We write λτ as a diagram:
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¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

We can see that λτ satisfies the outer corner condition. Now let τ ′ = (1, 3, 4, 5, 7, 10),
thus λτ ′ = (4, 2, 1, 1, 1, 0):

We can see that λτ ′ does not satisfy the outer corner condition.

As an immediate consequence of Theorem 3.1, Proposition 3.3 and Definition
3.5, we obtain the following

Theorem 3.7 (cf. [26]). Let τ ∈ Id,n. Then X(τ) is arithmetically Gorenstein
if and only if the outer corners of λτ lie on the same anti-diagonal.

Remark 3.8. Note that the above Theorem gives a stronger result than that
of [25, 26], namely, while in [25, 26], one has a characterization of Gorenstein
Schubert varieties, the above Theorem gives a characterization for Gorenstein
property even for the cones over Schubert varieties. As a by-product, we obtain
that a Schubert variety in the Grassmannian is arithmetically Gorenstein (for the
Plücker embedding) if and only if it is geometrically Gorenstein

3.9. The minuscule G/P1 in types C, D:. Using Theorem 3.1 and Proposition
1.14, the Gorenstein property for R(w) is immediate if G is either SP (2n) or
SO(2n), and P = P1 (the maximal minuscule parabolic subgroup corresponding
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to the left end root of the Dynkin diagram, following the indexing of the Dynkin
diagram as in [3]). In the former case, G/P ∼= P2n−1; further, all of the Schubert
varieties in G/P are certain linear subspaces, and hence are smooth (and hence
Gorenstein and also arithmetically Gorenstein).

In the latter case, we have an identification of G/P with a certain quadric Q in
P2n−1: denoting the projective co-ordinates on P2n−1 by x1, · · · , xn, y1, · · · , yn,
Q is the quadric defined by

∑
1≤i≤n

xiyn+1−i = 0. We have, dim G/P = 2n − 2;

further, for 0 ≤ i ≤ 2n − 2, there is precisely one Schubert variety in dimension
i 6= n− 1, and two Schubert varieties in dimension n− 1:

X2n−2

Â
Â
Â
Â

Xn

JJJJJJ

tttttt

Xn−1

JJJ
JJJ

X ′
n−1

ttt
ttt

Xn−2

Â
Â
Â
Â

X0

In the above diagrammatic representation, the suffix denotes the dimension
of the corresponding Schubert variety (note that X2n−2 is just G/P ). Further,
for n ≤ i ≤ 2n − 3, Xi is obtained by intersecting Xi+1 with the hyperplane
x2n−2−i = 0, and for 0 ≤ i ≤ n− 2, Xi is obtained by intersecting Xi+1 with the
hyperplane yn−1−i = 0. Also, Xn−1 ∪X ′

n−1 is obtained by intersecting Xn with
the hyperplane xn−1 = 0; thus, we have

Xn−1 = {(x1, · · · , xn, y1, · · · , yn) |x1 = · · · = xn = 0},
X ′

n−1 = {(x1, · · · , xn, y1, · · · , yn) |x1 = · · · = xn−1 = y1 = 0}

Note that Xn−2 is also obtained by intersecting X ′
n−1 with the hyperplane

xn = 0 (for more details, see [15]). From this it easily follows that the poset of
join-irreducibles in H(w) is a ranked poset for all w ∈ W/WP .
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In the next two sections we present results for the orthogonal Grassmannian.

4. The Lattice of Schubert Varieties in Orthogonal Grassmannian

Let G be the special orthogonal group SO(m), and let P be the maximal
parabolic subgroup corresponding to the right end root (resp. right end roots if
m is even) in the Dynkin diagram (following the indexing of the Dynkin diagram
as in [3]). Then G/P is the orthogonal Grassmannian. Since P is minuscule,
the Bruhat-poset of Schubert varieties in G/P is a minuscule lattice, and hence
a distributive lattice (cf. Remark 2.12). Further, we have isomorphisms of the
following minuscule lattices:

Bn−1 (ωn−1) ∼= Dn (ωn−1) ∼= Dn (ωn)

Hence for the rest of this section, we shall suppose that G = SO(2n) and P = Pn

(the maximal parabolic subgroup with ωn as the associated fundamental weight).
Also, we shall denote the corresponding minuscule lattice by L.

Description of L (cf. §2 of [18]): For two integers r, s ∈ N, r ≤ s, let Ir,s =
{(i1, . . . , ir) | 1 ≤ i1 < . . . < ir ≤ s}, with partial order ≤ given by

(i1, . . . , is) ≤ (j1, . . . , js) ⇔ i1 ≤ j1, . . . , is ≤ js.

We have an identification (cf. [18]) of L as a sublattice of In,2n:

L =

{
(i1, . . . , in) ∈ In,2n | for 1 ≤ j ≤ n, precisely one of

{j, 2n + 1− j} ∈ {i1, . . . , in}

}
.

Notation. Whenever we refer to a segment (i, i + 1, . . . , j) such that i > j,
the segment is understood to be empty. Also, we will use the notation [i, j] to
represent the string of consecutive integers {i, i + 1, . . . , j − 1, j}.

Lemma 4.1. J (L) = {( [1, j], [n + 1− i, n], [n + 1 + i, 2n− j] ) | 0 ≤ j ≤ n, 0 ≤
i ≤ n− j−1}. Note that when j = n, we have the minimal element in L, namely,
(1, . . . , n).

Proof. For w = (w1, . . . , wn) ∈ L, let 1 ≤ d ≤ n be such that wd ≤ n and
wd+1 ≥ n + 1. Notice that w is determined by (w1, . . . , wd). In this way, we can
project L onto

⋃
1≤d≤n Id,n. This map is bijective, and order is preserved within
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each Id,n. Further, if w does not project onto a join irreducible element in Id,n,
then w is not join irreducible in L.

Therefore, we check to see if join irreducible elements in Id,n are join irreducible
in L. We have (from §8 of [7]),

J (Id,n) = {(1, . . . , j, j + i + 1, . . . , d + i) | 0 ≤ j ≤ d, 1 ≤ i ≤ n− d}.
Note that the element (1, . . . , j, j+i+1, . . . , d+i) ∈ Id,n corresponds to ([1, j], [j+
i + 1, d + i], [n + 1, 2n − d − i], [2n − j − i + 1, 2n − j]) ∈ L. In the case when
i 6= n− d, this element covers two distinct elements,

([1, j], j + i, [j + i + 2, d + i], [n + 1, 2n− d− i], 2n− j − i, [2n− j − i + 2, 2n− j]),

([1, j], [j + i + 1, d + i], n, [n + 2, 2n− d− i], [2n− j − i + 1, 2n− j]).

Thus we only need to consider elements of the form (1, . . . , j, n−d+j+1, . . . n, n+
d− j +1, . . . , 2n− j), for all d, and these elements clearly cover only one element
each. The result follows. ¤

Remark 4.2. By [4], we may identify J (L) with a grid lattice (Definition 2.11).
This implies that J (L) is a distributive lattice, and thus is ranked.

J (L) being a ranked poset, each element of J (L) has a well-defined level: let
levelw be the number of elements in a maximal chain from 0̂ to w minus one.

Lemma 4.3. Let w ∈ J (L), w = (1, . . . , j, n+1− i, . . . , n, n+1+ i, . . . , 2n− j).
Then levelw = 2n− 2j − i− 1.

Proof. We give J (L) a grid lattice structure. Namely, we send w to (n − j, n −
j− i) ∈ N×N. For book-keeping purposes, let 0̂ = (1, . . . , n) 7→ (0, 1). Therefore,
in this sublattice of N × N, level(a,b) = a + b − 1, as we can see by taking the
maximal chain from (0, 1) to (a, 1), and then from (a, 1) to (a, b). Therefore,
levelw = n− j + n− j − i− 1. The result follows. ¤

5. Arithmetically Gorenstein Property for Schubert varieties in

an orthogonal Grassmannian

For β ∈ L, let Lβ be the sublattice [0̂, β]; then R(β) (cf. §1.7) is an ASL on
Lβ. Further, R(β) is a Cohen-Macaulay normal domain (cf.[22, 21]). Setting
R = R(β), we have deg(α) = 1 for all α ∈ Lβ.
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As stated in the previous section, we know β = (β1, . . . , βn) is determined by
(β1, . . . , βd) where βd ≤ n and βd+1 ≥ n + 1. For now, we will be primarily
concerned with (β1, . . . , βd). We will now break β into its segments, using the
notation [i, j] to represent the string of consecutive integers {i, i+1, . . . , j−1, j}.
Thus we denote

(β1, . . . , βd) =
(
[1, j0], [β(j0)+1, βj1 ], [β(j1)+1, βj2 ], . . . , [β(js−1)+1, βjs ]

)
,

where {j0, . . . , js} is a subset of {0, . . . , d}, (we may have j0 = 0, but we must
have js = d), and β(ji)+1 − βji ≥ 2 for 0 ≤ i ≤ s− 1.

We may write β as the join of non-comparable join irreducibles:

(∗) β = w1 ∨ . . . ∨ ws (∨w0) ,

where the wi’s are join-irreducible and mutually non-comparable. Specifically,

wi =
(
[1, ji−1], [β(ji−1)+1, n]

)
, 1 ≤ i ≤ s,

and
w0 = ([1, js]) .

We only give those integers in wi less than or equal to n. Note that in the case
where βjs = n, w0 is unnecessary, in fact w0 ≤ ws, which is why we have listed
w0 in parentheses in (∗).
Example 5.1. Let n = 5, and β = (2, 4, 6, 8, 10); we have

(2, 4, 6, 8, 10) = (2, 3, 4, 5, 10) ∨ (1, 4, 5, 8, 9) ∨ (1, 2, 6, 7, 8).

Remark 5.2. With notation as above, J(Lβ) =
⋃

0≤i≤s

[0̂, wi]. Then as a result of

Theorem 3.1, we have that the Schubert variety X (β) is arithmetically Gorenstein
if and only if levelwi = levelwj for all 0 ≤ i, j ≤ s.

Remark 5.3.

levelwi = n− 2ji−1 + β(ji−1)+1 − 2, for 1 ≤ i ≤ s;

levelw0 = 2n− 2js − 1.

Remark 5.4. Note that β(ji)+1 = β(ji+1) − (ji+1 − ji − 1), by construction.

Definition 5.5. We say that an element β ∈ L satisfies condition A, if β satisfies

β(ji)+1 − βji = ji − ji−1 + 1, ∀ 1 ≤ i ≤ s− 1, and
n− βjs = js − js−1, if βjs 6= n.
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Lemma 5.6. X (β) is arithmetically Gorenstein if and only if β satisfies condi-
tion A.

Proof. Case 1: Let βjs = n.

Let i be such that 1 ≤ i ≤ s− 1, and for convenience of notation, let k = i− 1.

Let X (β) be arithmetically Gorenstein. Then, by Remarks 5.2 and 5.3, we
have

n− 2ji + β(ji)+1 − 2 = n− 2jk + β(jk)+1 − 2.

Thus β(ji)+1 − β(jk)+1 = 2ji − 2jk; this together with Remark 5.4 (applied to
β(jk)+1) implies that

β(ji)+1 − (βji − ji + jk + 1) = 2ji − 2jk.

Therefore β(ji)+1 − βji = ji − jk + 1, and thus β satisfies Condition A.

Now let β satisfy Condition A. Hypothesis implies that β(ji)+1−βji = ji−jk+1
for every i such that 1 ≤ i ≤ s − 1, where k = i − 1. From Remark 5.4,
βji = β(jk)+1 + ji − jk − 1, therefore

β(ji)+1 − β(jk)+1 = 2ji − 2jk; ⇒ β(ji)+1 − 2ji = β(jk)+1 − 2jk.

Thus we get that levelwi+1 = levelwk+1
, and since this is true for any i, we

get levelwi = levelwj for all 1 ≤ i, j ≤ s. Therefore X (β) is arithmetically
Gorenstein.

This completes the proof for Case 1.

Case 2: Let βjs 6= n (making w0 relevant).

Let X (β) be arithmetically Gorenstein. As in Case 1, we have, β(ji)+1 −
βji = ji − jk + 1, 1 ≤ i ≤ s − 1 (where (k = i − 1)). It remains to show that
n− βjs = js − js−1. Hypothesis implies that levelw0 = levelws ; i.e.,

2n− 2js − 1 = n− 2js−1 + β(js−1)+1 − 2.

We apply Remark 5.4 (for i = s− 1), and obtain

2n− 2js − 1 = n− 2js−1 + βjs − (js − js−1 − 1)− 2.

Therefore n− βjs = js − js−1, as desired.
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Now let β satisfy Condition A. Hypothesis implies that

βji+1 − βji = ji − jk + 1, 1 ≤ i ≤ s− 1(k = i− 1), n− βjs = js − js−1

We must show that X (β) is arithmetically Gorenstein, equivalently, we must
show that levelwi = levelwj , 0 ≤ i, j ≤ s. As in Case1, hypothesis implies that
levelwi = levelwj , 1 ≤ i, j ≤ s. We shall now show that levelw0 = levelws , thus
completing the proof in this Case. In view of Remark 5.3, it suffices to check that
2n− 2js − 1 = n− 2js−1 + β(js−1)+1 − 2. We begin with Remark 5.4:

βjs − βjs−1+1 = js − js−1 − 1, ⇒
n− βjs−1+1 = (n− βjs) + js − js−1 − 1

By hypothesis, this implies

n− βjs−1+1 = (js − js−1) + js − js−1 − 1

Hence, it follows that n− 2js = −2js−1 + βjs−1+1 − 1.

This completes the proof for Case 2. ¤

5.7. Outer-corner condition: As in §3.4, for β := (β1, · · · , βn) ∈ L we asso-
ciate a Young diagram λβ =

(
λβ

n, . . . , λβ
1

)
, where

λβ
i = βi − i, ∀ 1 ≤ i ≤ n

When there is no room for confusion, we drop the superscript and just write λ.

As in §3.4, we place the bottom left corner of the first row (λ1) at (0, 0) on
the grid; then each block is a square of unit 1. Thus our diagram will be n-units
high, and λn-units wide.

Definition 5.8. We follow the terminology “outer corner condition” for λ as in
Definition 3.5, namely if all of the outer corners of λ lie on a line of slope 1.

Example 5.9. Let n = 8, β = (1, 2, 5, 6, 9, 10, 13, 14), and thus λβ = (6, 6, 4, 4, 2, 2, 0, 0).
We write λβ as a diagram:
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We can see that λβ satisfies the outer corner condition. Now let β′ = (1, 2, 3, 4, 6, 7, 9, 12),
thus λβ′ = (4, 2, 1, 1, 0, 0, 0, 0):

We can see that λβ′ does not satisfy the outer corner condition.

We now return to a general β ∈ L; we preserve the notation from §5. From our
definition of {j0, . . . js} ⊆ {0, . . . , d}, we have λ(ji)+1 = . . . = λ(ji+1). Note that
λ1 = . . . = λj0 = 0, so the first outer corner takes place at the bottom right of
the row assigned to λ(j0)+1; specifically, the point (βj0+1 − j0 − 1, j0). Similarly,
the first s outer corners are at the points

(
λ(ji−1)+1 − ji−1 − 1, ji−1

)
1 ≤ i ≤ s.

If βjs 6= n, we have the s + 1 outer corner at (n− js, js).

Note that the diagram is necessarily “self dual,” (cf. [18]); recall that the dual
of the partition λ is given by λ′, where λ′i = #{λj | λj ≥ i}, i.e. the rows of λ′ are
given by the columns of λ. Thus, for λ derived from β ∈ L, we have λ = λ′. In
the case of the grid, this implies that the diagram reflects over the line between
points (0, n) and (n, 0). Thus, if there is an outer corner at the point (i, j), there
will be an outer corner at the point (n− j, n− i).
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Note that in the case where βjs 6= n, the (s + 1)th outer corner corresponds to
itself, it actually lies on the line from (0, n) to (n, 0). Therefore, the first s outer
corners fall below the line, and correspond to another set of s outer corners above
the line. Therefore we get 2s outer corners given in pairs: for 1 ≤ i ≤ s,

(
β(ji−1)+1 − ji−1 − 1, ji−1

)
,

(
n− ji−1, n− β(ji−1)+1 + ji−1 + 1

)
;

with one more outer corner whenever βjs 6= n: (n− js, js).

Lemma 5.10. If the first s + 1 outer corners of λ satisfy the outer corner con-
dition, then λ satisfies the outer corner condition.

Proof. Note that two corners (x1, y1) and (x2, y2) fall on a line of slope 1 whenever
y1 − x1 = y2 − x2. Note that this always holds true for the pair(
β(ji−1)+1 − ji−1 − 1, ji−1

)
,

(
n− ji−1, n− β(ji−1)+1 + ji−1 + 1

)
. Therefore, each

of the first s outer corners lies on a line of slope 1 with its dual counterpart. If we
now assume that the first s + 1 outer corners are on a line of slope 1, (including
the special case if βjs 6= n), then all the outer corners satisfy the outer corner
condition. The result follows. ¤

Lemma 5.11. The lattice point β ∈ L satisfies condition A if and only if the
partition λβ satisfies the outer corner condition.

Proof. We begin with the outer corners for i and i + 1:
(
β(ji−1)+1 − ji−1 − 1, ji−1

)
,

(
β(ji)+1 − ji − 1, ji

)
.

If we begin letting βjs = n, by Lemma 5.10, the outer corner condition is satisfied
if and only if for every 1 ≤ i ≤ s− 1,

β(ji−1)+1 − 2ji−1 − 1 = βji+1 − 2ji − 1,⇔
βji + 1− β(ji−1)+1 = 2ji − 2ji−1.

By Remark 5.4, this is if and only if

βji+1 − (βji − ji + ji−1 + 1) = 2ji − 2ji−1⇔
βji+1 − βji = ji − ji−1 + 1,

which holds if and only if β satisfies condition A.

Now, if βjs 6= n, we must show that the (s + 1)-th outer corner is on line
with the others if and only if n − βjs = js − js−1. We have that the corners
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(
β(js−1)+1 − js−1 − 1, js−1

)
, (n− js, js) are on line if and only if

n− 2js = β(js−1)+1 − 2js−1 − 1

By Remark 5.4, we have β(js−1)+1 = βjs − js − js−1 − 1, thus

n− 2js = βjs − js + js−1 + 1− 2js−1 − 1⇔
n− βjs = js − js−1.

The result follows. ¤

The Lemmas from §4, §5 (together with Theorem 3.1 and Proposition 1.14) lead
to the characterization of the arithmetically Gorenstein property for Schubert
varieties in the orthogonal Grassmannian:

Theorem 5.12. The Schubert variety X(β) in the orthogonal Grassmannian
G/P is arithmetically Gorenstein if and only if λβ satisfies the outer corner
condition.

6. The Exceptional Groups

In this section, we list the arithmetically Gorenstein minuscule Schubert vari-
eties in types E6, E7. We shall index the simple roots as in [3]:

6.1. E6. In the root system of type E6, we have two minuscule weights: ω1 and
ω6.

2©

1© 3© 4© 5© 6©
For the results below, we let P be the minuscule parabolic subgroup associated
to the root ω1. Similar results can be found for P associated to ω6 simply by
performing the appropriate permutation of simple roots.

We list the Gorenstein, as well as the non-Gorenstein Schubert varieties in
G/P . For a simple root αi, 1 ≤ i ≤ 6, si will denote the reflection with respect to
αi. For convenience of notation, we will denote an element s4s3s1WP ∈ W/WP

by just 431; in fact, we will denote the associated Schubert variety also by just
431 (since there is no room for confusion).

All results can be checked by constructing the Bruhat poset of Schubert vari-
eties, and using Theorem 3.1.
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Gorenstein Non - Gorenstein
e (identity element) 652431

1 63452431
31 163452431

431 5613452431
5431 245613452431

65431
2431

52431
452431

3452431
6452431

13452431
54652431

563452431
4563452431

24563452431
45613452431

345613452431
2345613452431

42345613452431
542345613452431

6542345613452431

6.2. E7. In the root system of type E7, we have one minuscule weight: ω7. We
use the indexing of simple roots found in [3]:

2©

1© 3© 4© 5© 6© 7©

For the results below, we let P be the minuscule parabolic subgroup associated
to the root ω7. As with the E6 case, we categorize the Schubert varieties in G/P

as Gorenstein or non-Gorenstein.
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Gorenstein Non - Gorenstein
e (identity element) 1234567

7 541234567
67 6541234567

567 76541234567
4567 65341234567

24567 765341234567
34567 7645341234567

234567 25645341234567
134567 6725645341234567

4234567 7425645341234567
41234567 73425645341234567
54234567 673425645341234567

654234567 173425645341234567
7654234567 1673425645341234567
341234567 15673425645341234567

5341234567 1245673425645341234567
45341234567

245341234567
645341234567

5645341234567
25645341234567
72645341234567
75645341234567

675645341234567
725645341234567
425645341234567

3425645341234567
67425645341234567
13425645341234567

567425645341234567
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Gorenstein Non - Gorenstein
5673425645341234567

45673425645341234567
245673425645341234567
145673425645341234567

3145673425645341234567
31245673425645341234567

431245673425645341234567
5431245673425645341234567

65431245673425645341234567
765431245673425645341234567

7. Arithmetic Gorenstein property for the flag variety

In this section, we present results for the (partial) flag varieties SL(n)/Q.

Let us denote by X the flag variety SL(n)/B (here, we take B to be the
Borel subgroup in SL(n) consisting of upper triangular matrices). The Pi-
card group of X is free abelian of rank ` := n − 1, having the line bundles
Ld := (the ample generator of PicG/Pd, Pd being the maximal parabolic sub-
group associated to the fundamental weight ωd) as a Z-basis. For λ in the weight
lattice, we shall denote the associated line bundle on X by L(λ). We have (see
[10] for example), H0(X, L(λ)) is non-zero if and only if λ is dominant (i.e., λ

is a non-negative integral combination of the fundamental weights). Also, G/Pd

is simply the Grassmannian Gd,n of the d-dimensional subspaces of Kn; fur-
ther, for τ ∈ W/WPd

, the extremal weight vectors pτ ’s in H0(Gd,n, L(ωd)) are
simply the Plücker co-ordinates, and they give a basis for H0(Gd,n, L(ωd)) (for
details see [13] for example). Let us denote the multi-homogeneous co-ordinate
ring of X by R; we have (cf.[11]) that R is a Cohen-Macaulay normal domain.
(Note that R is just the K-algebra generated by the extremal weight vectors in
H0(Gd,n, L(ωd)), 1 ≤ d ≤ n− 1). We have a canonical inclusion

R ↪→ ⊕
{λ dominant}

H0(X, L(λ))

As in §3, let Id,n = {(1 ≤ i1 < i2 < · · · < id ≤ n)}, and let

Hn =
n−1⋃

d=1

Id,n
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We define a partial order on Hn as follows. Let τ , w ∈ Hn, τ = (i1, · · · , ir),
w = (j1, · · · , js). Define τ ≥ w if r ≤ s and i1 ≥ j1, · · · , ir ≥ jr. With this
partial order, Hn is in fact a distributive lattice (see [6] for a proof).

Example 7.1. For SL4/B, the distributive lattice H4 is given below.

4

3
LLLLLL

tttttt

2
IIIII

{{
{{

3, 4
rrrrr

1
CCC

C 2, 4
LLLLL

uuu
u

1, 4
III

I
2, 3

LLLL
rrrrr

1, 3
LLLL

uuu
u

2, 3, 4
rrr

r

1, 2
III

I
1, 3, 4

rrr
r

1, 2, 4

1, 2, 3

Remark 7.2. In the literature, the distributive lattice Hn is called a Young
lattice.

As noted above, R has a set of K-algebra generators consisting of {pτ , τ ∈ Hn}.
Definition 7.3. Define a monomial pτ1 · · · pτm , τi ∈ Hn, 1 ≤ i ≤ m of multi-
degree (m1, · · · ,mn−1) (where md = #{i | τi ∈ Id,n}) to be standard on X if
τ1 ≥ · · · ≥ τm.

Let λ =
∑n−1

d=1 mdωd. By the results of [17], we have the following

Proposition 7.4.

(1) R = ⊕
{λ dominant}

H0(X, L(λ))

(2) Standard monomials on X of multi-degree (m1, · · · ,mn−1) form a basis
for H0(X, L(λ)).

(3) Let τ, φ be two non-comparable elements of Hn. Then in the expression

pτpφ =
∑

cα,βpαpβ, cα,β ∈ K



Arithmetically Gorenstein Schubert Varieties in a Minuscule G/P 585

where the right hand side is a sum of standard monomials, we have that
any α > both τ and φ, and any β < both τ and φ.

Theorem 7.5. The multicone SpecR is Gorenstein.

Proof. By the above Proposition, we have that R is a Cohen-Maucaulay, normal
ASL over Hn. Hence the result will follow from Theorem 3.1 once we check that
J(Hn) (the poset of join-irreducibles in Hn) is a ranked poset. It is easily seen that
J(Hn) consists of d-tuples (where 1 ≤ d ≤ n−1) of the form ([1, r], [n+1+r−d, n]),
where 0 ≤ r ≤ d. Via the map ([1, r], [n + 1 + r − d, n]) 7→ (n− d, n + 1− r), we
get an identification of J(Hn) with the ranked poset I2,n+1 \ {(n, n + 1)}. The
result now follows.

¤

More generally, for a parabolic subgroup Q ⊃ B with

SQ = S \ {αd1 , · · · , αdr} (S being the set of simple roots), we denote

HQ =
r⋃

t=1

Idt,n

Considering HQ as a subposet of Hn, we have that HQ is a distributive lattice.
The Picard group of G/Q is free abelian of rank r, having the line bundles Ldt :=
the ample generator of PicG/Pdt as a Z-basis. We define standard monomials
in the pτ ’s, τ ∈ HQ as in Definition 7.3. Let RQ be the multi-homogeneous
co-ordinate ring of G/Q. (RQ is just the K-algebra generated by the extremal
weight vectors in H0(Gdt,n), 1 ≤ t ≤ r). Let λ =

∑r
t=1 mtωdt ,mt ∈ Z+; we shall

refer to such a λ as Q-dominant. We have a canonical inclusion

RQ ↪→ ⊕
{λ, Q−dominant}

H0(G/Q,L(λ))

We have ( by [17]) the following

Proposition 7.6.

(1) RQ = ⊕
{λ, Q−dominant}

H0(G/Q,L(λ))

(2) Standard monomials on G/Q of multi-degree (m1, · · · ,mr) form a basis
for H0(X, L(λ)).



586 J. Brown and V. Lakshmibai

(3) Let τ, φ be two non-comparable elements of HQ. Then in the expression

pτpφ =
∑

cα,βpαpβ, cα,β ∈ K

where the right hand side is a sum of standard monomials, we have that
any α > both τ and φ, and any β < both τ and φ.

Theorem 7.7. The multicone SpecRQ is Gorenstein.

Proof is similar to that of Theorem 7.5.
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