Errata: “Extensions of truncated discrete valuation rings”

TOSHIRO HIRANOUCHI AND YUICHIRO TAGUCHI

The purposes of these errata are:
(1) to fill in a gap in the proof of Part (ii) of Proposition 2.2 of [I] (= Proposition 2.1 of [R]), and
(2) to explain the current status of, and wrong points in, the preprint [II] (which will never be published) and the survey paper [R].

We thank Shin Hattori for pointing out the gap (1) and discussions on it, and Takeshi Saito for pointing out a fatal error in [II] and for providing a counterexample to Proposition 3.7 of [II].

1. We use the notation of [I]. The proposition in question is the following:

Proposition. (i) Let A be a tdvr with residue field k of characteristic $p \geq 0$, and let a be the length of A. Then there exists a cdvr O such that A is isomorphic to O/m^a, where m is the maximal ideal of O. If $pA = 0$, then this O can be taken to be the power series ring $k[[\pi]]$; if $pA \neq 0$, then O as above must be finite over a Cohen p-ring ([G], IV, 19.8) with residue field k. (If $pA = 0$ and $p \neq 0$, then both types of O are possible.)

(ii) Let K be a cdvf and let $A = O_K/m_K^a$ with $a \geq 1$. For any finite extension B/A of tdvr’s, there exist a finite separable extension L/K and an isomorphism $\psi : O_L/m^a_L O_L \to B$ such that the diagram

\[
\begin{array}{c}
O_L/m^a_L O_L \xrightarrow{\psi} B \\
\uparrow \hspace{1cm} \uparrow \\
O_K/m_K^a \hspace{1cm} A
\end{array}
\]

is commutative, where the left vertical arrow is the one induced by $O_K \hookrightarrow O_L$.

Received September 3, 2014.
The proof in [I] has a gap in proving that \(L/K \) can be taken to be separable (the Jacobian criterion applied to the newly taken \(g_1, \ldots, g_n \) should have been considered modulo \(q' = (g_1, \ldots, g_n) \) rather than the original \(q \)). We give here a correct one, including the whole proof (but printing in the tiny font the part which is identical with the original) for the convenience of the reader.

Proof. (i) Let \(W \) be a Cohen \(p \)-ring with residue field \(k \). The reduction map \(W \to k \) lifts by the formal smoothness of \(W \) to a local ring homomorphism \(W \to A \) ([23], 048.6).

If \(A = 0 \), the map \(W \to A \) factors through the residue field \(k \), which makes \(A \) a \(k \)-algebra. Then there exists a surjective \(A \)-algebra homomorphism \(k[x] \to A \) which maps \(\pi \) to \(\pi_A \), where \(\pi_A \) is a uniformizer of \(A \). Hence \(A \) is isomorphic to \(k[x]/(\pi^n) \) ([33], Th. 3.1).

In general, if \(O \) is a valuation ring. It contains \(\mathcal{O} \) by (II, 014Q, 17.1.7), and \(\phi \) extends to a surjective \(\mathcal{O}_K \)-algebra homomorphism \(\psi : \mathcal{O} \to B \). By abuse of notation, we denote also by \(\psi \) the maximal ideal of \(\mathcal{O}_k \). Put \(\pi = \ker(\psi) \). We identify the residue field \(k' \) of \(\mathcal{O}_k \) with that of \(B \) via \(\psi \). Since \(\varphi(m') = m'_B \), the map \(\varphi \) induces a surjective \(k' \)-linear map \(m'/m^2 \to m_B/m_B^2 \) and its kernel is \((n + m^2)/m^2 \cong n/(n \cap m^2) \). Thus we have an exact sequence

\[
0 \to n/(n \cap m^2) \to m/m^2 \to m_B/m_B^2 \to 0.
\]

Assume \(n \geq 2 \), as the case \(n = 1 \) can be treated similarly and more easily. Then \(\dim_{\mathcal{O}_K}(m_B/m_B^2) = 1 \) and \(\dim_{\mathcal{O}_K}(n/(n \cap m^2)) = n \). Choose a regular system of parameters \(\{w, f_1, \ldots, f_n\} \) of \(\mathcal{O}_m \) such that \(\varphi(w) \) gives a basis of \(m_B/m_B^2 \) and \(f_1, \ldots, f_n \in n \) give a basis of \(n/(n \cap m^2) \). Let \(\psi \) be the ideal of \(\mathcal{O}_K \) generated by \(f_1, \ldots, f_n \). Then by [23], 041M, 17.1, the quotient ring \(\mathcal{O} = \mathcal{O}_K \to \psi \) is a regular local ring of dimension 1 and hence a discrete valuation ring. It contains \(\mathcal{O}_k \) since \(\varphi \) maps \(\pi_K \) to a non-zero non-unit in \(B \) and is finite over \(\mathcal{O}_K \). Hence it is a cdvr. Since \(n > 0 \), the map \(\varphi \) factors through \(\mathcal{O} \). Thus we see the diagram \(\square \) commutes with \(\mathcal{O} \) in place of \(\mathcal{O}_K \). Since \(\psi \) is flat over \(\mathcal{O} \), the induced homomorphism \(\psi \) is bijective.

To make the fraction field \(L \) of \(\mathcal{O} \) separable over \(K \), we “deform” \(\mathcal{O} \) if necessary. Let \(L_0 \) be the separable closure of \(K \) in \(L \). Then \(L/L_0 \) is purely inseparable and we can find a series of extensions \(L_0 \subset L_1 \subset \cdots \subset L_n = L \) such that

\[
L_{i+1} = L_i(\alpha_i^{1/p}) \quad \text{with some} \quad \alpha_i \in L_i^X \setminus \langle L_i^X \rangle^p.
\]

For each \(i \), the ramification index \(e_{i+1} \) of \(L_{i+1}/L_i \) is either \(p \) or 1. If \(e_{i+1} = p \), then we can take \(\alpha_i \) to be a prime element of \(\mathcal{O}_i := \mathcal{O}_L \). If \(e_{i+1} = 1 \), then \(L_{i+1}/L_i \) has inseparable residual extension of degree \(p \) and hence we can take \(\alpha_i \) to be a unit of \(\mathcal{O}_i \) whose image in the residue field is not a \(p \)-th power. In either case, \(\mathcal{O}_{i+1} \) is then generated by \(\alpha_i^{1/p} \) as an \(\mathcal{O}_i \)-algebra and hence we have

\[
\mathcal{O}_{i+1} \cong \mathcal{O}_i[Y]/(Y^p - \alpha_i).
\]

To deform the \(\mathcal{O}_i \)'s inductively, we adapt the following Recipe: In general, if \(M \) is a finite extension of \(K \) and \(\alpha \in \mathcal{O}_M \) has the same property as \(\alpha_i \) above (i.e. prime or unit which is residually non-\(p \)-th power), then for any non-zero \(\beta \in \mathcal{m}_K^2 \mathcal{O}_M \), the polynomial \(Y^p + \beta Y - \alpha \in \mathcal{O}_M[Y] \) is separable and irreducible over \(M \). In fact, it is Eisenstein if \(\alpha \) is a prime element, and otherwise it gives rise to an inseparable extension of degree \(p \) of the residue field. Hence \(\mathcal{O}_{\alpha, \beta} := \mathcal{O}_M[Y]/(Y^p + \beta Y - \alpha) \) is a complete
Errata: “Extensions of truncated discrete valuation rings” 173

discrete valuation ring whose fraction field is separable over M. Note also that the \mathcal{O}_M-algebras $\mathcal{O}_{\alpha,\beta} \otimes_{\mathcal{O}_K} \mathcal{A}$ are canonically isomorphic for all $\alpha \in \mathcal{O}_M$ in a fixed class mod $m_K^2 \mathcal{O}_M$ and all $\beta \in m_K^2 \mathcal{O}_M$.

Now choose any non-zero $\beta \in m_K^2 \mathcal{O}_0$. Set $\mathcal{O}_0' := \mathcal{O}_0$. For $i \geq 0$, suppose that we have a finite extension of complete discrete valuation rings $\mathcal{O}'_i/\mathcal{O}_0'$ such that Frac(\mathcal{O}'_i)/K is separable, and also an isomorphism of \mathcal{O}_K-algebras $\mathcal{O}'_i \otimes_{\mathcal{O}_K} \mathcal{A} \simeq \mathcal{O}_i \otimes_{\mathcal{O}_K} \mathcal{A}$. Choose $\alpha'_i \in \mathcal{O}'_i$ such that the images of α'_i and α_i in these rings correspond via this isomorphism. Note that α'_i is a prime element (resp. unit which is residually non-p-th power) if α_i is so. Then the ring

$$\mathcal{O}'_{i+1} := \mathcal{O}_i'[Y]/(Y^p + \beta Y - \alpha'_i).$$

is a finite extension of complete discrete valuation rings over \mathcal{O}'_i, the extension Frac(\mathcal{O}'_{i+1})/K is separable and we also have an isomorphism of \mathcal{O}_K-algebras $\mathcal{O}'_{i+1} \otimes_{\mathcal{O}_K} \mathcal{A} \simeq \mathcal{O}_{i+1} \otimes_{\mathcal{O}_K} \mathcal{A}$. Repeating this, we obtain a desired lift of B whose fraction field is separable over K. □

2. The theorem numbers of this section are those of [II]. The purpose of [II] was to show that, for a truncated discrete valuation ring \mathcal{A} of length $\geq m$, the category $\mathcal{FFP}^{<m}_\mathcal{A}$ of finite flat principal \mathcal{A}-algebras with “ramification bounded by m” can be constructed with no reference to a particular lift of \mathcal{A} to a complete discrete valuation ring (in particular, it is independent of such a lift). After [II] was posted in the arXiv, however, Takeshi Saito found that there was a counterexample to Proposition 3.7 and that there was a serious error in the proof of Lemma 3.10, which was used in the proof of Proposition 3.7.

The counterexample is as follows: Let $S = k[[X,Y]]$, where k is an algebraically closed field of characteristic $\neq 2$, and let p be the height 1 prime ideal $(Y^2 - X)$ of S. Then S is normal, integral and p-adically complete. Let $\mathcal{B} := S[Z]/(Z^2 - X)$, which is p-adically complete and flat over S. The residue field $\kappa(p)$ of p can be identified with the power series field $k((Y))$, and we have $\mathcal{B} \otimes_S \kappa(p) \simeq \kappa(p) \times \kappa(p)$ (so that $\pi_0(\mathcal{B} \otimes_S \kappa(p))$ consists of two points). On the other hand, the fraction field C of S is $k((X,Y))$ and $\mathcal{B} \otimes_S C = k((Y,Z))$ (so that $\pi_0(\mathcal{B} \otimes_S C)$ consists of one point).

The error in the proof of Lemma 3.10 is that, in applying the Henselian property, we did not (and in fact cannot) check that $s^k g(x/s)$ and $s^k h(x/s)$ are coprime modulo I.

*In [I], we used the notation $\mathcal{FFP}^{\leq m}_\mathcal{A}$ to denote this category. It was pointed out by M. Yoshida that the strict inequality “$< m$” was more suitable in view of the meaning of the category, and we adopted the notation $\mathcal{FFP}^{\leq m}_\mathcal{A}$ in [II] and [R].
Thus the main “results” of [II], as well as Corollary 1.2 of [R], remain to be a “conjecture”, while Theorem 1.1 of [R] is correct as long as the category $\mathcal{FFP}_A^{<m}$ is defined by using a lift $\mathcal{O}_K \to A$ (Note that Corollary 1.2 follows from Theorem 1.1 only if the category $\mathcal{FFP}_A^{<m}$ is independent of the choice of such a lift.)

A large part of the “conjecture” (in the case where A is of p-torsion) has been proved by Hattori [H] by using the theory of perfectoid spaces.

References

Toshiro Hiranouchi
Department of Mathematics,
Graduate School of Science,
Hiroshima University,
1-3-1 Kagamiyama, Higashi-Hiroshima,
739-8526, Japan
E-mail: hira@hiroshima-u.ac.jp

Yuichiro Taguchi
Faculty of Mathematics, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
E-mail: taguchi@math.kyushu-u.ac.jp