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From algebraic geometry to machine learning
Michael R. Douglas

Abstract: David Mumford made groundbreaking contributions in
many fields, including the pure mathematics of algebraic geometry
and the applied mathematics of machine learning and artificial
intelligence. His work in both fields influenced my career at several
key moments.

David Mumford had a significant influence on my career. While many math-
ematicians and mathematical scientists can say that, in my case it requires
explanation, as I have only met him once, and briefly at that. I believe I have
never referenced his work before now, nor was that an evident omission; his
influence on me was less through specific results and more through the clarity
and impeccable taste of his work. Indeed, when I was invited to contribute to
this special issue, my first thought was, how did the organizers know about
this? Eventually I asked them, but let me save their reply for the end.

Let me begin with the story of the first and so far only time I met David
Mumford. It was the spring of 1983, and I was a senior at Harvard, about to
graduate with a physics degree. I was deciding between Caltech and Princeton
for graduate school, and had just returned from a visit to Caltech. Although I
was fascinated by fundamental physics and its connections with mathematics,
I was equally fascinated by computer science, cognitive science and especially
artificial intelligence. And that year I was mostly taking classes related to the
latter direction, on topics such as analytic philosophy and the psychology of
memory, while reading everything I could find about AI.

During my visit to Caltech I attended a great class. Richard Feynman,
John Hopfield and Carver Mead had gotten together to teach a course on
the physics of computation. This course, and the three courses that the three
professors taught individually the next year, was arguably one of the seminal
events in the history of computer science. Feynman gave the first series of
lectures on his new concept of a quantum computer. Mead introduced a new
approach to integrated circuit design which combined digital and analog con-
cepts, an approach often referred to now as neuromorphic computing. And
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Hopfield gave the first series of lectures on his new model of a neural network,
based on ideas from the theory of spin glasses.

Now at that moment, the future of fundamental physics was not looking
so bright. The proton-antiproton collider at Cern was running, but after the
discovery of the W and Z bosons there was no clear evidence for the Higgs
boson or for any other particles beyond the Standard Model (having found
the Higgs boson in 2012, we are back in this situation, by the way). The
remarkable discoveries that would reshape cosmology such as dark energy
and the detailed measurement of the cosmic microwave background were still
far in the future. On the theoretical side, the burst of progress on Yang-
Mills theory that had fueled the development of the Standard Model had
largely stalled, as none of the approaches to nonperturbative calculations had
yet borne fruit. Supersymmetry was considered a wild speculation, while few
people had even heard of superstring theory. While I did not know much of
this at the time, I was well advised and soon decided that I would start my
graduate studies in the interface between physics and computation, leaving
open the possibility of going into fundamental physics should the prospects
look brighter.

So, I came back from Caltech with papers and notes from this fascinating
class, including Hopfield’s original preprint on his model [26]. And for some
reason I don’t quite remember but which I think was administrative, I had to
visit the math department offices on an upper floor of the Science Center. As
I sat waiting for a signature on a form, I was reading Hopfield’s paper, when
I was interrupted by a distinguished looking professor asking me what I was
reading. When I told him, he asked if he could copy the paper, and I gave it
to him. He told me his name, David Mumford, and I thought little more of
it.

At Caltech the next fall, I took Feynman’s and Hopfield’s courses, and
prepared to work on neural networks. I even wrote a paper for Feynman’s
class on quantum computing, though I was not farsighted or brave enough to
pursue that further. I also joined Gerry Sussman, one of the early pioneers of
AI who was on a sabbatical visit from MIT, on his project to build a computer
he called the Digital Orrery. This was a special purpose computer designed
to integrate the equations of celestial mechanics governing the Solar System
for periods of up to a billion years, to explore questions of chaos and stability
[1]. With this computer we showed that the orbit of Pluto is chaotic [41],
and I briefly considered switching to astrophysics, but before getting very
far I learned about a discovery which overshadowed celestial mechanics and
even neural networks. This was the anomaly cancellation in ten-dimensional
superstring theory, discovered in the summer of 1984 by Michael Green and
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John Schwarz. John was then a senior research fellow at Caltech and this news
electrified the physics world. Many graduate students in theoretical particle
physics immediately began working on superstring theory, and I was swept
up in the excitement, which turned out to be amply justified.

Back then, one of the central problems of superstring theory was to show
that the perturbative expansion was well defined and finite at all orders. Mak-
ing concrete computations required doing integrals over the moduli space of
Riemann surfaces, while showing the physical consistency of the theory re-
quired demonstrating factorization. This meant looking at every possible limit
in moduli space, appealing to mathematical results that showed that every
singular limit corresponded to a degeneration in which a surface breaks up
into a pair of lower genus surfaces with punctures, and showing that the singu-
lar behavior of the integral had an interpretation in terms of the propagation
of strings between the pair of surfaces. The most attractive formulation of this
moduli space, which both exhibited its holomorphic structure and made the
limiting behaviors clear, was the Deligne-Mumford compactification. And in
doing concrete calculations, one was soon initiated into the wonders of auto-
morphic functions and especially theta functions. By my last year at Caltech
I had my own copies of Mumford’s Tata lectures [34], and their combination
of very explicit calculations placed in the service of a clear general picture
was appealing to me.

I moved to Chicago in the fall of 1988, mainly to work with Dan Friedan
and Steve Shenker. I was inspired by their bold proposal [24] to make an
all-orders definition of string theory which could be reinterpreted as a non-
perturbative definition. We discussed approaches to doing this, and it was
here that I drew on the lessons that I learned from the Tata lectures as well
as Mumford’s lectures on curves [32]. The most important lesson was the
great difficulty of working with an explicit definition of the moduli space
for genus three and greater. This got us interested in alternate definitions of
string theory which did not need such a definition. Soon we were looking at
simplifications of the string theory problem, especially Polyakov’s noncriti-
cal string and the work on discrete two-dimensional quantum gravity and its
connection to matrix models developed by Migdal with his students Kazakov
and Kostov.

Our search for a solvable nonperturbative string theory led us to formulate
and solve the double scaling limit of matrix models [11]. Its main relevance
for my story here was that through its reformulation in terms of the KdV
hierarchy [12], it led to Witten’s conjecture [44] governing the intersection
cohomology of moduli space, a question which had been formulated by Mum-
ford in [33]. As I slowly absorbed this development, I realized that I would
do well to study Mumford’s work more deeply.
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Despite all the excitement and progress in string theory, I retained my
fascination with cognitive science and AI. This was not an easy interest to keep
up, especially since there was zero overlap between it and superstring theory.
But there was a growing overlap between computer science and statistical
physics, which I learned about during visits to the École Normale and to
MIT in 1990.

When I returned, I heard that Mumford had changed fields, from algebraic
geometry to statistics and machine learning. By this time I had come to think
of him as a lodestone, a trustworthy guide to mathematics which could be
used to solve real problems and at the same time was of the highest conceptual
significance. So I was excited to see how such a mathematician would treat
these topics. I recall reading [35], which I found stimulating but which, a bit
to my surprise, contained no equations. I was not ready to go that far, and
instead studied phase transitions in combinatorial optimization, a topic which
had been greatly advanced by Giorgio Parisi and Marc Mézard’s group at the
École Normale, and in which physics techniques have been very powerful. [31]

My interest in AI was again interrupted by revolutionary progress in su-
perstring theory, in this case the Seiberg-Witten solution for N = 2 super-
symmetric Yang-Mills theory. Rutgers and Princeton instantly became the
center of what would soon be called the second superstring revolution. Alge-
braic geometry and moduli spaces of Riemann surfaces again became central,
but in a different role, as moduli spaces of vacua for gauge theories and string
theory compactifications. Soon the Tata lectures were back on my desk, and
we were again looking at all possible singular limits in moduli spaces, though
now the physical interpretation was very different. Let me cite [2] as one of
many examples – here the degeneration limit of a genus two Riemann surface
to a pair of elliptic curves had the physical interpretation of an N = 2 su-
perconformal field theory, a novel and still somewhat mysterious beast. But,
important as this story is, let us skip ahead to the discovery of the Dirichlet
brane or D-brane.

Joe Polchinski’s paper [38] appeared in 1995, and suddenly many of our
questions about superstring duality and M theory had clear answers. One
of the first new observations was that, since the first step in defining a D-
brane was to promote the fields parameterizing its position to matrices, one
expected noncommutative geometry to be relevant. I was very struck by this
[14] and it was a major influence leading me to spend the fall of 1997 at the
IHES. While the immediate product of my visit was a well known joint work
with Alain Connes and Albert Schwarz [9], I also had many conversations
with Maxim Kontsevich whose somewhat different conception of noncommu-
tative geometry was totally unknown in the string theory community. On my
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return I continued studying the geometry of D-branes, following the physics
progression of dealing successively with systems with less and less supersym-
metry. By 2000 we were focusing on the case of N = 1 supersymmetry in four
dimensions.

Good mathematical references on supersymmetry include [23] and the
book [10], which tells the story I am about to summarize. But let me give a
brief taste of the physics here. For many reasons, work on “beyond the Stan-
dard Model physics” has largely started from the hypothesis that at distances
much shorter than what we can now probe at accelerators (about 10−18 cm),
but much longer than the Planck length at which our concepts of space-time
must change (about 10−33 cm), physics is described by a quantum field the-
ory with N = 1 supersymmetry (or simply “N = 1 field theory”). Such a
theory corresponds to the following mathematical data ([10] §5.4): a Kähler
manifold M with a holomorphic symplectic action of a group G, and an in-
variant holomorphic function1 W on M called the superpotential. Its moduli
space (of vacua) is then the space of solutions of ∇W = 0 in the symplectic
quotient M//G. The restriction to solutions and the quotient commute, and
in the physics literature are referred to as “solving the F and D-term condi-
tions” respectively. These connections between physics and mathematics were
established in the ’80s [25] and so the relations between symplectic quotient
and GIT quotient and to Mumford’s work were very well known to us.

Now, the theory of compactification of superstring theory on a Calabi-
Yau manifold M (summarized in [22]), tells us that the moduli space of the
structures postulated in compactification – Ricci flat metrics and hermitian
Yang-Mills (HYM) connections on M , Dirichlet branes on M (more about
this shortly), and other structures – must be the moduli space of an N = 1
field theory. And one can make many formal connections between math and
physics at this level. For example, the Donaldson-Uhlenbeck-Yau theorem,
that a bundle V on M admits an irreducible HYM connection if and only if
it is μ-stable, can be related in physics terms to D-flatness conditions which
depend on the Kähler class of M . [40]

Another entry point into the mathematics was the theory of quiver rep-
resentations. This entered almost from the start with the relation between
D-branes on orbifolds and the work of Kronheimer and Nakajima [13], and
was a constant theme. In studying quiver theories we learned about the work
of King on θ-stability [27], and with Mumford’s work in mind we hypothe-
sized that stability should be a central part of the discussion. By combining

1In supergravity W is a section of the line bundle whose curvature is the Kähler
form.
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these various ideas my students Bartomeu Fiol, Christian Römelsberger and
I came up with a physics concept combining μ-stability and θ-stability which
we called Π-stability, after the standard notation Π for the basis of central
charges which entered the condition. [15]

At this point Kontsevich’s insights became a very fruitful guide. One
example which I had learned from him at IHES was the interpretation of the
holomorphic Chern-Simons action as a superpotential, and the conjecture
that the obstruction theory of any holomorphic object on a Calabi-Yau (say,
for families of holomorphic curves) would be governed by a superpotential. He
had also pointed out the relevance of derived categories and autoequivalences,
which was taken up by many physicists and mathematicians.

The big question which Kontsevich’s work raised was to understand ho-
mological mirror symmetry in physics terms. Kontsevich’s conjecture [28]
equated two categories, the derived category of coherent sheaves on M or
DCoh(M), and the Fukaya category on its mirror manifold W . By this point
we saw that these were both categories of D-branes, and had many ideas about
what physics could add to the discussion. Still, the heavy formalism of the
derived category was an obstacle. Richard Thomas had written an excellent
introduction [42] and I had many invaluable discussions with him and Paul
Seidel about the topic. One point I took from them was the difficulty of even
defining the Fukaya category, which led me to focus on DCoh(M). But the
other was our shared belief in the importance of stability for the discussion.

I then went and asked many mathematicians how to define stability for
objects in a derived category. The universal answer was that this was not
possible; stability required a concept of subobject which did not exist there.
Rather, one should try to define a t-structure and find an abelian subcategory.
While sensible enough, the physics did not suggest any way to do this. Thus I
went a different way, based closely on the physics. While we could not derive
much from the general definition of D-branes, what was physically guaranteed
to exist was an assignment of “central charge” (a complex character on the
K theory) and “grading” (a lifting of its phase to R) for each stable object
in the derived category, and a process of “binding/decay” by which each
distinguished triangle in the derived category could lead to a wall-crossing
and change of stability when three central charges align in the complex plane.
These ideas led to my proposal for Π-stability in the derived category [16], a
work with Paul Aspinwall exploring the proposal physically [3], and eventually
my 2002 ICM lecture [17] which brought it to the attention of mathematicians,
particularly Tom Bridgeland who went on to turn it into rigorous mathematics
[7].
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As I was accomplishing my goal of turning these problems over to the
mathematicians, I started to get back into AI. In addition to catching up
with the “good old-fashioned AI” school I had studied with Gerry Sussman,
and catching up with the physics of combinatorial optimization, I was find-
ing that many of the pioneers of neural networks in the ’90s were drawing
increasingly on the theory of statistical inference [30]. And at the 2002 ICM
I heard David Mumford himself expound on the subject [36]. This talk may
have been my first exposure to generative models, which in our current age
of data science have become extremely popular, but were almost unknown
to theoretical physicists at the time (a notable exception was Vijay Balasub-
ramanian [4]). Not long after, Lee and Mumford developed the hypothesis
that the architecture of the cerebral cortex, with its multiple feedforward and
feedback connections, was implementing a type of Bayesian statistical anal-
ysis [29]. This was also ahead of its time, and now it is one of the hot topics
in cognitive science [8].

Although fascinating, there was a major obstacle to my working on AI:
it still had almost no overlap with string theory and my whole field of “for-
mal physics.” And I was not in a position to follow Mumford’s example, to
retire from string theory and devote myself to a second career. For one thing,
I was now the director of the New High Energy Theory Center at Rutgers,
working to rebuild and maintain the group after the departure of two of its
most prominent members. But more importantly, we all looked forward to a
new golden age of particle physics when the Large Hadron Collider turned
on, scheduled for 2008. Either we would discover supersymmetry, or possibly
something unexpected and even more exciting. It was not at all the time to
leave the field; rather it was time to prepare for contact between string theory
and new data.

With these various motivations, I looked for a way to try to make predic-
tions from string theory for the LHC and other upcoming experiments, and
to turn the problem into one of statistics, leading to [18]. Despite the way I
came to it, to give a simple explanation of this I should start from neither
string theory nor AI. Rather, there was already a field of “quantum cosmol-
ogy,” in which the researchers extrapolated from better established concepts
such as inflation and the theory of phase transitions, to develop a framework
to describe not just the Big Bang, but whatever came before. This is par-
ticularly interesting in a theory with many solutions, as one of the jobs of
cosmology is to try to explain which of the solutions are the preferred candi-
dates to describe our universe. This is usually phrased as the computation of
the “measure factor,” an a priori probability distribution over the solutions
of the theory.
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Now quantum cosmology had started well before string compactification
and there were no strong internal reasons to believe that the theory of quan-
tum gravity should have many solutions, but there was an (in)famous argu-
ment which required it to have many solutions, the anthropic solution to the
cosmological constant problem. As explained in [43] (an update and list of
references is in [39]), in a theory of quantum gravity, the cosmological con-
stant (the energy of empty space-time) gets contributions from the quantum
fluctuations of all of the fields in the theory, which are far larger in magni-
tude than the very small observed value. There are strong arguments that
no physical mechanism can solve this problem directly, but it is also the case
that if the universe had such a large cosmological constant, it would either
expand or contract so rapidly that there would not be enough time for life to
evolve to observe it. Thus if we could argue that there were many solutions
of quantum gravity with different values of the cosmological constant, then
as long as there are any solutions which are compatible with our existence,
we could argue that the fact that we observe such a solution requires no more
explanation – it is a selection effect. This is a particular case of the anthropic
principle by which one can go on to explain many other constraints on the
observed laws of physics, as required to get the nontrivial physics required
for life. In this generality the principle is heartily disliked by physicists, who
would much rather derive the laws of physics from more fundamental princi-
ples. Still, it is philosophically sound – and given the strong arguments that
there is no other solution to a central problem, the cosmological constant
problem, one can find it compelling.

These general ideas had been around since the late ’80s, but what brought
them to the fore was the discovery in the 90’s that the expansion of the uni-
verse, discovered by Hubble in the ’20s, was accelerating, in a way that could
be simply fit by postulating a small non-zero cosmological constant. Before
that, physicists had not given up on the idea that some unknown mecha-
nism was setting the cosmological constant to zero. However, the idea of a
mechanism that sets it to a small non-zero constant value seemed even less
plausible than the anthropic argument. Then in 2000, Bousso and Polchin-
ski argued that string theory had the multiplicity of solutions required by
the argument. [6] Their original arguments were somewhat heuristic (even
by physics standards), but combined with the established fact that none of
the other ingredients in string compactification were unique (there are many
Calabi-Yau manifolds, many holomorphic vector bundles on each, etc.) they
convinced me that one could not find the “correct” solution of string theory
a priori; rather one needed to consider the ensemble of solutions and treat the
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problem of finding the relevant ones and their likely predictions as a problem
in statistical inference.

Without going into details, a major part of this problem is to enumerate
solutions to ∇W = 0 as introduced earlier, and a reasonable approach (well
motivated by the Bousso-Polchinski work) was to consider an appropriate
random ensemble of superpotentials W , for example the period of a randomly
drawn homology three-cycle, and find the statistics of the critical points.
With this in mind I had started scouting out the mathematical literature,
and sometime in 2002 I ran into [5], which studied zeroes of random sections
of a line bundle, very similar to my problem. I was delighted to learn that
Steve Zelditch would be at ICM 2002, and that is where our collaboration
(with Bernie Shiffman as well) began, leading to [19] and many subsequent
works.

These ideas were exciting and successful enough to more or less supplant
my original motivation of learning statistics to work on AI, at least as long
as the prospect of new LHC physics was in sight. However, in a story I have
told elsewhere [21], following them up led to serious criticisms of the widely
accepted arguments that supersymmetry would be discovered at LHC – not
that one could prove it would not, but I came to believe that string theory
did not inevitably predict supersymmetry at LHC [20], and that one should
give equal weight to the possibility that it would not be discovered. Thus, as
data started coming in and superpartners were not found, I concluded in 2011
that this would be the likely outcome. I should stress that we do not know the
final outcome yet – the LHC has many more years to run, and more discovery
potential – but the original predictions from “natural supersymmetry” have
been falsified, and (at least in my opinion [21]) the arguments that replace
them suggest that supersymmetry should be discovered at energies between
30 and 100 TeV. Such experiments are possible, but the larger accelerators
they require would not come online until 2040 at the earliest.

Following a combination of these intellectual motivations and personal
reasons, in 2012 I left physics to pursue my interest in statistical inference
in a very different way, by joining Renaissance Technologies, one of the first
and most successful quantitative hedge funds. Even this step did not take
me away from the beneficial influence of David Mumford, and I found his
textbook with Desolneux [37] very helpful as I came to terms with the vast
practitioner’s literature on machine learning and finance. But it does take me
beyond the scope of this homage.

Finally, I promised to say why the editors asked me to contribute, so
I asked them. The answer was that they felt that stability conditions are
an example of where ideas from string theory have come to influence most
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profoundly the areas of math that Mumford cared about and worked on, and
they wanted a contribution in the original spirit of the math physics. So I’m
delighted to have carried on his interests in this way, and for this chance to
thank him for his broader contributions as well.
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