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Singular Lie filtrations and weightings
Yiannis Loizides and Eckhard Meinrenken

Abstract: We study weightings (a.k.a. quasi-homogeneous struc-
tures) arising from manifolds with singular Lie filtrations. This
generalizes constructions of Choi-Ponge, Van Erp-Yuncken, and
Haj-Higson for (regular) Lie filtrations.

1. Introduction

A Lie filtration on a manifold M is a Z-filtration of the tangent bundle TM
by subbundles

(1) TM = H−r ⊇ · · · ⊇ H−1 ⊇ 0,

in such a way that that the induced filtration on the Lie algebra of vector
fields X(M) is compatible with brackets. The concept of such filtered mani-
folds (called Carnot manifolds in [10]) was introduced by T. Morimoto [28]
as a generalization of the differential systems of Tanaka [31]; independently,
the concept was considered by Melin [23]. Filtered manifolds have been much
studied in recent years as a framework for certain types of hypo-elliptic oper-
ators. Roughly, these operators are elliptic in a weighted sense, where weights
are assigned according to the Lie filtration. Unlike the usual elliptic setting,
the principal symbols of these operators do not live on the usual tangent bun-
dle, but on the osculating groupoid [34] (also called tangent cone [10]). The
latter is a family of nilpotent Lie groups P → M , obtained by integrating the
family of Lie algebras

p = gr(TM) =
⊕
i

H−i/H−i+1.

An index theorem for this context was recently obtained by Mohsen [25],
generalizing Van Erp’s index theorem for contact manifolds [32, 33]. The
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proofs are based on Connes’ tangent groupoid strategy [11]. The relevant
deformation groupoid was constructed by Choi-Ponge [10], Haj-Higson [19],
Van Erp-Yuncken [34], and Mohsen [26], using different techniques. Later
work of Van Erp-Yuncken [35], building on ideas of Debord-Skandalis [14],
used this viewpoint to develop a pseudo-differential calculus for this context.

Haj-Higson [19] extended the construction of osculating groupoid to define
a normal cone, and corresponding deformation space, for filtered submanifolds
N ⊆ M of filtered manifolds. This was obtained by using a filtration on the
algebra of functions on M by a weighted order of vanishing, as determined by
the Lie filtration. The normal cone is described algebraically as the character
spectrum of the associated graded algebra, and the deformation space is the
character spectrum of the Rees algebra associated to the filtration. Haj-Higson
proved that the normal cone is a quotient P |N/R, where P and R are the
osculating groupoids of M and N , respectively.

In [21], we found that the construction of the normal cone and the as-
sociated deformation space only requires a much weaker notion of weighting
along N . This concept was introduced by Melrose under the name of quasi-
homogeneous structure, in his lecture notes on manifolds with corners [24].
One possible description of weightings is in terms of a filtration on the al-
gebra of functions, and allows for a definition of weighted normal bundle in
terms of the associated graded algebra

(2) νW(M,N) = Homalg(gr(C∞(M)),R)

just as in [19]. Equivalently, r-th order weightings admit a description in terms
of certain subbundles Q → N of the r-th tangent bundle TrM → M . From
this perspective, the weighted normal bundle is realized as a quotient

(3) νW(M,N) = Q/ ∼

generalizing the familiar description of the usual normal bundle as ν(M,N) =
TM |N/ ∼.

Weighted normal bundles (and the associated deformation spaces) are
tailor-made for discussions of weighted normal forms of geometric structures,
such as those arising in singularity theory (see e.g. Golubitsky-Guillemin [15]).
Weightings also allow for a coordinate-free definition of weighted blow-ups,
which play an important role in algebraic and symplectic geometry (see e.g.,
the result of Guillemin-Sternberg [18] on birational equivalence). Given a
collection N1, . . . , Nj of submanifolds of M that intersect cleanly (in the sense
that there are local charts in which the Ni are given by coordinate subspaces),
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one obtains a multi-weighting given by the order of vanishing on the Ni, and
an associated total weighting. This type of situation appears, for example, in
orbit type decompositions of G-manifolds and their resolutions (see Albin-
Melrose [2]).

In the present article, we shall study weightings in the context of singular
Lie filtrations, given by a filtration of the sheaf of vector fields,

(4) XM = H−r ⊇ · · · ⊇ H−1 ⊇ 0

by locally finitely generated C∞
M -submodules, with [H−i,H−j ] ⊆ H−i−j . Sin-

gular Lie filtrations appear in a large variety of contexts. They arise as Carnot
structures in sub-Riemannian geometry [1, 7], and play a central role (under
the name of filtered foliations) in recent work of Androulidakis, Mohsen, and
Yuncken [4] on hypo-elliptic operators, encompassing a broader class than
those associated with regular Lie filtrations.

In Section 3.1, we introduce the notion of a H•-clean submanifold N ⊆ M ,
which essentially means that sections of the normal bundle ν(M,N) given as
images of H−i are in fact subbundles. One of our main results is the following
(see Theorem 4.1):

Theorem. Let M be a manifold with a singular Lie filtration H•, and let
N ⊆ M be an H•-clean submanifold. Then M acquires a canonical weighting
along N , in such a way that the vector fields in H−i have filtration degree −i.

The proof of this result amounts to a construction of local coordinates
adapted to the singular Lie filtration. To describe the subbundle Q ⊆ TrM
corresponding to the weighting, we observe that a singular Lie filtration of M
determines a singular foliation of TrM . We then show that Q is obtained as
the ‘flow-out’ of TrN ⊆ TrM under this singular foliation; here the cleanness
assumption guarantees that this flow-out is smooth.

This gives a first description of the weighted normal bundle as a quo-
tient (3). We will also give a more direct description, by associating to each
m ∈ M a nilpotent Lie algebra pm given as a pullback of the sheaf of Lie al-
gebras

⊕H−i/H−i+1. If m ∈ N , we define rm similarly, by using vector fields
in H−i that are tangent to N . Letting Pm ⊇ Rm be the corresponding groups,
we show that the fibers of the weighted normal bundle are the homogeneous
spaces Pm/Rm. For the case of a regular Lie filtration, this recovers the result
of Haj-Higson mentioned above.
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2. Weightings

The basic idea of a weighting is to have a notion of ‘weighted order of van-
ishing’ along submanifolds N ⊆ M . This appeared in work of Melrose [24]
under the name of quasi-homogeneous structure. Some foundational aspects
of weightings, such as the concepts of weighted normal bundles and weighted
deformation spaces, were developed in [21]. Let us briefly summarize some of
this material, starting with the definitions. We adopt a sheaf-theoretic lan-
guage, so that all constructions carry over to the holomorphic or analytic
categories with straightforward changes.

2.1. Definitions

Let w1, . . . , wn ∈ Z≥0 be a given sequence of weights. An upper bound for the
weight sequence will be call its order.

For open subsets U ⊆ R
n, consider the filtration of the algebra C∞(U)

of smooth functions, where C∞(U)(i) is the ideal of functions generated by
monomials xs = xs11 · · · xsnn with s · w = s1w1 + · · · + snwn ≥ i. A weighted
atlas on an n-dimensional manifold M is given by coordinate charts such
that the transition functions between two charts are filtration preserving; a
maximal weighted atlas is a weighting on M . The local coordinates from a
weighted atlas are called weighted coordinates. The weighting determines a
closed submanifold

N ⊆ M,

given in local weighted coordinates as the vanishing set of the coordinates xa
such that wa > 0. In particular, the weighted coordinates are submanifold
coordinates for N . The weighting gives a filtration of the function sheaf by
ideals

C∞
M = C∞

M,(0) ⊇ C∞
M,(1) ⊇ · · ·

where C∞(U)(i) has the description above whenever U ⊆ M is the domain
of a weighted coordinate chart. The definition implies that the filtration on
functions is multiplicative:

C∞
M,(i)C

∞
M,(j) ⊆ C∞

M,(i+j)

and that C∞
M,(1) is the vanishing ideal sheaf I of N . We think of the filtration

as giving the weighted order of vanishing along N , and we speak of a weighting
along N . Furthermore, we obtain a filtration of the normal bundle

(5) ν(M,N) = F−r ⊇ · · · ⊇ F−1 ⊇ F0 = 0
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where for all i ≥ 1,

(6) C∞
M,(i+1)/C

∞
M,(i+1) ∩ I2 = Γann(F−i)

where ann(F−i) ⊆ ν(M,N)∗ is the annihilator bundle. That is, the differen-
tials of functions of filtration degree i+1 vanish in the direction of F−i. Note
that dimF−i = #{wa : wa ≤ i}.

Conversely, weightings of order r along N are characterized as multiplica-
tive filtrations of C∞

M with C∞
M,(1) = I, with the property (6) for a suitable

filtration (5) of the normal bundle, and with the additional property that for
i > 1,

(7) C∞
M,(i) ∩ I2 =

∑
j<i

C∞
M,(j) · C∞

M,(i−j).

The filtration on the sheaf of functions determines a filtration on the sheaves
of differential forms, vector fields, and other tensor fields. In particular,

(8) XM = XM,(−r) ⊇ XM,(−r+1) ⊇ · · · ⊇ XM,(0) ⊇ · · ·

where XM,(j) is the sheaf of vector fields X with the property that the Lie
derivative on functions raises the filtration degree on functions by j. The sec-
tions of XM,(0) are the infinitesimal automorphisms of the weighting. Letting
XN

M be the subsheaf of vector fields tangent to N , with its induced filtration,
we have that

XM,(j)/X
N
M,(j) = ΓFj .

(For j ≥ 0 we have XM,(j) = XN
M,(j), since infinitesimal automorphisms of the

weighting are in particular tangent to N .)
Remark 2.1. One can generalize the definition to non-closed or immersed
submanifolds i : N → M by applying the definition above to pairs of open
subsets (U, V ) ⊆ (M,N) where i(V ) is a closed embedded submanifold of U ,
and requiring agreement between the local weightings on overlaps. Globally
one obtains a filtration of the pullback sheaf i−1C∞

M .

2.2. The weighted normal bundle

For any closed submanifold N ⊆ M , with vanishing ideal I ⊆ C∞
M , the sheaf⊕

i Ii/Ii+1 may be regarded as the sheaf of fiberwise polynomial functions
on the normal bundle ν(M,N) = TM |N/TN . Such functions are the (local)
sections of a graded algebra bundle A → N , and the normal bundle is obtained
by taking its fiberwise spectrum, ν(M,N)|m = Homalg(Am,R).
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2.2.1. Definition of weighted normal bundle This algebraic descrip-
tion of the normal bundle generalizes to the weighted case. Given a weighting
of M along N , the sheaf of associated graded algebras gr(C∞

M ) is supported
on N , and is the sheaf of sections of a graded algebra bundle A → N , with
components Ai → N of finite rank. In weighted coordinates over U ⊆ M , the
space of sections of Ai|N∩U is spanned by monomials xs such that s · w = i,
with sb = 0 for wb = 0. We define a weighted normal bundle

νW(M,N) → N

by taking the fiberwise spectrum: νW(M,N)|m = Homalg(Am,R). This is
naturally a smooth fiber bundle of rank equal to the codimension of N in
M ; the smooth structure on νW(M,N) is uniquely determined by the prop-
erty that for any given element of gr(C∞(U)), the corresponding function on
νW(M,N)|N∩U is again smooth.

2.2.2. Graded bundles The weighted normal bundle does not have a nat-
ural vector bundle structure, in general. It does, however, carry an action of
the monoid of multiplicative scalars,

(9) κ : R× νW (M,N) → νW(M,N), κ(t, x) = κt(x).

This is induced fiberwise by the action of t ∈ R on Ai|m as multiplication by ti.
Grabowski-Rotkiewicz [16, 17] refer to a smooth manifold E with a monoid
action κ : R × E → E as a graded bundle. As the name suggests, a graded
bundle is automatically a fiber bundle over N = κ0(M). Negatively graded
vector bundles V =

⊕
i>0 V

−i → N are special cases, where κt is given on
V −i as multiplication by ti. (The reason for using a negative grading is that
we want the dual space, consisting of linear functions on V , to be positively
graded.) Other basic examples include the higher tangent bundles TrM → M

to be discussed in Section 5.1. The linear approximation of a graded bundle
is defined by application of the (usual) normal bundle functor,

Elin = ν(E,N).

It has the structure of a graded vector bundle over N , with the grading
obtained by applying the normal bundle functor to κ. As shown in [16, 17],
there always exists an isomorphism of graded bundles E ∼= Elin, but such
an isomorphism (called a linearization) is not unique. In the case of E =
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νW(M,N), for a given weighting of M along N , the linear approximation is
[21, Proposition 4.4]

νW(M,N)lin = gr(ν(M,N)),

the associated graded bundle for the filtration (5).

2.2.3. Homogeneous approximations For f ∈ C∞(U)(i) let

f [i] ∈ gri(C∞(U))

be its image. By definition of the weighted normal bundle, it may (and will)
be regarded as a function f [i] ∈ C∞(νW (M,N)|N∩U ). This function is ho-
mogeneous of degree i with respect to the (R, ·)-action, and is called the
homogeneous approximation of f . For i = 0, f [0] is the pullback of the re-
striction of f |N∩U . More generally, any tensor field α of filtration degree i on
U determines a tensor field α[i], homogeneous of degree i, on νW(M,N). In
particular, this applies to vector fields and differential forms; note also that
homogeneous approximation is compatible with the usual operations from
Cartan’s calculus.

If X is a vector field of strictly negative filtration degree j < 0, then the
vector field X [j] on νW(M,N) is vertical (tangent to the fibers of νW(M,N) →
N). To see this, it suffices to note that X [j] vanishes on pullbacks of functions,
which in turn follows from X [j]f [0] = (Xf)[j] = 0 for j < 0.

If x1, . . . , xn are local weighted coordinates on U ⊆ M (thus xa ∈ C∞(U)
has weight wa), then the functions

x
[w1]
1 , . . . , x[wn]

n

serve as local coordinates on νW(M,N)|U = νW(U,U ∩N); the homogeneous
lifts of the corresponding coordinate vector fields are

( ∂

∂xa
)[−wa] = ∂

∂x
[wa]
a

.

Example 2.2. Consider the case of a symplectic manifold (M,ω) of dimension
2n with an isotropic submanifold N ⊆ M of dimension k. Let I be the
vanishing ideal of N . Let N (I) be the Poisson normalizer of I, i.e., the sheaf
of functions f such that {f, ·} preserves I. The intersection I ∩ N (I) is an
ideal in C∞

M , and we obtain a weighting of order r = 2, with

C∞
M,(1) = I, C∞

M,(2) = I ∩ N (I).
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The resulting filtration of the normal bundle is

ν(M,N) ⊇ TNω/TN ⊇ 0.

By standard normal form theorems, there exists local coordinates

q1, . . . , qn, p1, . . . , pn

near any given point of N such that the vanishing ideal I of N is spanned by
qk+1, . . . , qn, p1, . . . , pn. In such coordinates, the ideal I ∩N (I) is spanned by
I2 together with p1, . . . , pk. The coordinates q1, . . . , qk have weight 0, the dual
coordinates p1, . . . , pk have weight 2, and the remaining coordinates qa, pa for
a > k have weight 1. Note that the symplectic form has filtration degree 2 for
this weighting, as is evident from the coordinate description ω =

∑
dqi ∧dpi.

Hence it has a homogeneous approximation ω[2] ∈ Ω2(νW(M,N)), which is
again symplectic. See [22] for a discussion of Weinstein’s isotropic embedding
theorem from this perspective.

2.2.4. Alternative description of weighted normal bundle The
weighting also determines a negatively graded Lie algebra bundle

k =
r⊕

i=1
k−i

where k−i has gr(XM )−i as its sheaf of sections, using the filtration (8). From
the filtered subsheaf XN

M ⊆ XM of vector fields that are tangent to N , we
obtain a graded Lie subalgebra bundle

l =
r⊕

i=1
l−i,

where l−i has gr(XN
M )−i as its sheaf of sections. The quotient bundle k/l

is identified with gr(ν(M,N)) =
⊕

F−i/F−i+1, using the filtration (5) of
ν(M,N).
Remark 2.3. In [21] we defined l in terms of the subsheaf of vector fields
that vanish along N , rather than those which are tangent to N . To see that
the definitions are equivalent, note that XN

M,(0) = XM,(0) since infinitesimal
automorphisms of the weighting are tangent to N , and that the restriction
map XM,(0) → XN is surjective. This implies that

XN
M,(−i) = XN

M,(0) + IXM ∩ XM,(−i), i ≥ 0,
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and hence gr(XN
M )−i = gr(IXM )−i for all i > 0.

Remark 2.4. In local weighted coordinates xa on U ⊆ M , the space of sections
of k−i|U∩N is spanned by vector fields xs ∂

∂xa
with wa > 0, ranging over multi-

indices with sb = 0 for wb = 0 and with w · s − wa = −i. The subspace of
sections of l−i|U∩N is given by the additional condition that s �= 0; hence the
quotient k−i/l−i is spanned by coordinate vector fields ∂

∂xa
with wa = i. Note

in particular that l−r = 0.
Since the monoid action of (R, ·) on k preserves brackets, it exponentiates

to a monoid action on the nilpotent Lie group bundle K → N integrating k;
thus K is an example of a graded Lie group bundle. Similarly l integrates to
a graded Lie subgroup bundle L ⊆ K. One obtains the following description
of the weighted normal bundle as a graded bundle of homogeneous spaces,

(10) νW(M,N) = K/L, νW(M,N)lin = k/l.

See [21, Proposition 7.7]. For the case of a trivial weighting (r = 1), we directly
have k = ν(M,N) (with zero bracket) and l = 0, hence K/L = K = ν(M,N).

3. Singular Lie filtrations

In this section, we unify the concept of Lie filtrations with the concept of a
singular foliation. These singular Lie filtrations, to be discussed below, appear
in the work of Androulidakis, Mohsen, and Yuncken on hypo-elliptic operators
[3, 4]. As we shall see, they provide a rich source of examples of weightings.

3.1. Singular distributions

A distribution on a manifold M is a subbundle D ⊆ TM of the tangent
bundle. It is called Frobenius integrable if its space of sections is closed under
Lie bracket. In the Stefan-Sussman theory of singular foliations, one considers
more general families of subspaces Dm ⊆ TmM which are not necessarily of
constant rank. Following work of Androulidakis-Skandalis [5], it was found
to be more useful to work with the sheaf XM of vector fields, regarded as
a sheaf of C∞

M -modules. The formulation in [5] is in terms of vector fields
of compact support; the equivalence with the sheaf-theoretic formulation is
discussed in [6].

Definition 3.1. Let M be a manifold.
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a. A singular distribution on M is a sheaf of C∞
M -submodules D ⊆ XM

that is locally finitely generated. That is, every point in M admits an
open neighborhood U such that D(U) is finitely generated as a C∞(U)-
module.

b. A singular foliation on M is a singular distribution D that is involutive:
[D,D] ⊆ D.

c. If D is the sheaf of sections of a subbundle D ⊆ TM , we speak of a
regular distribution. It is called a regular foliation if D is involutive.

The sheaf formulation entails a gluing property: If a vector field X ∈
X(U) is such that every point of U has an open neighborhood U ′ ⊆ U with
X|U ′ ∈ D(U ′), then X ∈ D(U).
Remark 3.2. Given a singular foliation, one obtains a decomposition of M
into leaves, such that D spans the tangent spaces to the leaves. However, the
submodule D contains more information, in general, than the decomposition
into leaves. (For example [5], the vector fields x2 ∂

∂x and x ∂
∂x span different

submodules of XR, but yield the same decomposition into leaves.)
Here are some simple constructions with singular distributions. First, we

note that if M ′,M ′′ are equipped with singular distributions D′,D′′, then the
direct product M ′ ×M ′′ inherits a product distribution D′ ×D′′ ⊆ XM ′×M ′′

defined by

(D′ ×D′′)(U ′ × U ′′) = C∞(U ′ × U ′′) · (D′(U ′) ⊕D′′(U ′′)).

If D′,D′′ are involutive then so is their product. Next, consider the restriction
of singular distributions to embedded submanifolds N ⊆ M .

Definition 3.3. Let D ⊆ XM be a singular distribution. We say that N ⊆ M
is

a. D-transverse if TmN + D|m = TmM for all m ∈ N ,
b. D-invariant if D|m ⊆ TmN for all m ∈ N ,
c. D-clean if dim(TmN + D|m) is constant, as a function of m ∈ N .

Clearly, properties (a),(b) are special cases of property (c).
Remark 3.4. If D is a regular distribution, given as the sheaf of sections of
a subbundle D ⊆ TM , the cleanness condition is equivalent to D|N ∩ TN
being a subbundle of TN .

Suppose D ⊆ XM is a singular distribution, and N ⊆ M is D-clean. Then
we obtain a subbundle F̃ ⊆ TM |N with fibers

F̃m = TmN + D|m,
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and a corresponding subbundle of the normal bundle

(11) F = F̃ /TN ⊆ ν(M,N) = TM |N/TN.

The D-transverse and D-invariant cases are the special cases for which F is
the full normal bundle or the zero bundle, respectively. Let DN = D ∩ XN

M

the subsheaf tangent to N , and denote by

i!D ⊆ XN

its image under restriction XN
M → XN . Explicitly, for U ⊆ M open,

(i!D)(U ∩N) = {X|U∩N | X ∈ D(U) is tangent to U ∩N}.

Lemma 3.5. Let M be a manifold with a singular distribution D ⊆ XM . If
i : N → M is D-clean, then i!D ⊆ XN is again a singular distribution on N .
If D is a singular foliation on M , then i!D is a singular foliation on N .

Proof. The clean intersection condition is equivalent to

q = dim(D|m) − dim(TmN ∩ D|m)

being constant as a function of m ∈ N . Hence, we may cover N by open sub-
sets U ⊆ M such that D(U) is generated by X1, . . . , Xp, Y1, . . . , Yq, where
the Yi’s are linearly independent vector fields spanning a complement to
TN |m ∩ D|m in D|m at points m ∈ U ∩ N , while X1, . . . , Xp are tangent
to N . The restrictions of Xi’s to U ∩N are then generators of (i!D)(U ∩N).
The last claim follows since relatedness of vector fields with respect to smooth
maps is compatible with Lie brackets.

Restriction to submanifolds can be iterated: suppose N ′ ⊆ N ⊆ M are
nested submanifolds, with inclusions denoted

i : N → M, j : N ′ → N, i′ = i ◦ j : N ′ → M.

Lemma 3.6. If D is a singular distribution, and i is D-clean, then j is i!D-
clean if and only if i′ is D-clean, and in this case

(12) j!i!D = (i′)!D.
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Proof. Suppose i is D-clean, so that dim(D|m)−dim(TmN ∩D|m) is constant
as a function of m ∈ N . Then i!D is defined, with (i!D)|m = TmN ∩D|m. For
m ∈ N ′, we have

dim((i!D)|m)−dim(TmN
′∩ (i!D)|m) = dim(TmN ∩D|m)−dim(TmN

′∩D|m),

which is constant as a function of m ∈ N ′ if and only if dim(D|m)−dim(TmN
′∩

D|m) is constant as a function of m ∈ N ′. This proves the first claim, and
(12) is a set-theoretic verification.

We generalize the ‘restriction to submanifolds’ from Lemma 3.5 to a pull-
back operation under more general maps ϕ : M ′ → M , by the usual trick of
replacing the map with its graph

gr(ϕ) = {(ϕ(x), x)| x ∈ M ′} ⊆ M ×M ′.

Identify gr(ϕ) ∼= M ′ under projection to the second factor, and denote the
inclusion map by igr(ϕ) : M ′ ∼= gr(ϕ) → M ×M ′.

Definition 3.7. Let M be a manifold with a singular distribution D ⊆ XM .
We say that ϕ : M ′ → M is D-clean (resp., D-transverse) if the dimension of

ran(Txϕ) + D|ϕ(x), x ∈ M ′

is constant (resp., if ran(Txϕ) + D|ϕ(x) = Tϕ(x)M).

Note that ϕ is D-clean (resp., transverse) if and only if gr(ϕ) is D×XM ′-
clean (resp., transverse). We define

ϕ!D = i!gr(ϕ)(D × XM ′).

Lemma 3.8. If ϕ is an embedding i : N → M of a D-clean submanifold, then
this definition of pullback agrees with the restriction to N , as defined above.

Proof. As in the proof of Lemma 3.5, N may be covered by open subsets
U such that there are generators X1, . . . , Xp, Y1, . . . , Yq ∈ D(U), with the
Xi’s tangent to N . The sets of the form U × (U ∩ N) ⊆ M × N cover the
graph gr(i). Letting Z1, . . . , Zr ∈ X(U ∩ N) be generators for the module of
vector fields on U ∩N , the vector fields of the form (Xi, Xi|U∩N ), (Yj , 0) and
(0, Zk) are generators of (D × XN )(U × (U ∩ N)), with the (Xi, Xi|U∩N )’s
tangent to gr(i). The restrictions (Xi, Xi|U∩N )|gr(i) are just Xi|U∩N , under
the identification gr(i) ∼= N .
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As a special case, the clean intersection condition is automatic when
ϕ : M ′ → M is a submersion. In this case, ϕ!D is locally generated by vector
fields on M ′ that are ϕ-related to vector fields on M . In particular, if ϕ is a
local diffeomorphism, then ϕ!D is the obvious pullback. Let us finally remark
that the pullback operation is well-behaved under composition:

Lemma 3.9. Let D be a singular distribution on M , and suppose the smooth
map ϕ : M ′ → M is D-clean. Let ψ : M ′′ → M ′ be another smooth map. Then
ψ is ϕ!D-clean if and only if ϕ ◦ ψ is D-clean, and in this case (ϕ ◦ ψ)!D =
ψ!ϕ!D.

Proof. The embeddings of graphs ψ1 = igr(ψ), ϕ1 = igr(ϕ), (ϕ ◦ ψ)1 = igr(ϕ◦ψ)
fit into a commutative diagram

M ′′ (ϕ◦ψ)1

ψ1

M ×M ′′

idM ×ψ1

M ′ ×M ′′
ϕ1×idM′′

M ×M ′ ×M ′′

The composed map is the embedding

(ϕ ◦ ψ) × ψ × idM ′′ : M ′′ → M ×M ′ ×M ′′.

We have

(ϕ ◦ ψ)!1(idM ×ψ1)!(D × XM ′ × XM ′′) = (ϕ ◦ ψ)!1(D × XM ′′) = (ϕ ◦ ψ)!D,

and similarly

ψ!
1(ϕ1 × idM ′′)!(D × XM ′ × XM ′′) = ψ!

1(ϕ!(D) × XM ′′) = ψ!ϕ!D.

On the other hand, by (12) each of these coincide with

(
(ϕ ◦ ψ) × ψ × idM ′′

)!(D × XM ′ × XM ′′).

3.2. Singular Lie filtrations

The concept of singular Lie filtration generalizes singular foliations, as well
as (regular) Lie filtrations.
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Definition 3.10. A singular Lie filtration of order r is a filtration of the
sheaf of vector fields

(13) XM = H−r ⊇ H−r+1 ⊇ · · · ⊇ H0 ⊇ 0,

by singular distributions (i.e., locally finitely generated C∞
M -submodules) such

that
[H−i,H−j ] ⊆ H−i−j

for all i, j. It is called a (regular) Lie filtration if the H−i are sheaves of
sections of subbundles H−i → M of the tangent bundle.

Remark 3.11. Note that we are allowing for a non-trivial H0. The bracket
condition then shows that H0 is involutive, and so defines a singular folia-
tion of M . We shall see that leaves of this singular foliation acquire natural
weightings. On the other hand, we will construct weightings along more gen-
eral submanifolds with a ‘clean intersection’ property. Since that construction
does not involve the summand H0, we will put H0 = 0 in the next section.

3.3. Examples

Regular Lie filtrations have been much studied in recent years as a framework
for the theory of hypo-elliptic operators. See the work of Choi-Ponge [8, 9,
10], van Erp-Yuncken [34], Haj-Higson [19], Dave-Haller [12, 13], Mohsen
[25, 26], among others. These references provide many examples; see [9] for
an overview. The singular Lie filtrations play a similar role for a broader
class of hypo-elliptic operators [4]. Other examples arise, for instance, in the
context of sub-Riemannian geometry.
Example 3.12. A Carnot manifold (also called a Carnot-Carathéodory man-
ifold) is a manifold M with a subbundle D ⊆ TM , with sheaf of sections
D ⊆ XM , such that iterated brackets of D generate all of XM . See, e.g., [30].
One obtains a singular Lie filtration by letting

H−1 = D,

and inductively

(14) H−i−1 = H−i + [D,H−i].

The Carnot manifold is called equiregular if this is a regular Lie filtration. An
example of an equiregular Carnot manifold is given by

D = span
{ ∂

∂x
,

∂

∂y
+ x

∂

∂z

}
⊆ TR3.
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An example of a Carnot manifold that is not equiregular is given by the
Martinez Carnot structure

D = span
{

∂

∂x
,

∂

∂y
+ x2 ∂

∂z

}
⊆ TR3.

Example 3.13. Every singular distribution D ⊆ XM defines a singular Lie
filtration of order r = 2,

XM = H−2 ⊇ D = H−1.

If D is a regular distribution, then this is a regular Lie filtration. More gen-
erally, one obtains a singular Lie filtration of order r by putting H−1 =
D, H−r = XM , and using (14) for −i − 1 ≥ −r. In particular, any finite
collection of vector fields defines a singular Lie filtration, by taking D to be
the submodule spanned by them.
Example 3.14. Let G be a Lie group whose Lie algebra g has a filtration g =
g−r ⊇ · · · ⊇ g0, i.e, [g−i, g−j ] ⊆ g−i−j . Using left-translation, the filtration of
the Lie algebra defines a (right-invariant) regular Lie filtration of TG = G×g

by subbundles H−i = G × g−i. If g0 exponentiates to a closed subgroup H,
then the foliation defined by g0 has as its leaves the right-translates of H.
Example 3.15. Generalizing Example 3.14, let G ⇒ M be a Lie groupoid.
Let s, t : G → M be the source, target maps. Suppose the Lie algebroid of G
has a bracket-compatible filtration g = g−r ⊇ · · · ⊇ g0 by subbundles. Let
H−i ⊆ TG be the subbundle spanned by left-invariant vector fields (tangent to
t-fibers) ξL for ξ ∈ g−i. Then H0, . . . , H−r = ker(Tt) together with H−r−1 =
TG defines a regular Lie filtration of order r + 1.
Example 3.16. Given a weighting of order r along a submanifold N ⊆ M , with
the resulting filtration on vector fields, we obtain a singular Lie filtration of
order r by truncation. We shall use the special notation

K−i = XM,(−i), i = 0, . . . , r.

In local weighted coordinates, the module K−i(U) is generated by all xs ∂
∂xa

such that s ·w ≥ wa− i. We also have the singular Lie filtration of order r+1
by the submodules KN

−i together with XM in degree −r − 1.
The basic constructions for singular distributions give corresponding con-

structions for singular Lie filtrations. In particular, products (H′ × H′′)• of
singular distributions are defined by setting (H′ ×H′′)−i = H′

−i ×H′′
−i. Pull-

backs ϕ!H• of singular Lie filtrations under smooth maps ϕ : M ′ → M are
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defined provided that ϕ is H•-clean, that is, it is H−i-clean for all i. The
compatibility with brackets is clear in the case of embeddings, and for gen-
eral maps ϕ follows by turning the map into an embedding.

In the following section we will show that H•-clean submanifolds define
weightings. Here are some examples of such submanifolds.
Examples 3.17. Let M be a manifold with a singular Lie filtration H•.

a. Every point N = {m} is H•-clean.
b. Suppose F ⊆ XM is a singular foliation with the property [F ,H−i] ⊆

H−i for all i. Then the leaves N of F are H•-clean submanifolds. Indeed,
since the vector fields in F(U) act by infinitesimal automorphisms of
H−i(U), the dimensions of TmN + H−i|m are constant along N .

c. Given a Lie group action on M , preserving the singular Lie filtration,
the cleanness condition holds true for all orbits of the action.

d. Let i be the smallest index for which H−i �= 0. If N is H−i-transverse,
then it is H−i′-transverse for all i′ ≥ i, and in particular is H•-clean.

e. If H• is a singular Lie filtration on M , then the diagonal ΔM ⊆ M ×M
is H• ×H•-clean if and only if H• is a regular Lie filtration.

f. If H• is a regular Lie filtration, given as the sheaves of sections of a
sequence of subbundles H−i ⊆ TM , the cleanness condition means that
H−i ∩ TN are subbundles of TN .

g. In particular, in Example 3.15 the unit space M ⊆ G satisfies the
cleanness condition.

4. Weightings from singular Lie filtrations

Throughout this section, M is a manifold with a singular Lie filtration H•.
Our construction of weightings will not involve H0, hence we will assume
throughout this section that H0 = 0:

(15) XM = H−r ⊇ · · · ⊇ H−1 ⊇ 0.

4.1. Construction of weighting

Suppose N ⊆ M is an H•-clean closed submanifold. We obtain a filtration

(16) TM |N = F̃−r ⊇ · · · ⊇ F̃0 = TN

by subbundles F̃−i, where F̃−i|m = TmN + H−i|m, and a resulting filtration
of the normal bundle

(17) ν(M,N) = F−r ⊇ · · · ⊇ F0 = 0.
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Define a filtration
C∞

M = C∞
M,(0) ⊇ C∞

M,(1) ⊇ · · ·
by induction, starting with C∞

M,(1) = I, where I is the vanishing ideal of N ,
and for i > 1

C∞(U)(i) = {f ∈ C∞(U)| ∀X ∈ H−j(U), 0 < j < i : LXf ∈ C∞(U)(i−j)}

(note that the condition on LXf would be vacuous if j ≥ i). From the defini-
tion, it is clear that the filtration is multiplicative: C∞

M,(i1)·C
∞
M,(i2) ⊆ C∞

M,(i1+i2).

Theorem 4.1. Let M be a manifold with a singular Lie filtration H• of order
r, and suppose N ⊆ M is an H•-clean submanifold. Then the filtration of C∞

M

described above is a weighting of order r along N , with (17) as the associated
filtration of the normal bundle.

The proof of this result is by construction of local weighted coordinates.
For the case of a regular Lie filtration, this was done by Choi-Ponge [9] in the
case of dimN = 0, and by Haj-Higson [19] for dimN > 0.

4.2. Proof of Theorem 4.1

Given the assumptions from Theorem 4.1, we will produce weighted coordi-
nates near any given point m ∈ N . The argument is similar to a proof in [21],
which, in turn, builds on the constructions of [7, 9, 8]. It will require several
steps.

We first note that the filtration H• on the sheaf of vector fields determines
a filtration on differential operators,

· · · ⊇ DOM,−2 ⊇ DOM,−1 ⊇ DOM,0 .

Here, DO0(U) = C∞(U), while DO−j(U) for j > 0 is spanned by sums of
products X1 · · ·Xk with Xν ∈ H−jν and j1 + · · · + jk ≥ j. We say that
D ∈ DO−j(U) has H-weight −j.
Remark 4.2. The filtration on C∞

M determines another filtration on differential
operators, which depends on the choice of N , and which is usually different
from the filtration by H-weight.

The filtration on C∞
M can now be rephrased as follows: f ∈ C∞(U)(i) if

and only if

(18) j < i, D ∈ DO−j(U) ⇒ Df |N = 0.
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Let
k0 = dimN, k1 = dim F̃−1, . . . , kr = dim F̃−r = n,

and let w1, . . . , wn be the corresponding weight sequence, so that wa = i for
ki−1 < a ≤ ki. Choose an open neighborhood U of the given point m and
linearly independent vector fields

Va ∈ X(U), a = k0 + 1, . . . , n

such that for all j > 0, the vector fields Vk0+1, . . . , Vkj are in H−j(U), and
represent a frame for F−j |U∩N . Given a multi-index s = (sk0+1, . . . , sn) with
sa ≥ 0, let

V s =
∏
a

V sa
a = V

sk0+1
k0+1 · · ·V sn

n

be the corresponding differential operator of order |s| =
∑

a sa and H-weight
−j, where j = s · w =

∑
a sawa.

Lemma 4.3. A function f ∈ C∞(U) has filtration degree i if and only if

(19) (V sf)|N = 0

for all multi-indices s with s · w < i.

Proof. Clearly, if f has filtration degree i, then the condition (19) holds since
V s is a differential operator of H-weight −j, with j < i. For the converse,
suppose the condition (19) is satisfied. We want to show that Df |N = 0 for
all differential operators D of H-weight −j with j < i. Using induction on the
order k of differential operators, we may assume that this holds true for all
such differential operators of order less then a given number k. To prove it for
differential operators D of order k, it suffices to show that any D ∈ DOk(U)−j

may be written in the form

(20) D =
∑
s

fsV
s + D′ + D′′

where the sum is over multi-indices s with |s| = k and s · w = j, where D′ ∈
DOk(U)−j is a sum of products Y1 · · ·Yk (with Yν ∈ H−�ν (U),

∑

ν = j) such

that the first vector field Y1 is tangent to N , and where D′′ ∈ DOk−1(U)−j .
Once this is shown, we have D′′f |N = 0 by induction hypothesis, and similarly
D′f |N = 0 since Y1 · · ·Ykf |N = (Y1|N )(Y2 · · ·Ykf |N ) = 0.

The decomposition (20) follows from the following observations:
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a. Suppose X1, . . . , Xk are vector fields with Xν ∈ H−jν (U), j1+· · ·+jk =
j < i. Then

(X1 · · ·Xν · · ·Xν′ · · ·Xk) − (X1 · · ·Xν′ · · ·Xν · · ·Xk) ∈ DOk−1(U)−j ,

for all ν �= ν ′. Hence, modulo differential operators of lower order we
may re-order the Xν as we please. In particular, if any of the Xν is
tangent to N , we may ‘move it to first place’.

b. Similarly, given g ∈ C∞(U), we have

(X1 · · · (gXν) · · ·Xk) − g (X1 · · ·Xν · · ·Xk) ∈ DOk−1(U)−j .

Since any X ∈ H−�(U) is of the form X = X ′+
∑

faVa with X ′ tangent
to N , fa ∈ C∞(U), and Va ∈ H−�(U), we may use this to re-arrange
any product of Xν ’s in the form (20).

We now proceed as in [21]. Taking U smaller if needed, choose coordinates
x1, . . . xn on U such that

(21) Va(xb)|N = δab, a > k0.

(In particular, x1, . . . , xk0 restrict to coordinates on U ∩ N .) We will show
how to modify the coordinates in such a way that xa has weight wa (while
retaining the property (21)). For wa ≤ 2, no modification is needed. Indeed,
the coordinates xk0+1, . . . , xk1 have weight 1 since they vanish on N , while
xk1+1, . . . , xk2 have weight 2 since their differentials vanish on F̃−1. However,
the coordinates xa with wa ≥ 3 may require adjustment. Suppose by induction
that for a given 
 ≥ 2, the coordinates xa with k�−1 < a ≤ k� have weight 
.
For xa with k� < a ≤ k�+1, we look for a coordinate change of the form

x̃a = xa +
∑

χau x
u

(using multi-index notation xu = xu1
1 · · · xun

n ), where the sum is over multi-
indices with

|u| =
∑
b

ub ≥ 2, w · u < wa, ub = 0 for b ≤ k0

such that the coefficients χau ∈ C∞(U) depend only on the coordinates
x1, . . . , xk0 . The condition |u| ≥ 2 means that

∑
u χau x

u ∈ I2(U); hence
the coordinate change will retain the property (21). The property w ·u < wa
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means, in particular, that only xb’s with b ≤ k� enter the expression for∑
u χau x

u. The coordinate function x̃a has filtration degree wa if and only if

(V sx̃a)|N = 0

for all multi-indices s = (sk0+1, . . . , sn) with w · s < wa. As explained in
[21], these conditions on the functions χas have a unique solution, defined
recursively in terms of |s|:

χas = − 1
cs

(
V sxa|N +

∑
u : 2≤|u|<|s|

(
V s(χau x

u)
)∣∣

N

)
, cs = V sxs|N .

In conclusion, with this choice of χas the new coordinates x̃a have weight 
+1.
Rename x̃a as xa, and proceed. The conditions Va(xb) = δab for a > k0 show
that the filtration of TM |U∩N for this weighting is given by the subbundles
spanned by

TN + span{Va|N , k0 < a ≤ ki} = F̃−i|U∩N .

4.3. Examples

Here are two examples illustrating the construction of weighted coordinates
for singular Lie filtrations.
Example 4.4. Consider the vector fields

X = ∂

∂x
+ x

∂

∂z
, Y = ∂

∂y
, Z = ∂

∂z

on M = R
3. Define a regular Lie filtration of order 3, where H−1 is spanned

by X, H−2 is spanned by X, Y , and H−3 = XM . This defines an order 3
weighting at N = {0},with w1 = 1, w2 = 2, w3 = 3. Take V1 = X, V2 =
Y, V3 = Z to be the frame of the discussion above. The original coordinates
x1 = x, x2 = y, x3 = z satisfy Vaxb|0 = δab, but they are not weighted
coordinates since z does not have weight 3. To obtain weighted coordinates,
we use a coordinate change z̃ = z + λx2. This satisfies

LX z̃ = x + 2λx,

which has weight 3 − 1 = 2 if and only if λ = −1
2 . We conclude that

x, y, z − 1
2x

2
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is the desired set of weighted coordinates. Note that in the new coordinates,
X, Y, Z are just the coordinate vector fields.
Example 4.5. For a singular Lie filtration that is not regular, consider the
following example of a Martinez-Carnot structure on M = R

3: Let

X = ∂

∂x
+ (2x + y) ∂

∂z
, Y = ∂

∂y
+ (x + x2) ∂

∂z
.

Define a singular Lie filtration of order 4, where H−1 is spanned by X, H−2
is spanned by X, Y , H−3 is spanned by X, Y, [X, Y ], and H−4 = XM .

Again, let N = {0}. Take V1 = X, V2 = Y, V3 = Z = ∂
∂z corresponding

to w1 = 1, w2 = 2, w3 = 4. The coordinates x, y have filtration degrees 1, 2
has required, but z does not have filtration degree 4. To obtain weighted
coordinates, we seek a coordinate change of the form z̃ = z + λx2 + μxy.
From

LX z̃ = (2x + y) + 2λx + μy, LY z̃ = (x + x2) + μx

we see that LY z̃ has filtration 2 if and only if μ = −1, and LX z̃ has filtration
degree 3 if and only if furthermore λ = −1. Hence,

x, y, z − x2 − xy

is the desired set of weighted coordinates.

5. Singular Lie filtrations in terms of higher tangent bundles

In [21], we gave an alternative description of weightings on M in terms of sub-
bundles Q of higher tangent bundles TrM . In this section, we will explain that
similarly, singular Lie filtrations admit descriptions as singular foliations of
higher tangent bundles. Given an H-clean submanifold N ⊆ M , the subbun-
dle Q for the corresponding weighting along N is described as the flow-out of
TrN ⊆ TrM . In this section, we will temporarily abandon the sheaf language,
for notational convenience.

5.1. Higher tangent bundles

We begin with some background material on higher tangent bundles. A ref-
erence for some of this material is the book [20].

The r-th tangent bundle TrM → M , also known as bundle of r-velocities,
was introduced by Ehresmann as the space of r-jets of curves

TrM = Jr
0 (R,M).



2154 Yiannis Loizides and Eckhard Meinrenken

Its elements are equivalence classes of curves γ : R → M , where γ1, γ2 are
considered equivalent if γ1(0) = γ2(0) and the Taylor expansions of the two
curves in a coordinate chart agree up to order r. There is also an algebraic
definition, which for us will be more convenient: Let Ar be the unital algebra
with a single generator ε and relation εr+1 = 0. Then

(22) TrM = Homalg(C∞(M),Ar).

Elements of TrM are sums u =
∑r

i=0 uiεi with ui : C∞(M) → R, where u0 is
an algebra morphism (specifying a base point in M), u1 is a derivation with
respect to u0 (specifying a tangent vector), and so on. The smooth structure
on TrM is characterized by the property that for all f ∈ C∞(M), the function
given by evaluation

Trf : TrM → Ar, (Trf)(u) = u(f)

is again smooth. For r > 1, the r-th tangent bundle is not a vector bundle,
but is a graded bundle (see Section 2.2.2), with the monoid action of t ∈ R

given by the algebra morphism of Ar taking
∑r

i=0 uiεi to
∑r

i=0 uitiεi. The r-th
tangent bundle fits into a tower of fiber bundles

(23) · · · → TrM → Tr−1M → · · · → TM → M

where the maps TrM → Tr−1M are induced by the algebra morphisms Ar →
Ar−1. The tangent bundle TM → M (regarded as a Lie group bundle) acts
on TrM by

(24) TM ×M TrM → TrM, v · u = u − vεr;

the maps in (23) may also be seen as the quotient maps for this action.
Remark 5.1. The tangent bundle TM may be identified with the normal
bundle of the diagonal in M ×M . Similarly, TrM may be identified with the
weighted normal bundle of the diagonal in M r+1, for a suitable weighting.
Details will be given elsewhere.

5.2. Lifts

For f ∈ C∞(M) we denote by f (i) ∈ C∞(TrM) the components of Trf , so
that

Trf =
r∑

i=0
f (i)εi.
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Here f (0) is the pullback of f under the base projection, f (1) is the pullback
of the exterior differential df ∈ C∞(T1M) under the map TrM → TM ;
more generally, f (i) is the pullback of a function on TiM . The function f (i) is
homogeneous of degree i for the scalar multiplication on TrM . The tangent
lift

TrX ∈ X(TrM)

of a vector field X ∈ X(M) is characterized by the property (TrX)(Trf) =
Tr(Xf). We also use the notation X(0) = TrX, so that X(0)f (i) = (Xf)(i).
The vertical lifts

X(−1), . . . , X(−r)

are similarly defined by X(−j)f (i) = (Xf)(i−j); the fact that these vanish on
all f (0) implies that they are tangent to the fibers of TrM → M everywhere.
The superscript indicates the homogeneity, i.e., κ∗

tX
(−j) = t−jX(−j) for t �= 0.

The lifts satisfy

(25) [X(−i), Y (−j)] = [X, Y ](−i−j), (fX)(−i) =
r−i∑
j=0

f (j)X(−i−j).

The vector fields X(−r) define a vector bundle action of TM → M on
TrM → M (as in (24)), with quotient Tr−1M . If xa for a = 1, . . . , n are
local coordinates on U ⊆ M , then the functions

x(i)
a , 1 ≤ a ≤ n, 0 ≤ i ≤ r

serve as fiber bundle coordinates on TrU ⊆ TrM . The tangent lift of X =∑
a fa

∂
∂xa

is

X(0) =
∑
a,i

f (i)
a

∂

∂x
(i)
a

.

The lift X(−j) is obtained from this expression by replacing ∂

∂x
(i)
a

with ∂

∂x
(i+j)
a

if i + j ≤ r, with 0 otherwise.
We shall also need the following observation, discussed in the articles

[27, 29] where it is attributed to Koszul.

Proposition 5.2 (Koszul). There is a natural action

Ar → Γ(End(T (TrM)))
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of the algebra Ar on the fibers of the tangent bundle of TrM , in such a way
that the generator ε ∈ Ar acts as

ε ·X(0) = X(−1), . . . , ε ·X(−r+1) = X(−r), ε ·X(−r) = 0

for all X ∈ X(M).

One way of describing this algebra action uses the identification

T (TrM) = Homalg(C∞(M),A1 ⊗ Ar).

Elements of Endalg(A1 ⊗Ar) act on T (TrM) by composition of algebra mor-
phisms. The Koszul action comes from the inclusion Ar → Endalg(A1 ⊗ Ar),
where x ∈ Ar acts as

x · (1 ⊗ y + ε⊗ z) = 1 ⊗ y + ε⊗ xz.

5.3. The group structure on Γ(TrM)

The group structure on sections of the tangent bundle, given by addition of
vector fields, generalizes to a nilpotent group structure on sections of the r-th
tangent bundle TrM → M . Similar group structures on sections are discussed
in [20, Chapter 37.6] in the general context of Weil functors. Likewise the
action of Γ(TM) on TM generalizes to an action of Γ(TrM) on TrM .

We begin with the characterization of diffeomorphisms as algebra auto-
morphisms

Diff(M) = Autalg(C∞(M));

here a diffeomorphism Φ corresponds to the algebra automorphism Φ∗ given
by push-forward of functions. Identifying M = Homalg(C∞(M),R) via eval-
uation maps m �→ evm, the action of Autalg(C∞(M)) on M is given by
evm �→ evΦ(m) = evm ◦(Φ∗)−1. To extend to the r-th tangent bundle it is
convenient to write (22) as

TrM = HomAr−alg(C∞(M) ⊗ Ar,Ar)

where the subscript indicates Ar-linear maps. The group

Ur = AutAr−alg(C∞(M) ⊗ Ar),

acts on TrM by U · u = u ◦ U−1.
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Remark 5.3. In the jet picture, note that on TrM there is an action of the
group of smooth 1-parameter families of diffeomorphisms Φ: R × M → M
of M : Φ sends the equivalence class of the smooth curve γ : R → M to the
equivalence class of the smooth curve t �→ Φ(t, γ(t)). Then Ur is the quotient
of this group by the normal subgroup acting trivially on TrM .

We may write the Ar-module endomorphisms of C∞(M) ⊗ Ar as

U =
r∑

i=0
Uiε

i, Ui ∈ End(C∞(M)).

This defines an Ar-linear algebra endomorphism if and only if

(26) Ui(fg) =
∑

i1+i2=i

Ui1(f)Ui2(g),

and is invertible if and only if U0 is invertible. The monoid (R, ·) acts on
Ur by group homomorphisms, via

∑r
i=0 Uiε

i �→ ∑r
i=0 Uit

iεi. Note also that
the quotient maps Ar → Ar−1 give a tower of groups and surjective group
homomorphisms

· · · → Ur → Ur−1 → · · · → U0 = Diff(M);

The group U1 is a semidirect product X(M) � Diff(M), with (X,Φ) corre-
sponding to U = Φ∗ + εX.

Lemma 5.4. The kernel of Ur → Ur−1 is a copy of X(M), with group struc-
ture given by addition.

Proof. Elements of the kernel are of the form idC∞(M) +Urε
r. Here (26) says

that Ur is a derivation of C∞(M).

The Ur-action of TrM determines an action on functions, via push-forward.
In particular, we are interested in the action on lifts f (i).

Lemma 5.5. For U ∈ Ur, f ∈ C∞(M), i = 0, . . . , r,

U · f (i) =
r∑

j=0
(Uj(f))(i−j).

Proof. For u ∈ TrM ,

(U · Trf)(u) = (Trf)(U−1 · u) = (Trf)(u ◦ U) = (u ◦ U)(f).
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Expanding Trf =
∑

i f
(i)εi, U =

∑
Ujε

j this becomes
∑
i

(U · f (i))(u) εi =
∑
j

u(Uj(f))εj =
∑
i,j

(Uj(f))(i−j)(u)εi.

The lemma follows by comparing coefficients.

Let
Lie(Ur) = DerAr−alg(C∞(M) ⊗ Ar)

be the space of Ar-linear derivations of the algebra C∞(M)⊗Ar. Writing its
elements as X =

∑
iXiε

i, the condition X(fg) = X(f)g+fX(g) simply says
that all Xi are derivations of C∞(M). That is,

Lie(Ur) = X(M) ⊗ Ar.

Lemma 5.6. The action of the Lie algebra Lie(Ur) on TrM is given by the
map

� : X(M) ⊗ Ar → X(TrM), X =
r∑

j=0
Xjε

j �→
r∑

j=0
X

(−j)
j .

Proof. The infinitesimal version of Lemma 5.5 shows that

X · f (i) =
r∑

j=0
(Xjf)(i−j) =

r∑
j=0

X
(−j)
j · f (i).

Let U−
r be the subgroup of all U =

∑
Uiε

i for which U0 = id. This
group is unipotent (its elements satisfy (U − id)r+1 = 0); its Lie algebra
Lie(U−

r ) = X(M) ⊗ A
−
r consists of all X =

∑
Xiε

i such that X0 = 0. Note
that the action of U−

r preserves fibers; accordingly, the action of Lie(U−
r ) is

by vertical vector fields.

Corollary 5.7. The vector fields �(X) for X =
∑r

i=1 Xiε
i ∈ Lie(U−

r ) are
complete.

Proof. Since Xr+1 = 0 as an operator on C∞(M)⊗Ar, the 1-parameter group
t �→ U(t) = exp(tX) ∈ U−

r is well-defined. Its action on TrM is a 1-parameter
group of diffeomorphisms of TrM , giving the flow of X.

Since the group U−
r preserves fibers of TrM , it acts on the space Γ(TrM)

of sections. This space has a base point given by the ‘zero section’ ev : M →
TrM, m �→ evm.
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Lemma 5.8. The action of U−
r on the space of sections of TrM is free and

transitive. Its application to the zero section hence gives a bijection

U−
r → Γ(TrM).

Similarly, the map X �→ �(X)|M mod TM gives an isomorphism

Lie(U−
r ) → Γ((TrM)lin).

Proof. Recall from Lemma 5.4 that the kernel of the map U−
r → U

−
r−1 consists

of elements id +Xεr where X is a vector field. Its action on the fibers of
Γ(TrM) → Γ(Tr−1M) is free and transitive. By induction, this implies that
the action of U−

r on the fibers of Γ(TrM) → Γ(T0M) = {0M} is free and
transitive.

For the second part, recall (TrM)lin = ν(TrM,M). The map Lie(Ur) →
Γ(T (TrM)|M ), X �→ �(X) is a bijection, as is immediate from the coordinate
description (and also from the result for Ur). It restricts to a bijection X(M)⊗
R ⊆ Lie(Ur) to Γ(TM) = Γ(T (T0M)|M ), and hence descends to a bijection
Lie(U−

r ) → Γ((TrM)lin)

Remark 5.9. The proof gives a bijection

Lie(Ur) = Γ(TM ⊗ Ar) → Γ(T (TrM)|M ), X �→ �(X)|M .

One readily checks that this map is C∞(M)-bilinear, and hence gives isomor-
phisms of vector bundles TM ⊗Ar → T (TrM)|M and TM ⊗A

−
r → (TrM)lin.

Finally, let us note the following fact.

Proposition 5.10. The tangent action of Ur on T (TrM) commutes with the
Koszul action of the algebra Ar.

Proof. This follows from the description

T (TrM) = HomAr−alg(C∞(M) ⊗ Ar,A1 ⊗ Ar)

since the Ur-action is defined by Ar−alg automorphisms of C∞(M)⊗Ar while
the Koszul action is defined by Ar − alg homomorphisms of A1 ⊗ Ar.

5.4. Weightings in terms of TrM

The description of weightings in terms of the r-th tangent bundle is as follows.
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Theorem 5.11 ([21]). Given an order r weighting of M along N , there is a
unique graded subbundle Q ⊆ TrM along N ⊆ M , with the property that for
all 0 < i ≤ r,

(27) C∞(M)(i) = {f : f (i−1)|Q = 0}.

(The ideals for i > r are determined by (7).) The non-positive part of the
filtration on vector fields is described in terms of Q as

(28) X(M)(−j) = {X : X(−j) is tangent to Q},

for j = 0, . . . , r. The weighted normal bundle νW(M,N) is the quotient of Q
under the equivalence relation

q1 ∼ q2 ⇔ ∀f ∈ C∞(M)(i) : f (i)(q1) = f (i)(q2).

In local weighted coordinates xa ∈ C∞(U), the submanifold Q is described
by the vanishing of all coordinates x

(i)
a ∈ C∞(TrU) such that wa > i. The

quotient map forgets the coordinates for which wa < i, while x
(wa)
a descend

to the coordinates x
[wa]
a on the weighted normal bundle. The vertical bundle

of the fibration Q → νW(M,N) is ε · (TQ) ⊆ TQ, where the dot indicates the
Koszul action.
Remark 5.12. Let Qi ⊆ TiM defined as pre-images of Q under TiM → TrM
if i > r and as images under TrM → TiM if i < r. This gives a tower of
graded bundles

· · ·Qr+1 → Qr → Qr−1 → · · ·Q0 = N,

and C∞(M)(i) may be described for all i as the functions for which f (i−1)

vanishes on Qi−1.
Not every graded subbundle Q ⊆ TrM arises from a weighting. One

necessary condition is that the tangent bundle TQ must be invariant under
the Koszul Ar-action (whenever X(−j) is tangent to Q then so is X(−j−1)).
Further, by our conventions Q must be the pre-image of a subbundle Q′ ⊆
Tr−1M , i.e., it must be TM -invariant.

Theorem 5.13 ([21]). Suppose Q ⊆ TrM is a graded subbundle, invariant
under the action of TM and such that TQ is invariant under the Koszul
action. Then Q comes from an order r weighting if and only if the subgroup
(Ur)Q preserving Q acts locally transitively on Q.
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Another way of putting the last condition (and indeed the way it was
formulated in [21]) is that TQ is spanned by the collection of all lifts X(−i),
for i = 0, . . . , r and X ∈ X(M), with the property that X(−i) is tangent to Q.

5.5. Singular Lie filtrations as singular foliations of TrM

We shall now turn to the interpretation of singular Lie filtrations in terms
of singular foliations of higher tangent bundles. Observe that a singular Lie
filtration XM = H−r ⊇ · · · ⊇ H0 determines a graded Lie subalgebra

Lie(Ur,H) ⊆ Lie(Ur) ⊆ X(M) ⊗ A
,
r

consisting of all X =
∑r

j=0 Xjε
j with Xj ∈ H−j . It follows that

DH(M) = C∞(TrM) · {�(X)| X ∈ Lie(Ur,H)} ⊆ X(TrM)

is locally finitely generated and involutive: [DH,DH] ⊆ DH. This singular fo-
liation is Ar-invariant (since H−j ⊆ H−j−1), TM -invariant (since H−r(M) =
X(M)), and (R, ·)-invariant (since the lifts X(−j) are homogeneous). If H• is
a regular Lie filtration, so that H−j = Γ(H−j), then DH is a regular foliation
of rank equal to

∑
j rank(H−j). For the following result, we assume H0 = 0.

Theorem 5.14. Let M be a manifold with a singular Lie filtration H−r · · · ⊇
· · · ⊇ H−1 ⊇ 0, and let N ⊆ M be an H•-clean submanifold. Then the graded
subbundle Q ⊆ TrM corresponding to the weighting along N is given by

(29) Q = U
−
r,H · TrN.

Its linear approximation is

Qlin = F̃−1 ⊕ · · · ⊕ F̃−r

where F̃−i|m = TmN + H−i|m.

Proof. Let Q ⊆ TrM be the graded subbundle defined by the weighting. We
have Q = (U−

r )Q ·TrN since this is true for any weighting. Since U−
r,H ⊆ (U−

r )Q,
this proves the inclusion ⊇ in (29). For the opposite inclusion, we use a
dimension count. Recall that dimQ =

∑r
i=0 ki where ki = dimF−i. On the

other hand, given m ∈ N , choose an open neighborhood U ⊆ M and a local
frame V1, . . . , Vn ∈ X(U) of TM |U , with the property that V1, . . . , Vk0 are
tangent to N , and Va ∈ H−i(U) for k0 < a ≤ ki. Then V

(i)
a for 1 ≤ a ≤ n and

0 ≤ i ≤ r are a local frame for T (TrU). Since the V
(i)
a for a ≤ k0 restrict to a
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frame for T (Tr(N ∩U)), it follows that the V (i)
a for a > k0 span a complement

of T (Tr(N ∩ U)). We hence see that at any point x ∈ TrN , with base point
m ∈ N , the tangent space to TrN together with the orbit directions for the
U
−
r,H-action span subspaces of dimension

dimTrN +
r∑

i=1

(
dimH−i|m − dim(H−i|m ∩ TmN)

)

= (r + 1) dimN +
r∑

i=1

(
dim F̃−i|m − dimTmN

)

= (r + 1)k0 +
r∑

i=1
(ki − k0) = k0 + · · · + kr = dimQ.

6. Weighted normal bundles from singular Lie filtrations

Given a regular Lie filtration TM = H−r ⊇ · · · ⊇ H−1 ⊇ 0, the associated
graded bundle p = gr(TM) inherits a fiberwise Lie bracket, turning it into a
family of nilpotent Lie algebras [31]. In [34], this is called the osculating Lie
algebroid, and the family of Lie groups P → M integrating it is called the
osculating Lie groupoid. Given an H-filtered submanifold N ⊆ M , there is
the osculating Lie groupoid R → N for the induced Lie filtration on N . Haj-
Higson proved that the weighted normal bundle νW(M,N) is the quotient
P |N/R. We will generalize this observation to singular Lie filtrations.

6.1. Lie algebras from singular Lie filtrations

Suppose M is a manifold equipped with a singular Lie filtration XM = H−r ⊇
· · · ⊇ H−1 ⊇ H0 ⊇ 0. Consider the sheaf of negatively graded Lie algebras

(30)
r⊕

i=1
H−i/H−i+1.

Pulling (30) back to a given point m ∈ M (as C∞
M -modules), we obtain a

negatively graded vector space

(31) pm =
r⊕

i=1
p−i
m , p−i

m = H−i/(H−i+1 + ImH−i),

where Im ⊆ C∞
M is the vanishing ideal.
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Lemma 6.1. The Lie bracket on vector fields descends to Lie brackets on the
vector spaces pm, compatible with the grading.

Proof. For 0 < i, j ≤ r, we have

[H−i+1 + ImH−i,H−j ] ⊆ H−i−j+1 + ImH−i−j + H−i

⊆ H−i−j+1 + ImH−i−j .

We conclude that the bracket [·, ·] : H−i × H−j → H−i−j descends to the
quotients, making (31) into a negatively graded Lie algebra.

Example 6.2. Consider the case of a regular Lie filtration, given by a filtration
of the tangent bundle TM = H−r ⊇ · · · ⊇ H−1 ⊇ H0. Here the spaces pm are
the fibers of the associated graded bundle p = gr(TM) =

⊕
H−i/H−i+1, and

the bracket defines a Lie algebroid structure on p, with zero anchor. Following
[34], we call p the osculating Lie algebroid of the filtered manifold (M,H−•).
The nilpotent Lie groups Pm integrating pm define the osculating groupoid
P =

⋃
m∈M Pm.

6.2. Clean submanifolds

For a submanifold N ⊆ M , let HN
−i ⊆ H−i be the subsheaf of vector fields

in H−i that are furthermore tangent to N . Since [HN
−i,HN

−j ] ⊆ HN
−i−j , this

defines a singular Lie filtration HN
• . Replacing H with HN in the definition

of pm, we obtain a graded Lie subalgebra

rm ⊆ pm

where r−i
m ⊆ p−i

m is the image of HN
−i under the quotient map. Let Rm ⊆ Pm

be the nilpotent Lie groups integrating rm ⊆ pm.
Example 6.3. Given a weighting of M along a submanifold N , let K−i =
XM,(−i) for i = 0, . . . , r. (See Example 3.16.) Then the graded Lie algebra
bundle k = gr(XM )− → N from Section 2.2.4 may be described, for all
m ∈ N , as

(32) km =
r⊕

i=1
k−i
m , k−i

m = K−i/(K−i+1 + ImK−i),

which is a special case of the construction of pm. The images of KN
−i define

the summands of the graded Lie subalgebras lm ⊆ km.
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Theorem 6.4. Let M be a manifold with a singular Lie filtration H•, and
N ⊆ M an H•-clean submanifold, with the corresponding weighting of M
along N . Then the fibers of the weighted normal bundle are

νW(M,N)|m = Pm/Rm.

Proof. The singular Lie filtration H• determines a weighting of M along the
H•-clean submanifold N . We shall use the notation from Example 6.3 for this
weighting. The inclusion maps

(33) H−i ↪→ K−i, i = 0, . . . , r

determine a morphism of sheaves of graded Lie algebras gr(H) → gr(K); upon
pullback to m ∈ N this becomes a Lie algebra morphism

(34) pm → km.

The map (33) restricts to inclusions HN
−i ↪→ KN

−i, i = 0, . . . , r, hence (34)
takes rm to lm, and induces a map

(35) pm/rm → km/lm.

Since p−i
m /r−i

m and k−i
m /l−i

m are both identified with F−i/F−i+1|m, this map is
an isomorphism.

Exponentiating (34) defines an action of Pm on Km/Lm = νW(M,N)|m,
and (35) implies that the stabilizer of this action is Rm. That is,

Pm/Rm
∼= Km/Lm = νW(M,N)|m.

With the additional assumption that dimH−i|m is constant for m ∈ N ,
the Lie groups Pm assemble into a smooth family, i.e., a Lie groupoid P |N →
N , and similarly for Rm.

For the case of a regular Lie filtration, we saw in Example 6.2 that the Lie
algebras pm combine into a locally trivial vector bundle, the osculating Lie
algebroid p → M . Similarly, the induced Lie filtration of N given by the bun-
dles H−i|N ∩TN defines the osculating Lie algebroid r → N . Exponentiating
to the corresponding osculating Lie groupoids, we then obtain

(36) νW(M,N) = P |N/R.

This recovers the result of Haj-Higson [19].
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For more singular Lie filtrations, the Lie algebras pm do not combine into a
vector bundle, unless the dimension of the graded summands p−i

m are constant.
In fortunate situations, this can happen along submanifolds N ⊆ M , and in
this case

p|N =
⋃

m∈N
pm

will be a Lie algebroid over N , with integrating Lie groupoid

P |N =
⋃

m∈N
Pm → N.

If N ⊆ M is H•-clean, then it follows that the r−i
m have constant dimension

as well, and so define a Lie algebroid r → N , integrating to R → N . In these
cases, we again have the presentation of the weighted normal bundle as a
quotient (36).
Example 6.5. Suppose H• is a singular Lie filtration, and F is a singular
foliation with the property [F ,H−i] ⊆ H−i for all i. Then the local flow of
vector fields in F acts by automorphisms of the singular Lie filtration. Hence,
if N is a leaf (or an open subset of a leaf) of F , then it is automatic that N
is H•-clean, and that r ⊆ p|N are well-defined Lie algebroids over N .
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