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Rationality of adjoint orbits
Vladimir L. Popov

To Corrado De Concini

Abstract: We prove that every orbit of the adjoint representation
of any connected reductive algebraic group G is a rational algebraic
variety. For complex simply connected semisimple G, this implies
rationality of homogeneous affine Hamiltonian G-varieties (which
we classify).
Keywords: Orbit of linear algebraic group, rational algebraic
variety, Hamiltonian variety.

1. Introduction

Let G be a connected affine algebraic group and let H be its closed sub-
group. Whether the algebraic variety G/H is rational is a well-known old
problem closely related to the rationality problem of invariant fields of linear
representations of algebraic groups (see [12, 1.5], [14, Thm. 1, Cor. 2]).

As is shown in [13, p. 298], [14, Thm. 2], [12, Rem. 1.5.9], for some G
and finite H, the variety G/H is nonrational (and even not stably rational).
However, the existence of nonrational varieties G/H with a connected group
H is still an intriguing open problem.

At the same time, for many pairs (G,H) with connected group H either
rationality or stable rationality of the variety G/H is proved; for instance,
G/H is rational whenever dim(G/H) � 10 (see [5]).

The conference talk [1] served for me as an impetus to explore rationality
of orbits of the adjoint representations of connected reductive groups. Search-
ing for some special rational coordinates on the adjoint orbits of GLn(C),
SOn(C), Spn(C), the author of [1] proved, as a byproduct, rationality of the
majority of these orbits. He uses the “method of the canonical orbit param-
eterization” that dates back to the work of I. M. Gelfand and M. I. Naimark
on unitary representations of classical groups (1950). The parameterization of
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(co)adjoint orbits was of interest to many researchers because of its connec-
tion with the problems of the theory of integrable systems (see introduction
and related references in [2]).

In the present paper, is proved the following theorem announced in [15]
that yields infinitely many new examples of rational varieties of the form
G/H, including those for which H is a disconnected group of positive dimen-
sion.

Theorem 1. Let G be a connected reductive algebraic group. Every G-orbit
of the adjoint representation of G is a rational algebraic variety.

In view of [16, Cor. 1], Theorem 1 provides new examples of algebraic
varieties X that are locally flattenable in the sense of [16, Def. 1] (i.e., such
that for every point x ∈ X there is an open subset of X containing x and
isomorphic to an open subset of an affine space):

Corollary 1. Let G be a connected reductive algebraic group. Every G-orbit
of the adjoint representation of G is a locally flattenable algebraic variety.

The G-orbits in Theorem 1 are exactly the varieties G/H, where H is the
G-centralizer CG(x) of an element x of the Lie algebra

g := Lie(G).

The groups CG(x) have been thoroughly studied (see [6, 9, 20]). Among them
there are both connected and disconnected groups. Their dimensions are not
less than r := rk(G).

Note that Theorem 1 establishes a specific property of the adjoint repre-
sentation: by Remark 2 below, there exist representations of some G not all
of whose orbits are rational algebraic varieties.

Theorem 1 is applied in the proof of the following Theorem 2 about the
classification and properties of some Hamiltonian G-spaces in the sense of
Kostant (see definition given in the first paragraph of [11, Sect. 5.1]). In terms
of the currently used definition (see [3, Def. 7]), homogeneous Hamiltonian G-
manifolds X are meant. We consider the cases, in which X is an algebraic
variety and G acts on X algebraically. In Theorem 2, the following notation
is used:

H is the set of isomorphism classes of homogeneous affine
Hamiltonian G-varieties,

S is the set of G-orbits of nonzero semisimple elements of g.
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Theorem 2. If G is a simply connected complex semisimple algebraic group
and X is a homogeneous affine Hamiltonian G-variety, then the following
holds.

(a) X is isomorphic to a unique G-orbit OX ∈ S endowed with the stan-
dard structure of a Hamiltonian G-variety (see [11, Sects. 5.2, 5.3,
Thm. 5.3.1]).

(b) The map X �→ OX yields a bijection

(1) H → S .

(c) X is a simply connected rational variety.
(d) The G-stabilizer of any point of X is a Levi subgroup of a proper

parabolic subgroup of G.
(e) Every Levi subgroup of every proper parabolic subgroup of G is the G-

stabilizer of a point of some homogeneous affine Hamiltonian G-variety.

Recall that for the adjoint action of G on g, the categorical quotient g//G
is isomorphic to the affine space A

r, and every fiber of the quotient morphism
G → g//G contains a unique G-orbit from S (see [10], [17, 8.5]). Combined
with the existence of bijection (1), this yields a parametrization of H by
A

r \ {0}.
The proofs of Theorems 1 and 2 are given in Section 3.

Conventions and notation. Our basic reference for algebraic groups and alge-
braic geometry is [4] and we follow the conventions therein. Unless otherwise
stated, all algebraic groups and algebraic varieties are taken over an alge-
braically closed field k whose characteristic is not a bad prime for reductive
G (see [20, Chap. I, Def. 4.1]).

We use the following notation:
CG(M) is the G-centralizer of a subset M of g or G.
Radu(Q) is the unipotent radical of an affine algebraic group Q.
A

n is the n-dimensional affine space.

2. Birational complements

Definition 1. Let G and H be as in Section 1. A sequence S1, . . . , Sm of
locally closed subsets of G is called a birational complement to H in G if the
morphism

(2) λ : S1 × · · · × Sm ×H → G, (s1, . . . , sm, h) �→ s1 · · · smh

is an open embedding.
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Remark 1. One can show that this notion is order-sensitive, i.e., reshuffling
the terms of a sequence that is a birational complement to H in G, one obtains
a sequence that, generally speaking, is not a birational complement to H in G.

If S1, . . . , Sm is a birational complement to H in G, then Definition 1
implies, in view of the connectedness of G, that H is connected as well. It also
implies that open embedding (2) is H-equivariant with respect to the action
of H on G by right translations and on S1×· · ·×Sm×H by right translations
of the last factor. Thus, the image of open embedding (2) is an H-invariant
open subset of G that is H-equivariantly isomorphic to S1 × · · · × Sm ×H.

Example 1. Let G be a semidirect product A � B of closed subgroups A
and B. Then the one-term sequence A (resp. B) is a birational complement
to B (resp. A) in G. For instance, one can take A and B to be respectively a
Levi subgroup of G and the unipotent radical Radu(G).

Example 2. Let G be a reductive algebraic group and let P be a parabolic
subgroup of G. Let P− be the parabolic subgroup of G opposite to P . Then
the one-term sequence Radu(P−) is a birational complement in G to P (see
[4, IV, Prop. 14.21(iii)]).

Lemma 1. Let G and H as in Section 1 and let Q be a closed subgroup of H.
Let S1, . . . , Sm be a birational complement to H in G.

(a) If Z1, . . . , Zn is a birational complement to Q in H, then

S1, . . . , Sm, Z1, . . . , Zn

is a birational complement to Q in G.
(b) The variety G/Q contains an open subset isomorphic to

(3) S1 × · · · × Sm × (H/Q).

Proof. (a) Let X := S1 × · · · × Sm and Y := Z1 × · · · × Zn. By Definition 1,

μ : Y ×Q = Z1 × · · · × Zn ×Q → H, (z1, . . . , zn, q) �→ z1 · · · znq

is an open embedding, therefore,

ν := idX × μ : X × (Y ×Q) → X ×H

is an open embedding. Since λ (see (2)) is also an open embedding, this implies
that the morphism

λ ◦ ν : X × (Y ×Q) = S1 × · · · × Sm × Z1 × · · · × Zn → G,
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(s1, . . . , sm, z1, . . . , zn, q) �→ s1 · · · smz1 · · · znq

is an open embedding as well. This proves (a).
(b) As noted above, G contains an H-invariant open subset U that is H-

equivariantly isomorphic to S1 × · · · ×Sm ×H. Therefore, by [4, II, Thm. 6.8
and Cor. 6.6], a geometric quotient U/Q exists and is isomorphic to variety (3).
On the other hand, U/Q is isomorphic to an open subset of G/Q because the
canonical morphism G → G/Q is open (see [4, II, 6.1]). This proves (b).

Example 3. Taking H = Q in Lemma 1(b) yields that G/H contains an
H-invariant open subset isomorphic to S1 × · · · × Sm. For instance, G/P in
Example 2 contains an open subset isomorphic to the underlying variety of
Radu(P−), i.e., to an affine space (see [4, IV, 14.4, Rem.]); whence, G/P is
rational.

Example 4. Let G be a reductive group, let P be a parabolic subgroup of
G, and let L be a Levi subgroup of P . Then by Lemma 1 and Examples 1, 2,
the two-term sequence Radu(P−), Radu(P ) is a birational complement to L
in G and G/L contains an open subset isomorphic to the underlying variety
of Radu(P−) × Radu(P ), i.e., to an affine space; whence G/L is a rational
variety.

Example 5. Let B be a Borel subgroup of G and let Q be a closed subgroup
of B. In view of Lemma 1 and Example 2, the variety G/Q contains an open
subset isomorphic to A

d × (B/Q) for some d. By [19, Thm. 5], the variety
B/Q is isomorphic to A

s×(A1 \{0})t for some s, t. Whence G/Q is a rational
variety (this statement is Theorem 2.9 of [5]). Since every connected solvable
subgroup of G lies in a Borel subgroup of G, this implies that the variety
G/H is rational if H is connected solvable.

3. Proofs of Theorems 1 and 2

In the proof of Theorems 1 and 2, we shall use the following

Theorem 3.
• Let G be a connected reductive algebraic group and let x be an element

of g. The following properties are equivalent:

(a) x is semisimple;
(b) the G-orbit O of x is an affine variety;
(c) CG(x) is reductive;
(d) O is a closed subset of g.
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• Let G be a simply connected semisimple algebraic group. Then properties
(a)–(d) are equivalent to the following property

(e) CG(x) is a Levi subgroup of a parabolic subgroup of G.

For any parabolic subgroup P of G and any Levi subgroup L of P , there is a
semisimple element s ∈ g such that CG(s) = L.

Proof.
(a)⇔(d) is well-known (see [10, Rem. 11], [17, 8.5]).
(d)⇒(b) is clear.
(b)⇔(c) follows from Matsushima’s criterion (see [17, Thm. 4.17], [18]).
(b)⇒(d) Let O be affine and let O be the closure of O in g. The set

X := O\O is closed in g (see [17, 1.3]). Arguing to the contrary, assume that
X �= ∅. Since O is affine, this yields codimO(X) = 1 (see [8]). On the other
hand, codimO(X) � 2 by [10, Cor. 1 of Thm. 3]. This contradiction shows
that O = O.

(a)⇒(e) Let x be a semisimple element. By [21, Cor. 3.8], there is a torus
S in G such that x ∈ s := Lie(S) and

(4) CG(x) = CG(s).

By [7, Prop. 3.4.7], there is a parabolic subgroup P of G such that CG(S) is
a Levi subgroup of P . Since

(5) CG(S) = CG(s)

(see [22, Thm. 24.4.8(ii)]), from (4) and (5) we infer that CG(x) is a Levi
subgroup of P .

(e)⇒(c) is clear.
To prove the last statement of Theorem 3, note that since L is a Levi

subgroup of a parabolic subgroup of G, there is a torus S in G such that

(6) L = CG(S)

(see [7, Prop. 3.4.6]). We identify S with (k∗)d by means of an isomorphism
between them. Let s = kd be the Lie algebra of S. If z = (zi) ∈ s, let
Rz := {(mi) ∈ Z

d | ∑i mizi = 0}. Then the minimal algebraic subalgebra
a(z) of s containing z is {(si) ∈ s | ∑

imisi = 0 for all (mi) ∈ Rz} (see
[4, II, 7.3(2)]). Since the degree of k over its prime subfield is infinite, this
implies the existence of x ∈ s such that s = a(x). By [21, Cor. 3.8], we then
have CG(x) = C(s). In view of (5) and (6), this yields L = CG(x).
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Proof of Theorem 1. Since the center of G lies in the kernel of the adjoint
representation of G, without changing the G-orbits in g, we may (and shall)
assume that G is a simply connected semisimple group.

Let x be an element of g. Our goal is to prove that G/CG(x) is a rational
variety. We may (and shall) assume that x �= 0. We shall consider separately
three cases:

(i) x is nilpotent,
(ii) x is semisimple,
(iii) x is neither nilpotent, nor semisimple.

Case (i). Let x be nilpotent. Then by the Jacobson–Morozov theorem,
there are elements h, y ∈ g such that {x, h, y} is an sl2-triple, i.e., [h, x] = 2x,
[h, y] = −2y, [x, y] = h. For every i ∈ Z, put

g(i) := {z ∈ g | [h, z] = iz}.

Then we have the decomposition g =
⊕

i∈Z g(i), which is a structure of a
Z-graded Lie algebra on g.

The subspace p :=
⊕

i�0 g(i) is a parabolic subalgebra of g. Let P be the
parabolic subgroup of G such that Lie(P ) = p. Then the P -stable subspace
u :=

⊕
i>0 g(i) is Lie(Radu(P )).

We have x ∈ g(2) ⊆ u. By [20, Chap. III, Sect. 4.20(i)], the P -orbit of x
is open in u, therefore,

(7) P/CP (x) is isomorphic to an open subset of an affine space.

By [20, Chap. III, Sect. 4.16], we have CG(x) ⊂ P ; whence

(8) CP (x) = CG(x).

In view of (8), we have the following tower of algebraic groups:

(9) G ⊃ P ⊃ CG(x),

By Example 2 and Lemma 1(b) applied to (9), we infer that G/CG(x) contains
an open subset isomorphic to (Radu(P−))× (P/CG(x)). Since the underlying
variety of Radu(P−) is isomorphic to an affine space, we infer from (7) that
G/CG(x) contains an open subset isomorphic to an open set of an affine space.
Therefore, G/CG(x) is a rational variety.

Case (ii). Let x be semisimple. Then CG(x) is a Levi subgroup of a
parabolic subgroup of G in view of Theorem 3. Hence the variety G/CG(x)
is rational by Example 4.
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Case (iii). Let x be neither nilpotent, nor semisimple. Let x = xs + xn be
the Jordan decomposition of x. By Theorem 3, the group CG(xs) is a Levi
subgroup of a parabolic subgroup of G. We have xn ∈ Lie(CG(xs)) and it
follows from the uniqueness of the Jordan decomposition that

(10) CG(x) = CCG(xs)(xn).

By Example 4, there is a two-term birational complement S1, S2 to CG(xs)
in G such that

(11) Si is isomorphic to an affine space for every i.

Applying Lemma 1 to H = CG(xs), Q = CCG(xs)(xn), we obtain from (10)
that G/CG(x) contains an open set isomorphic to

S1 × S2 × (CG(xs)/CCG(xs)(xn)).

By (i), the variety CG(xs)/CCG(xs)(xn) is rational. This and (11) imply that
G/CG(x) is rational.

Remark 2. Theorem 1 establishes a specific property of the adjoint represen-
tation: for some connected reductive groups G, there are finite-dimensional
algebraic representations not all of whose G-orbits are rational algebraic va-
rieties.

Indeed, in [13, Example 1.22], [14, Thm. 2], [12, Rem. 1.5.9] are construct-
ed connected reductive algebraic groups G with a finite subgroup H such
that the algebraic variety G/H is nonrational. Being finite, H is reductive;
hence, by Matsushima’s criterion, the variety G/H is affine. Therefore, by the
embedding theorem (see [17, Thm. 1.5]), there exists a G-equivariant (with
respect to the natural action of G on G/H) closed embedding of G/H into
some finite-dimensional algebraic G-module.

Proof of Theorem 2.

(a) By [11, Thm. 5.4.1, Prop. 5.1.1], there are a unique G-orbit OX ⊂ g

and a unique morphism τX : X → OX of Hamiltonian G-varieties. By [11,
Prop. 5.1.1], τX is a covering, and for every x ∈ X, the identity component
of the G-stabilizer Gx of x coincides with that of the G-stabilizer GτX(x) of
τX(x). Since G acts on X transitively and X is affine, Gx is reductive by
Matsushima’s criterion. Therefore, GτX(x) is reductive as well. Then from
the equivalence of properties (a), (c), and (e) in Theorem 3 we infer that
OX ∈ S and GτX(x) is connected. Since G is simply connected, the latter
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implies that OX is simply connected as well. This, in turn, implies that τX is
an isomorphism since τX is a covering.

(b) In view of (a), this follows from the fact that each G-orbit in g is
endowed with the standard structure of a Hamiltonian G-variety.

(c) This follows from (a) since, as was proved above, OX is a simply
connected and, by Theorem 1, rational variety.

(d) This follows from (a) and the equivalence of (a) and (e) in Theorem 3.
(e) This follows from the last statement of Theorem 3.
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