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FLIPS, FLOPS, MINIMAL MODELS, ETC.

JANOS KOLLAR

One of the most interesting and profound developments of algebraic
geometry in the past ten years is the “minimal model program,” also called
“Mori’s program.” The aim of the program, originating in [78], can be
summarized as follows:

Let X be a smooth projective algebraic variety. One would like to
construct another algebraic variety X " such that:

(i) X' is obtained from X by a series of simple “surgery type” oper-
ations, and
(i) the global structure of X' is simple.

The usefulness of the program depends on how well we understand the
“surgery type” operations and how simple the structure of X " is.

In dimension one the program does not exist; every smooth compact
curve is as simple as possible. In dimension two one recovers the con-
struction of minimal models of smooth surfaces, which has already been
done by the Italian geometers around the turn of the century.

For a long time it was believed that a similar program is impossible
in higher dimensions. The main reason behind this belief was that X’
cannot be chosen to be smooth. Only beginning with the works of Reid
[96] and Mori [78] did it become clear that by allowing certain singularities
the local structure becomes only a little more complicated while the global
structure becomes much simpler.

After this conceptual obstacle was removed, the hardest part of the
program turned out to be to show the existence of certain special “surgery
type” operations. This was finally completed in dimension three by Mori
[82] and is still unknown in higher dimensions.

There have been several survey articles recently about the program. [54]
is aimed at a very general readership. [120] assumes some familiarity with
algebraic geometry while [49] is aimed at those who wish to become ex-
perts. The booklet [13] grew out of a seminar aimed at advanced graduate
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students; Chapters 8-13 present the simplest known proof of (1.4.2-7).
[57] is intended as an introduction to [82].

In this article I try to be self-contained without reproducing earlier sur-
veys. §1 discusses the structure of Mori’s program mostly without proofs.
The most difficult “surgery type” operations are discussed in §2. These
are called flip and flop. After a general discussion of the codimension two
surgery problem in §2.1 a detailed description of flops is presented in §2.2.
The description is very explicit, and this is useful for applications. §2.3
contains some examples and results concerning flips. See [57] for a more
detailed introduction.

The applications of the program are presented in §3 together with several
open problems and conjectures.

The remaining sections are more independent of the main body of the
program and of each other. Each one presents old and new results, con-
jectures, and speculations centered around a question which originated in
the minimal model program.

By [78] every step in the construction of X’ is related to some simple
geometric configuration inside X . However, it is not clear when a similar-
looking configuration corresponds to a step of the program. This leads to
some very interesting questions and examples which are discussed in §4.

It turns out that flips and flops also play a crucial role in understanding
proper but nonprojective varieties. This approach leads to simplifications
of several results and to numerous new problems. These can be found in
§5.

§6 is devoted to conjectures about deformations of rational surface sin-
gularities that grew out of studying minimal models of threefolds. These
conjectures are quite interesting themselves, and a conceptual proof of
them may lead to a better understanding of flips.

The groundfield is the field C of complex numbers, unless the contrary
is stated at the beginning of a section.

I would like to thank H. Clemens, A. Corti, J.-M. Hwang, T. Luo, K.
Matsuki, Y. Miyaoka, S. Mori, M. Reid, N. Shepherd-Barron, H. Sterk, J.
Stevens, and D. Toledo for very useful corrections and comments.

0. Notation and terminology

1. A line bundle will always be locally free in the Zariski topology.
This is important for spaces like C* — 0 since Pic,, . (C* —0) = 0 but
PiCEuclidean(Cz —0) is infinite dimensional.
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2. Aline bundle L on an n-dimensional proper irreducible variety or
complex space X is called big if h°(X, L&™) > const-m” for m > 0.

3. Aline bundle L on a scheme X is called nef if for every compact
curve C C X we have deg(L|C)>0.

4. A normal variety X has Q-factorial singularities if for every codi-
mension-one subvariety ¥ C X there is an integer m > 0 such that
mV is locally definable by one equation. The main consequence of this
is that every codimension-one subvariety will have a cohomology class in

2
H(X,Q).

5. Terminal and canonical singularities are defined in (1.3.2). Du Val
singularities are defined in (1.3.3.2).

6. Minimal models and relative Fano models are defined in (1.4.8).

7. Curve neighborhoods are defined in (2.1.1) and the opposite in (2.1.5).

8. Flops are defined in (2.2.1) and flips in (2.3.1).

9. If I C &y is an ideal sheaf, then B,X denotes the blow-up of I. If
Z C X is a closed subvariety, then B, X denotes the blow-up of the ideal
sheaf of Z .

10.The word morphism will be reserved for maps that are everywhere
defined. In diagrams they will be denoted by a solid arrow: —. Maps
that need not be everywhere defined will be indicated by a broken arrow:

11. Let X be a smooth proper variety or complex manifold. Let K,
denote the canonical line bundle. For every m > 0 the global sections of
KS™ define a meromorphic map

X -1 (X) cP(H (X, K3™)).

If m is sufficiently large and divisible, then dim7, (X) is independent
of m . This number is called the Kodaira dimension of X and is denoted

by k(X). Weset k(X)=—occ if I _(X)=C forevery m>0.

n

12. If (x,,---,x,) is a coordinate system on C", then the sym-
bol C"/Z,(a,, -, a,) denotes the quotient of C" by the group action
(Xp, o x,) = (C%xy, -+, {®x), where { is a primitive mth root of
unity.

1. Construction of minimal models

1.1. Introductory remarks. Let C be a smooth proper algebraic curve
over C (equivalently, a compact Riemann surface). C can be endowed
with a metric of constant curvature, and one has the following classification
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according to the sign of the curvature (H denotes the upper half plane):

curvature structure

positive cP' ,
zero c/z”
negative ~ H/z,(C)

In higher complex dimensions there are several possible curvatures to
consider. The holomorphic bisectional curvature is a very strong invariant,
and there are only few varieties where it can be semidefinite.

1.1.1. Theorem [77], [107]. Let X be a compact complex Kdhler
manifold. Assume that T, admits an Hermitian metric whose holomorphic
bisectional curvature is everywhere positive. Then X = P" .

Much less is known about manifolds that admit an Hermitian metric
whose holomorphic bisectional curvature is everywhere negative. It was
conjectured in [122, Problem 35] that their universal cover is always Stein.
The following result indicates that this may not be true:

1.1.2. Theorem [68], [76]. There are simply connected algebraic sur-
faces X such that ij is ample.

For such a surface X some symmetric power of T, admits an Hermi-
tian metric whose holomorphic bisectional curvature is everywhere nega-
tive. However it is not clear whether T, itself admits such a metric.

One can take the trace of holomorphic bisectional curvature to get the
Ricci curvature of the tangent bundle. I prefer to think of it as the cur-
vature of the determinant of the tangent bundle. These two approaches
are not completely equivalent since a metric on det 7, may not always be
liftable to a metricon 7 .

In algebraic geometry it is customary to consider the canonical bundle:

K, ¥ (detT,)

The sheaf of local sections of the canonical bundle is called the dualizing
sheaf and is denoted by w, . I will try to be systematic, and say canonical
bundle when I mean a line bundle and dualizing sheaf when I mean a
sheaf.

Dualizing changes the sign of the curvature, creating the possibility of
confusion.

Even in dimension two it is not true that every variety has a semidefinite
canonical bundle, but the exceptions are easy to enumerate:

1.1.3. Theorem. Let X be a smooth proper algebraic surface. If K,
does not admit a metric h whose curvature © = 00 logh is semipositive,
then there is a morphism f: X — Y which is one of the following types:
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(1.1.3.1) Y is a smooth surface, and X is obtained from Y by blowing
up a point.

(1.1.3.2) Y is a smooth curve, and X is a P! bundle over Y .

(1.1.3.3) Y is a point and X = P?.

In all cases there is an embedded copy of P! ~ C c X such that
(vV=1/27) [.©<0.

These cases are very different in nature. (1.1.3.2) and (1.1.3.3) are
very precise global structural statements. One can hardly wish for more.
(1.1.3.1) merely identifies (and removes) a small part of X and gives no
global information. The corresponding morphism f: X — Y is called the
contraction of a (—1)-curve. This is the simplest example of an algebraic
surgery operation.

The contraction (1.1.3.1) introduces a new surface ¥ which is simpler
than X since b,(Y) = b,(X)—1. Wecanapply (1.1.3)to ¥ and continue
if possible. This gives the following:

1.1.4. Theorem. Let X be a smooth proper algebraic surface. Then
there is a sequence of contractions X — X, — ---— X, = X' such that X'
satisfies exactly one of the following conditions::

(1.1.4.1) K, admits a metric whose curvature is semipositive.

(1.1.42) X' is a P'-bundle over a curve C.

(1.1.4.3) X' =P,

Based on this presentation and using good hindsight we can formulate
the aim of the minimal model program:

1.1.5. Hope. Let X be a smooth, projective algebraic variety. Then
there are certain “elementary surgery operations” such that repeated ap-
plication of them produces a variety X' and

either: K, admits a metric whose curvature is semipositive,

or: there is a structure theorem for X' .

This has been achieved only in dimension three, and there are many
surprises along the way.

1.2. Extremal rays on smooth varieties. Curvature assumptions are
very difficult to handle in algebraic geometry. The following observation
leads to a slightly different notion, which is easier to deal with.

Let L be a line bundle on a complex manifold M with metric # and
curvature ©, and let C C M be any proper curve. Then

c(LynCc=Y"1 /e

We will denote this number by C - L. In particular, if © is semipositive,
then C-L >0 forevery C.
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1.2.1. Definition. A line bundle L on a variety X is called nef if
C-L >0 for every compact curve C C X. (This replaces the earlier
confusing terminology “numerically effective™.)

It is conjectured that for the canonical line bundle being nef is equiva-
lent to admitting a metric with semipositive curvature. In general however
these two notions are slightly different.

The intersection product C - L depends only on the homology class of
C but not on C itself. With this in mind we introduce:

1.2.2. Definition.

(1.2.2.1) Let X be a smooth projective variety over C. The cone of
curves of X—denoted by NE(X)—is the convex cone generated by the
homology classes of effective curves in H,(X, R), where N stands for
“Numerical equivalence”, and E for “Effective”.

The closed cone of curves or the Kleiman-Mori cone of X—denoted
by NE(X)—is the closure of NE(X) in H,(X,R).

The definitions of course make sense for any complex manifold X .

(1.2.2.2) If X is a singular variety, then instead of H,(X, R) one can
use

def {1 — cycles with real coefficients}

_ : PicX®R)".
{numerical equivalence} (PlcX O R)

Ny(X)

For smooth varieties (or for varieties with rational singularities) over C
there is a natural linear embedding N,(X) — H,(X, R), and under this
identification the corresponding cones are the same.

(1.2.2.3) If L is a line bundle or a Cartier divisor, then taking cap
product determines a linear map

L™: N, (X)—R.

Reformulating (1.2.1) we obtain that L is nef iff L"|NE(X) is semipos-
itive.
1.2.3. Definition.
(1.2.3.1) Let ¥ ¢ R™ be a convex cone. A subcone W C V is called
extremal if
u,veV,u+rveW=u,vel,

Informally: W isa face of V.

(1.2.3.2) A one-dimensional subcone is called a ray. A ray is of the form
R*v for some v e V.

(1.2.3.3) Let X be a smooth proper algebraic variety. A ray R7[Z] C
NE(X) is called a K y-hegative extremal ray if it is extremal and
K;: R*[Z] — R is strictly negative on R*[Z] - {0}. If no confusion
is likely, we will use “extremal ray” to mean a K ,-negative extremal ray.
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The first step toward (1.1.5) is to understand the part of NE(X) where
K; is negative. It turns out to have a relatively simple structure:

1.2.4. Theorem [78, 1.4]. Let X be a smooth projective variety (any
dimension) over an algebraically closed field. Then the extremal rays of
the closed cone of curves NE(X) are discrete in the open halfspace {z €
N(X)|z-K, < 0}. If R c NE(X) is an extremal ray, then there is a
rational curve C ¢ X such that [C]1€ R.

Once an extremal ray is identified as the source of the trouble, one
would like to use it to construct a map as in (1.1.3). In dimension three a
complete description is known:

1.2.5. Theorem [78, 3.1-5]. Let X be a smooth projective threefold
over C (or an algebraically closed field of characteristic zero). Let R be
an extremal ray of the closed cone of curves. Then the following holds:

(1.2.5.1) There is a normal projective variety Y and a surjective mor-
phism f: X — Y such that an irreducible curve C C X is mapped to a
point by f iff [C] € R, one can always assume that f,&, =&, , and then
Y and f are unique up to isomorphism.

The following is a list of all the possibilities for [ and Y .

(1.2.5.2) First case: f is birational.

Let E ¢ X be the exceptional set of f. One has the following possibili-
ties for E, Y, and f:

(1.2.5.2.1) E is a smooth minimal ruled surface with typical fiber C,
and C-E = ~1; Y issmooth, and f is the inverse of the blowing up of
a smooth curve in Y .

(1.2.5.2.2) E = P?, and its normal bundle is @(~1). Y issmooth, and
[ is the inverse of the blowing up of a point in Y .

In the remaining cases Y has exactly one singular point P, and f is
the inverse of the blowing up of P in Y. Let é’P y be the completion of
the local ring of P € Y Then the following hold .

(1.2.5.23) F = P?, and its normal bundle is @(~2). @’AP,Y =
Cllx, v, z]]zz, where Z* denotes the ring of invariants under the group
action (x,y, z)— (-x, -y, —2z).

(1.2.5.2.4) E = Q, where Q is a quadric cone in IP and its normal
bundle is @.:(—1)|Q. ﬁpyy >Clx,y, z, tl/(xy - -t )

(1.2.5.2.5) E = Q, where Q is a smooth quadric surface in P, the two
Jfamilies of lines on Q are numerically equivalent in X, and its normal
bundle in @.:(-1)|Q. Yy ECx,y, z,tl/(xy - z1).

(1.2.5.3) Second case: f is not birational.
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Then we have one of the following cases:

(1.2.5.3.1) dimY = 2; Y is smooth and [ is a flat conic bundle (i.e.,
every fiber is isomorphic to a conic in IP’Z).

(1.2.5.3.2) dimY = 1;Y is a smooth curve, and every fiber of [ is
irreducible. The generic fiber is a smooth surface F such that —K. is
ample.

(1.2.5.3.3) dimY = 0 and X is a Fano variety (i.e, —K, is ample)
and by(X)=1.

1.2.6. Comments.

(1.2.6.1) The second case should be considered a fairly complete struc-
tural description. Conic bundles are well understood. If dimY =1, then
there is a complete list of the possible fibers. Fano varieties have been
completely classified by Fano-Iskovskikh [36], [37].

(1.2.6.2) The cases listed under (1.2.5.2) should constitute the desired
“elementary surgery operations.” The first two cases are as expected, but
the last three are unexpected and create a serious problem since Y is
singular. Thus, we cannot continue as in (1.1.4).

The realization that singularities must appear in three-dimensional min-
imal models was apparently made by Ueno [116, Chapter 16]. At that time
this was interpreted as a sign that there are no minimal models in dimen-
sion three. The crucial conceptual step of allowing singularities was taken
by Reid [96] and Mori [78]. Choosing the right class of singularities is a
technical but very important part of the program.

1.3. Terminal and canonical singularities.

1.3.1. Guiding principles. We want to investigate varieties X for
which K, is not nef. In order to do this, K, should exist and being
nef should make sense.

The usual definition of K, works over the smooth locus of X. If X
is normal (a harmless assumption), then codim(Sing X) > 2, hence K
has a well-defined homology class in H, , »_,(X, Z). However, because
of the singularities there is no product between H, g . , and H,. Thus,
the symbol C - K, makes no sense in general.

If K X—Sing X extends to a line bundle over X, then its first Chern class is

in H? (X, Z) and we can take the cap product with [C] € H,(X, Z). For
the singularity given in (1.2.5.2.3), this condition is not satisfied because
of the group action. However, K?fsmg y Wwill extend to a line bundle over
X . Thus, we can still define a first Chern class ¢ (Ky) € H? (X,Q), and

this is also satisfactory.
For smooth varieties the plurigenera

(1.3.1.1) P (X)=dimI(X,K3") (m>0)
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are birational invariants, and they are the most important discrete bira-
tional invariants that we know. The birational invariance is implied by
the following more local result:

Let f: X — Y be a proper birational morphism between smooth vari-
eties, and let E, C X be the f-exceptional divisors. Then

(13.12) Ky=/K, 86, (}_’: al.Ei) ., a,>0forevery i.
This can be reformulated as

(1.3.1.3) f(@0P") = wd™ for every m > 0.

Observe that a; > 0 would be sufficient to conclude the birational in-
variance of plurigenera.

1.3.2. Definition. An algebraic variety X is said to have canonical
(resp. terminal) singularities if the following three conditions are satisfied:

(1.3.2.1) X is normal.

(1.3.2.2) K? singx €Xtends to a line bundle over X for some m > 0.

This unique extension will be denoted by K/[Ym] . The smallest such m 1is
called the index of K, .

(1.3.2.3) Let f: X' — X be a resolution of singularities, and let E; C X
be the f -exceptional divisors. Let

K& = f (K (Z a,E,) (m = index(K ;).

Then
X' has canonical singularities < a; >0 foreveryi,

X' has terminal singularities < a;, >0 forevery i.
(1.3.2.4) For arbitrary i one can define

ot g J4ef Gouble dual of @ X .

This is a torsion free sheaf, locally free iff index X|i. If X has canonical
singularities, and f: X’ — X is a resolution of singularities, then

f(w?') w&'} fori>0.

(1.3.2.5) Another useful consequence of the definition is the following.
Let U ¢ X be any open set (in the Euclidean topology). Let

f(le /\d )®m€r(U SlngU K?'7151ngc)

Then for any compact K Cc U

/lf]z/mdzl/\'--/\dzn/\d’z"l/\---/\df < .
X

n
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In dimension two it is easy to get a complete list by looking at the
minimal resolution:

1.3.3. Proposition.

(1.3.3.1) 4 two-dimensional terminal singularity is smooth.

(1.3.3.2) Two-dimensional canonical singularities are exactly the DuVal
singularities (also called rational double points), and are given by equations:

A:xy+z2" =0;
D:x*+yz+z2" =0,
(1.3.3.3) Egx+y +2 =0,
E,. xz-t—y3+yz3 =0;
E8:x2+y3+25=0.
In dimension three there is a complete list of terminal singularities. See
[100] for a very nice survey.
1.3.4. Theorem [98], [17], [85]), [79], [61], [109].
(1.3.4.1) Three-dimensional terminal singularities are isolated.

(1.3.4.2) A three-dimensional hypersurface singularity is terminal iff it is
isolated and can be given by an equation

glx,y,z)+th(x,y,z,1)=0,

where g is one of the equations from (1.3.3.3).

(1.3.4.3) Every other three-dimensional terminal singularity is the quo-
tient of a hypersurface terminal singularity (called the index-one cover) by
a cyclic group. The typical case is

xy+f(z",)=0)cC C4/Zn(1, -1,a,0), where(a,n)=1.
The exceptional cases can be written as
X’ +fy,z,6)=0)CcC"/Z (a,b,c,d) forsomen<4.

There is a complete list of the possibilities.

(1.3.4.4) Every terminal singularity can be deformed into a collection of
terminal cyclic quotient singularities (C3/Zn(1 ,—1,a), where (a,n)=1.

1.4. Extremal rays on singular varieties. The original deformation the-
oretic arguments of Mori [77], [78] do not seem to work for singular va-
rieties. Substantially new ideas are required to extend the results. The
new approach relies very heavily on vanishing theorems, and therefore it
works in characteristic zero only. On the other hand, applied even in the
smooth case, it gives results not accessible by the previous method; namely,
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it proves that extremal rays can always be contracted in any dimension.
Since the proofs are reviewed in [13, Lectures 8-13], we restrict ourselves
to stating the theorems and to some comments.

1.4.1. Definition.

(1.4.1.1) Let x € R. We define "x” to be the smallest integer > x .

(1.4.1.2) Let X be an algebraic space. Let D = 2.a,D, be a formal
sum of distinct irreducible divisors on X with rational coefficients. Let

def
"D'="Y"a,D"= > "a’D,.

(1.4.1.3) The fractional part of D is the collection of those D, such
that a, is not an integer.

1.4.2. Vanishing Theorem [42], [117]. Let X be a smooth, proper
algebraic space. Let D = )" a,D; be a nef and big Q-divisor. Assume that
the fractional part of D has only normal crossing singularities. Then

H'(X,K,®F,(D)=0 fori>0.

Comments. If the a, are integers, and D is ample, then this is the
Kodaira vanishing theorem. Thus one can express the result as follows: if
a divisor is close to being ample, then Kodaira vanishing still holds.

The above technical formulation seems artificial, but divisors of the
form "D" appear very frequently. We will see an example in (5.3.8).

1.4.3. Nonvanishing Theorem [105]). Let X be a nonsingular projec-
tive variety. Let D be a nef Cartier divisor and let G be a Q-divisor such
that "G is effective. Suppose that aD + G - K v s ample for some a > 0,
and that the fractional part of G has only simple normal crossings. Then,
forall m >0,

HYX, mD+7G") #0.

Comments. The divisor G is here for the purpose of certain applica-
tions. The proof does not simplify if we assume that G = 0. By (1.4.2)
the higher cohomologies vanish, thus

H(X, mD+"G") = (X, mD +"G").

Therefore, the claim is that a certain expression involving Chern classes
is not zero. In dimension three one can understand the precise form of
this expression and prove the result in several cases. In higher dimensions
however this approach seems to fail.

1.4.4. Basepoint-Free Theorem [6], [44], [45],[97]. Let X bea proper
algebraic space with only canonical singularities. Let D be a nef Cartier
divisor such that aD — K, is nef and big for some a > 0. Then |mD| has
no basepoints for all m > 0.



124 : JANOS KOLLAR

Comments. In the literature this result is stated for projective varieties
only. The proof, however, analyzes only various proper modifications, and
these can always be chosen to be projective.

1.4.5. Rationality Theorem [45], [53]. Let X be a projective variety
with only canonical singularities. Let H be an ample Cartier divisor, and
let

r = max{t € R|H + tK, is nef}.

Assume that K, is not nef (i.e, r <co). Then r isa rational number of
the form u/v where 0 < v < (index X)(dim X + 1).

1.4.6. Cone Theorem [45], [97]. Let X be a projective variety with
only canonical singularities. Then the extremal rays of the closed cone of
curves NE(X) are discrete in the open halfspace {z € N|(X)|z- K, <0}.

1.4.7. Contraction Theorem [44], [97]). Let X be a projective variety
with only Q-factorial terminal (resp. canonical) singularities. Then the
following hold

(1.4.7.1) For every extremal ray R C NE(X) there is a contraction map
f: X = Y such that an irreducible curve C C X is mapped to a point by
f iff [C] € R. One can always assume that f (Gy) = &y, and then f
and Y are unique.

(1.4.7.2) We have the following possibilities for f and Y :

(1.4.7.2.1) f is birational, and the exceptional set is an irreducible divi-
sor. Then Y again has Q-factorial terminal (resp. canonical) singularities.
Such a contraction is called divisorial.

(1.4.7.2.2) f is birational, and the exceptional set has codimension at
least two in X . In this case Kff_’f’smgy never extends to a line bundle over
Y for m>0. Such an f is called a small extremal contraction.

(1.4.7.2.3) dimY < dimY . The general fiber F has negative canonical
class. Such a contraction is called a Fano contraction.

Proof. We will show that in case (1.4.7.2.2) K f?f’smg y never extends to

a line bundle over Y . Assume the contrary. Then KEY'”] and f *Kgf"] are
two line bundles on X, and are isomorphic outside the exceptional set.
Since the exceptional set has codimension at least two, these line bundles
are isomorphic. On the other hand, if [C] € R, then,

deg(KU|C) < 0 = deg(f KL C).

This is a contradiction.
Comments. (1.4.7.2.3) should be considered a structure theorem. It
describes X in terms of the lower-dimensional varieties F and Y. Of
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course it may happen that dimY = 0 which means that K, is ample.
Even in dimension three these singular Fano varieties are not fully under-
stood.

(1.4.7.2.1) is very satisfactory. The new variety Y has the same prop-
erties as X, but the rank of H” is one less. We can continue the above
process with Y as in (1.1.4). So far there is no complete description of
divisorial contractions in dimension three, but it seems to be attainable
with a finite amount of work.

(1.4.7.2.2) is the bad news, since Y does not have canonical singular-
ities. In this case something new must be done. This new operation is
called flip. Currently its existence is known in dimension three only . We
will discuss it in detail in the next section. For now assume that we can
do something, and let us formulate the main theorem.

1.4.8. Definition. Let Z be a projective variety with Q-factorial ter-
minal singularities.

(1.4.8.1) Z is called a minimal model if K, is nef.

(1.4.8.2) Z is called a relative Fano model if there is an extremal ray
R such that the corresponding contraction f: Z — Y maps onto a lower-
dimensional variety. Thus if F is a general fiber, then —K is ample.

1.49. Minimal Model Theorem for Threefolds [82]. Let X be a
smooth projective three-dimensional algebraic variety over C. Then a suc-
cession of divisorial contractions and flips transforms X into a projective
variety X' which has the following properties:

(1.4.9.1) X' and X are birationally equivalent.

(1.4.9.2) X' has only Q-factorial terminal singularities.

(1.4.9.3) Either X' is a minimal model or X' is a relative Fano model.

This X' is not unique, but only one of the alternatives in (1.4.9.3) can
oceur.

Proof. Starting with a smooth threefold X we define inductively a
series of threefolds as follows. Let X, = X . If X, is already defined, we
consider K, . If K X, is nef, then let X = X;. If KX is not nef, then
we contract an extremal ray. If we obtain a Fano contractlon then again
we set X' = X;. If the contraction f;: X; — Y, is divisorial, then we set
X =Y. .1f the contraction is small, then we set X, | = the flip of f;.
All that remains is to prove that the process will terrmnate

A divisorial contraction decreases dim H’ by one, so we can have only
finitely many of these. A flip leaves dim H? unchanged. Shokurov [105]
proves that a flip “improves” the singularities, and this easily implies that
any sequence of flips is finite.



126 JANOS KOLLAR
2. Flip and Flop

Studying threefolds one frequently encounters the situation where the
“bad set” is a curve and one wants to change the threefold in codimension
two only. There are at least three such examples:

1. In (1.4.7.2.2) we saw that in trying to construct the minimal model of
a threefold one may encounter a contraction f: X — Y which contracts
only finitely many curves C, C X . These curves have negative intersection
with K, , and therefore one would like to get rid of them. Blowing up
introduces a whole family of curves that have negative intersection with
the canonical class. Thus we need to search for some other operation that
changes X in codimension two only. This operation will be the “flip.”

2. A threefold X may have several different minimal models X,. It
turns out that the induced bimeromorphic map X, --+ X, is an isomor-
phism in codimension one. Thus the difference between X, and X ; is
in finitely many curves only. One would like to understand such maps by
factoring them into a sequence of “elementary” maps. “Elementary” may
mean for instance that only one irreducible curve is changed. These are
the so-called “flops.”

3. A threefold X may have a divisor D which is ample except on
finitely many curves. One can get rid of these curves by blowing up. How-
ever, the pullback of D will not be ample, only the proper transform.
Thus, for instance, /zo(mD) will change in this process. One could try
to make D ample by changing X in codimension two only. This will
not affect ho(mD) . This situation arises very naturally for nonprojective
threefolds and will be discussed in detail in §5.

A large part of the difficulty in three-dimensional geometry comes from
these codimension-two surgery problems. It is not too hard to find exam-
ples that show that even under quite reasonable conditions codimension-
two modifications do not exist. There are some theorems that assert the
existence of codimension-two modifications under very strict restrictions.
These theorems are very hard, and have important consequences in three-
dimensional geometry.

2.1. Curve surgery on threefolds. The aim of this subsection is to dis-
cuss general facts about algebraic curve surgery on threefolds. The two
most important special cases, flips and flops, will be discussed in detail in
subsequent subsections.

2.1.1. Definition.

(2.1.1.1) A three-dimensional curve neighborhood is a pair C C X,
where C is a proper connected curve, and X is the germ of a normal
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threefold along C. We will frequently think of X as an analytic rep-
resentative of the germ. For some purposes, especially if one wants to
consider positive characteristic as well, one can think of X as a formal
scheme along C. This would require changing some definitions.

(2.1.1.2) A three-dimensional curve neighborhood C C X is called
contractible if there is a morphism f: (C C X) — (P € Y) satisfying the
following properties:

(i) Y is the germ of a normal singularity around the point P;

(i) f(C)=P;

(iii) f: X~ C — Y — P is an isomorphism.

S and Y are uniquely determined by C ¢ X . f is called the contraction
morphism of C C X .

(2.1.1.3) C C X is called a three-dimensional irreducible curve neigh-
borhood if C is irreducible.

(2.1.1.4) Two three-dimensional curve neighborhoods C, c X, are
called bimeromorphic if there is an isomorphism (X, -C,) = (X,-C,). If
both neighborhoods are contractible to P, € ¥, then (¥, -P)) = (Y,-P,),
thus in fact Y, = Y,. Therefore, two contractible curve neighborhoods
f;+ X; — Y, are bimeromorphic iff ¥, = Y,.

2.1.2. Propoesition. Let Z be a normal threefold, and let C C Z bea
connected proper curve, C C X be the germ of Z along C, and C' c X'
be a three-dimensional curve neighborhood bimeromorphicto C C X . One
can patch Z — C and X' along X - C = X' — C’' to get a new threefold
C'cZ'. Then

(2.1.2.1) Z' is proper iff Z is, and

(2.1.2.2) the composite map ¢: Z -+ Z -C =2 Z' —C' — Z' is bimero-
morphic.

Proof. ¢ is meromorphic in codimension one, and is therefore mero-
morphic by the Levi extension theorem. The properness of Z' is clear.

2.1.3. Definition. We say that the above Z' is obtained from Z by
the curve surgery (C € X) --» (C' c X).

2.1.4. Examples.

(2.1.4.1) Let V' be the total space of the line bundle &(—1, —1) over
P' x P'. Both of the projections 7;: P! x P' — P' can be extended to
morphisms

pi (P xP' cV)—(C,=P cCX,).

It is easy to see that X. is smooth, and the normal bundle of C, C X,

H
is @(-1)+E(-1). p, opl—l: X, --» X, is bimeromorphic but is not an
isomorphism.
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This example was first used in a systematic way by Kulikov [62] to
study the birational transformations of threefolds that have a basepoint-
free pencil of K3 surfaces.

(2.1.4.2) Let ¥V be the total space of the line bundle &(-1, —1) over
E x E for some elliptic curve E. Any of the projections 7,;: E x E—
E given by My (z),2y) = iz, +]z,, I, ] €Z, can be extended to a
morphism

'(ExECV)a(CA.EECX..)

The X,; are smgular along C; T and normal iff (i, /) =1.

Thus there are infinitely many nonisomorphic curve neighborhoods bi-
meromorphic to each other. (One can produce such examples with rational
singularities t00.)

We will see several problems about threefolds where the main difficulty
turns out be able to understand certain curve surgeries. Frequently the
main problem is to show that there are nontrivial curve surgeries. The
following definition singles out the curve surgery that “changes X the
most™:

2.1.5. Definition.

(2.1.5.1) Let C, C X, be a three-dimensional curve neighborhood. Let
H eH “(X > Q) bea cohomology class such that H; N [CJ ] < 0 for every
irreducible component C’ of C,. (Choosing H, to be negative is just a
matter of preference. This choice conforms to the most important special
case, the flip, where H| = ¢ (K Xl) is negative.) A three-dimensional curve
neighborhood C, C X, bimeromorphicto C) C X, is called the opposite
of C, C X, with respect to H, if there is a cohomology class H, €

(X Q) such that H, N [C’ 1> 0 for every irreducible component C’
of C, and

(X, = Cy, HhlX, - C)) = (X, - C,, H|X, - C)).

In general, the opposite may not exist and depends on the choice of H, .

(2.1.5.2) If C, is irreducible, then H, is unique up to a multiplicative
constant since H"‘(X1 , Q) = H2(C1 , Q) = Q. As we will see, there is at
most one opposite.

(2.1.5.3) If C c X is given, and the choice of H is understood, then
the opposite (if it exists) will be denoted by C* C X .

The uniqueness of the opposite follows from:

2.1.6. Proposition. Ler C,; c X, (i=1,2) be three-dimensional
curve neighborhoods. Let H, € H* (X;, Q) be cohomology classes such that
H, ﬂ[C’] <0 for every ureduczble component C’ of C,,and H, ﬂ[C’] <0
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Jor every irredicible component C{ of C,. Assume that
(X, -C, H|X,-C)=(X,-C,, Hh|X, - C,).
Then the above isomorphism extends to a morphism
g: X, — 4X,.

In particular, if H, N [C{ 1< O for every irreducible component C{ of C,
then X, = X,.

Proof. Let Z be a desingularization of the graph I" of the bimeromor-
phic map X, --+ X, , and let ¢;: Z — X, be the projections. Let Ej cZ
be the exceptional divisors (note that every g, exceptional divisor is also
g, exceptional, and vice versa). By assumption

qH =q,H,+)_ d][E|]
for some rational numbers d ;- Use the cohomological version of (5.2.5.3)

with L = -H,, M = —g¢;H,, G = 0 to conclude that d; < 0. Inter-
changing X, and X, gives that d 20, thus

g, H =g, H, .

If I' — X, is not an isomorphism then there is a proper curve B C Z
such that ¢,(B) = point but ¢,(B) C C, is one dimensional. Thus

0=g H N[B]l=q,H,Nn[B]<0.

This is a contradiction. g.e.d.

To get some further results we have to impose some restrictionson C C
X . A weak but useful requirement is the rationality of the singularities
of X . The following result collects the basic topological consequences of
rationality.

2.1.7. Proposition. Let X be a normal variety, and let Z C X be a
closed subvariety. Then the following hold:

(2.1.7.1) The local cohomology sheaves %.O(X, Z) and 7/2 (X, Z) are
zero.

(2.1.7.2) H'(X,Z) » HYX - Z , Z) is injective.

(2.1.7.3) If X has rational singularities and codim(Z , X) > 2, then
(X, Q) =0.

(2.1.7.4) If X has rational singularities and codim(Z , X) > 2, then
H*(X,Q) — HYX - Z, Q) is injective.

(2.1.7.5) If x € X is local, then Pic(X — x) — HZ(X -X,2) is an
isomorphism.
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(2.1.7.6) If x € X is local, and dimX < 3, then X is a rational
homology manifold iff X is Q-factorial.

Proof. (2.1.7.1) and (2.1.7.2) are obvious since normal implies topo-
logically unibranch. To see (2.1.7.3) we may assume that X is local, and
Z = {0} is the closed point. Using the exact sequence

2

H'(X-0,Q)— Hy(X, Q) — H'(X,Q) =0,

it is sufficient to see that H' (X — 0,Q) = 0. Let f: X' — X be
a resolution of singularities and let F = f 'I(O). Since X has ratio-
nal singularities, le*@ = 0 (see [108, 2.14]; [60, 12.1.3]). Therefore,
HY(X-0,Q = H(X -E,Q) and H'(X',Q) = 0. By [29, §3] the
restriction 0 = H'(X', Q) — H'(X' — E, Q) is surjective. This shows
(2.1.7.3) which in turn implies (2.1.7.4). (2.1.7.5) is [21, 6.1], and this
implies the last claim.

2.18. Lemma. Let X be a variety with rational singularities, and
Z C X be a closed subvariety such that codim(Z , X) > 2. If L is a line
bundle on X — Z such that its first Chern class is liftable to HZ(X . Q)
then LF extends to a line bundle over X for some k > 0.

Proof. This will be done by induction on dimZ. The dimZ = 0
case follows from (2.1.7.5). Taking a general hyperplane section and using
induction we see that L% extends across an open dense subset U C Z
for some k; > 0. Again by induction L**: extends across Z — U for
some k, >0.

2.1.9. Proposition. Let C C X be a three-dimensional curve neighbor-
hood. Assume that X has only rational singularities. Let H € HZ(X , @)
be a cohomology class such that HN[C,;]1< 0 for every irreducible compo-
nent C ; of C. If the opposite C* ¢ X~ exists, then C is contractible.

Proof. Let Cf be the irreducible components of C~. For every i
let D7 and E] be two-dimensional germs intersecting C; in a single
point and disjoint otherwise. Let Y a,[D]]= Y q,E ] = mH", where
a,, m € Z are positive. Let D; (resp. E;) be the proper transforms of
D (resp. E/)in X. Then D = kY a;D; and E = k3 a,E; extend
to Cartier divisors on X by (2.1.8) for some k > 0. The ideal sheaf
(@y(-D), Gy(—E)) C &, defines a one-dimensional subscheme Cof X
whose normal bundle &, (D) + &, (E)|C is negative. Thus, C is con-
tractible by [3, 6.2]; [7, 6.1].

2.1.10. Proposition. Let C, C X, be three-dimensional curve neigh-
borhoods. Let

g X X,



FLIPS, FLOPS, MINIMAL MODELS, ETC. 131

be a bimeromorphic map. Let C? C C, be an irreducible component. '
Assume that X, has rational singularities and that g is not holomorphic
at the generic point of Cl0 . Then C? is a rational curve.

In particular, if X, is the opposite of X,, then every component of C,
is rational.

Proof. Let T" be the closure of the graph of g with projections pi: T —
X; . By assumption, pl"l(ClO ) C T contains a surface £. p,(E) is positive
dimensional. Let D C X, be a general local divisor intersecting Do(E).
Since X, has rational singularities, so does D. Therefore, every excep-
tional curve of p{l(D) — D is rational. One of these exceptional curves
maps surjectively onto C ? .

2.1.11. Remark. Even if both X ; are smooth, the above C? can be
singular [53, 4.8].

2.1.12. Proposition. Let C, C X, be bimeromorphic three-dimension-
al curve neighborhoods. Assume that both have rational Q-factorial singu-
larities. Then

#{irreducible components of C \} = rank Hz(X Q)
= rank H*(X, - C,, Q)
= rank H(X,, Q)
= #{irreducible components of G}

The following result is needed in factoring curve surgeries as a succes-
sion of “elementary” curve surgeries.

2.1.13. Proposition. Let C, C X, be three-dimensional curve neigh-
borhoods. Let

§: X, - X,

be a bimeromorphic map. Assume that X, has Q-factorial singularities
and that g is not an isomorphism. Then there is an irreducible component
C C C, which is contractible.

Proof As in the proof of (2.1.9) we choose D and E on X,. We
obtain D and E on X, . By (2.1.6) there is an 1rreduc1ble component

C C C, such that C D C -E < 0. Thus, CI is contractible (cf. [55,
4, 10])
2.1.14. Problem. Prove (2.1.13) without assuming that X, has Q-
factorial singularities (maybe assuming that it has rational singularities).
In general very little is known about the existence of the opposite of a
neighborhood C C X . A positive answer is known only in the following
cases.
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2.1.15. Theorem. Let C C X be a three-dimensional contractible
curve neighborhood. Then the opposite CT C X * exists in any of the
following cases:

(2.1.15.1) X has terminal singularities, and K |C is numerically trivial
(H arbitrary) [98].

(2.1.15.2) X has canonical singularities, and K, |C is numerically triv-
ial (H arbitrary) [47].

(2.1.15.3) X has canonical singularities, and —K ,|C is ample, H = K,
[82].

(2.1.15.4) X is toric [99].

Comments. We will give a proof of (2.1.15.1), which provides a very
explicit description of C* ¢ X in the next subsection. See [55] for a
shorter proof of (2.1.15.2).

Some important special cases of (2.1.15.3) were done independently
by using different methods by Tsunoda [114]; Shokurov [106]; Mori [80];
Kawamata [47]. The proof of the general case is very long and complicated.
See [58] for an introduction.

2.2. Flops. The aim of this section is to develop a detailed description
of flops in dimension three.

2.2.1. Definition. Let f/: C ¢ X — P € Y be a three-dimensional
contractible curve neighborhood. Assume that X has terminal or canoni-
cal singularities and that K, |C = 0. Let H be a line bundle on X such
that H"liC is ample,

The opposite of C ¢ X will be called the flop of C ¢ X . It will turn
out that the flop is independent of the choice of H if X has terminal
singularities.

In the terminal singularity case the existence of flops was proved by
Reid [98]. The following explicit description is based on an idea of Mori
(cf. {55, §2]).

2.2.2. Theorem. Let f: C C X — P €Y be as above. Assume that
X has terminal (resp. canonical) singularities. Then Y has a terminal
(resp. canonical) singularity at P. If X has terminal singularities and
C is irreducible, then P € Y and the flop can be described in one of the
following ways:

(PeY)= (e’ +F(y,z,0=0)cC/Za,b,c,d),

2.2.2.1
( ) (n>1).

If 1: Y — Y is the involution (x,y,z,t)— (=X,y,z,t), then

(CTcXHY=(CcC) and [ =10f,
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or

PeY)=(0e(xy—g(z", Hh(z", 1) =0
(2222) ( )= ( i y—g(z, )h(z", 1) =0)
ccz,(1,-1,a,0) (n2

C C X can be written explicitly as follows. In

c*xPY/z (1, -1,a,0,-1,0)

3).

with coordinates (x,y, z,t) x (p: q) the equations of X are
xy—gh=0 and px—-qg=0.
In the affine chart U = (p #0) we let x, =q/p and y, =y . Then
(CcX)nU = (x-axis C (x;y, —h=0))
cCx,, v, 2, 1)/Z,(1, ~1, a,0).
In the affine chart V = (g # 0) we let ! =p/q and x' =x. Then
(CcxX)nV @y axsc (x'y —g=0)
cctx',y', 2, 0/2,(1, -1,4a,0).

To obtain the description of CT C X™ one only has to interchange g
and h in the above formulas.

2.2.3. Remark. If C is reducible, then the statement about the sin-
gularities of Y still holds. In case (2.2.2.1) the flop is described the same
way. In case (2.2.2.2) the flop will be described in (2.2.8).

2.2.4. Corollary [55, 4.11]. Notation as above. If X has terminal
singularities, then X and X have the same (analytic) singularities.

Proof If we have (2.2.2.1), then X and X are even isomorphic. In
the second case the singularities are at the origins of the charts U and
V. and the isomorphism is clear from the explicit description. The local
isomorphism does not take C to C *  therefore it will not extend to a
global isomorphism.

2.2.5. Proof of (2.2.2). Choose m > 0 such that K is a line
bundle. By a suitable analytic version of the Basepointi-Free Theorem
(1.4.4) [84, 5.5] we obtain that there is a line bundle L on Y such that
L= K/[‘l"]. Thus L = Kg,'"]. A resolution g: Z — X of X is also a
resolution fog:Z — Y of Y, and g*K/[{”] = (fo g)*Kg,"’]. This shows
that P € Y is terminal (resp. canonical). By (1.3.4) we obtain that in the
terminal case P € Y can be described as in (2.2.2.1) or (2.2.2.2).

(2.2.5.1) Let P € Y be as described in (2.2.2.1). Since the flop of
C C X is unique (2.1.5.2), it is sufficient to check that f": CT Cc X™ =Y
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satisfies the conditions of (2.1.5.1). Using the identification (C* ¢ X¥) =
(CcX)set H =H ~!. The only requirement that needs verification is
that

e (H'X = C) = (7" (HIX - C)).
Let A/ be any line bundleon Y~ P = X — C. Observe that (Y — P)/t =
(<C3 —0)/Z, . Therefore, M ® t"M is the pullback of a line bundle on
(C3 —0)/Z,,, and is torsion. Hence, ¢, (1"M) = cl(M"l) as required.

(2.2.5.2) Assume that P € Y is as described in (2.2.2.2). In (2.2.8) we
will give a complete description of all curve neighborhoods C ¢ X which
contract to P € Y. (2.2.2.2) will be a special case of this more general
result.

2.2.6. Proposition. Assumethat Y = (xy—F(z,t)=0)C c’ defines
an isolated singularity. Let F = f,--- f, be the irreducible factors. Set

Di=(x—fi-fi=ffi-y=0cCY (i=1,- ,k-1).
Then Pic(Y —0) is freely generated by the [D,].

We start with the following special:

2.2,6.1. Lemma [27, 1.2]. Let Y = (xy — F(z,t)=0). Assume that
F(z,t) is irreducible. Then Pic(Y —0) = 0. In fact, Y is a topological
manifold at the origin.

Proof. let C = (F = 0). C -0 is a punctured disc since F is
irreducible. Thus by [67, 8.5], if A.(f) denotes the monodromy on the
Milnor fiber, then A.(1) = £1. Also, A, (f) = A-(f) hence A, (1) = %1
and again by [67, 8.5] we obtain that Y is a topological manifold. Thus
by (2.1.7.5) Pic(Y —0) = HX(Y -0, Z) = 0.

2.2.6.2. Computations. Let Y, be the blowup of ¥ at (x = f--- fj
=0). In (2.2.2.2) set g=f1~-fj,h=];+l---fk, and C=C,.

The proper transform D;. of D, on Y, is given as follows:

(i) If i < j, then D; intersects C, at the origin of the V-chart, and
there it is given by equations

5= fy fi= fe £y =y =0,

(i) If i = j then D;. intersects C, transversally at a single point
which is not the origin of either charts and is given by equations

xy=l=fi - fi-y=0 (resp.xl—flu-fj:l—yl:O).

(iii) If i > j, then D; intersects C, at the origin of the U-chart, and
is given there by equations

Xy =S fi= S =1 =0,
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Proof of (2.2.6). First blow-up (x = f; = 0). Then on the U-chart
blow-up (x; = f, = 0) and continue. After k — 1 steps we obtain a
threefold p: Z — Y with k — 1 curves C,---, C,_, which are p-
exceptional. The proper transform _ﬁj of Dj intersects |JC; at a single
point of C ; transversally. The singularities of Z are of the form uv—f, =
0. Thus by (2.2.6.1)

Pic(Y - 0) = Plc< Uc) Pic(Z Hz(z,Z)sz(Uq,Z).

Now it is clear that the D, freely generate PicZ .
(2.2.6.3) For some purposes another basis of Pic(Y — 0) is useful. If
we write F = gh, then

(xy—-gh,x-g)=(x—-g,y(x~g)—(xy—gh))
=(x-g,8h-y)=x-g, h-y)Nn(x,g).
Therefore, [x —g=h—-y=0]=—-[x =g =0]=[x =h =0]. Hence,

- Y=

s=i+1
Thus, by (2.2.6) [x = f, =0], i =1, -, k, generate Pic(Y - 0) and
satisfy a single relation

2.2.7. Proposition [98]; Mori, Shepherd-Barron, Ue (unpublished). As-
sume thatY = (xy — F(z,t) =0) C C4/Zn(1, -1, a, Q) defines an iso-
lated singularity. Let F = f,---f., where f,(0,0) = 0, the f, being
Z,-invariants and irreducible among such power series. (Note that there
cannot be multiple factors since the singularity is isolated.) Then

Zx = f;=0]+-+Zx = f, =0]
(x=/f,=014++[x=f,=0])

Pic(Y - 0) 2 Z/nZ-[K,_,]+

Thus, as an abstract group
Pic(Y - 0) = zZ/nZ+Z" "

Proof Let Y = (xy—F(z,t)=0) andlet g: Y’ — Y be the quotient
map. Each f, decomposes as f, = [] fl.j, where the f. ; are irreducible
but not necessarily Z,-invariant.

The kernel of the pullback map

q": Pic(Y ~ 0) — Pic(Y' — 0)™
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is n-torsion. The torsion in Pic(Y —0) = H 2(Y — 0, Z) is dual to the
torsion in H,(Y -0, Z). By [30, X.3.4], Y’ —0 is simply connected, thus
H, (Y -0, Z) = Z/nZ. One can easily compute that [K,_,] has order »
in Pic(Y — 0), so that it generates the torsion.

For fixed i the Z, -action is transitive on the fl.j since f; is irreducible
among Z,-invariant power series. By (2.2.6.3) the classes [x = f; = 0]

generate Pic(Y' — O)Z" and satisfy a single relation
Ylx=f=0]=0.

The divisors [x = f; = 0] descend to Y =0, thus ¢~ is surjective.
2.2.8. Theorem. Assume that

Y=(xy-F(z,5)=0)cC'/z,(1, -1, a,0)

defines an isolated singularity. Let C C X be a curve neighborhood with
contraction map
fiCcX—-0¢e?.

(2.2.8.1) Every such X can be constructed as follows:

Firstwrite F = f, --- f, , where the f, are L, -invariant but not necessar-
ily irreducible. Let Y, = (xy — F =0). Next blowup (x=f,=0)C Y,.
The resulting Y1I has a singularity of the form x,y, — f,--- f,, = 0. Blow
up (x, = f,=0)C Yll to obtain YZ' and continue. After m — 1 blow-ups
we obtain Y, . Finallylet X =Y, _||Z,.

(2.2.8.2) C* ¢ X* is obtained in the same way from the reverse order
product F = f, - f}.

Proof. Let E be an f-ample line bundle on X . Its restriction to
Pic(X — C) = Pic(Y — 0) will be denoted again by E. Let F =g, ---g;,
where g,(0,0) = 0, the g, being Z -invariants and irreducible among
such power series. By (2.2.7) we can write

[E]l= Z a,[x = g, =0] (modulo torsion).

By adding a suitable multiple of 0 = ) [x = g, = 0] and rearranging
the g, we can assume that 0 = g, < --- < q,. Set bi = a;., — a,
i=1,---,k—-1.By(22.6.3)

[E]=)_5,[D;] (modulo torsion).
Let i, 1,, ... bethose indices such that b, # 0. Let

fi= II & (seti_;=-1).

s:lj_,-H
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By the computations (2.2.6.2) if we perform the series of blow-ups in the
statement of the theorem, then we obtain a proper modification f: Y,;_ —

1
Y, such that E|Y,~0 extends to an ample line bundle on Y,,_, . By (2.1.6)
this implies that X ® Y, /Z .
The opposite is obtained in a similar way by using —[E];

—-[E]l= (ak "ak_l)[x =& 1= 0]+ + (ak ‘al)[x =& = 01,

and this implies the second part.

2.2.9. Corollary. Notation as in (2.2.2). Assume that X has termi-
nal singularities and C is irreducible. Then there is an isomorphism
¢: H* (X, Z) — HZ(X T, Z) which makes the following diagram commu-
tative:

HYX,Z) —— HXY -0,12)

‘| |

HYX*,2) —— HY(Y -0, Z)
(The horizontal maps are the natural restrictions.)

Proof Incase (2.2.2.1) X = X" and let ¢ = —id. In case (2.2.2.2),
HZ(X, 7Z) is generated by n[x = g =0], and HZ(X+, Z) is generated by
n[x = h =0] = —n[x = g = 0]. (The n comes in because of the group
action.) Let ¢(n[x=g=0]) =-n[x=h=0].

2.3. Flips.

2.3.1. Definition. Let f: C ¢ X — P € Y be a three-dimensional
contractible curve neighborhood. Assume that X has terminal or canoni-
cal singularities and that —K,|C is ample. C C X will also be called an
extremal neighborhood (extremal nbd in the terminology of [60]).

The opposite C C X with respect to K, will be called the flip C C X.

2.3.2 Examples of flips. Examples of flips are not easy to get because
X cannot be smooth, in fact X cannot have only hypersurface singular-
ities either. The best hope is to find an example which is globally the
quotient of a flop. This is indeed possible.

(2.3.2.1) First we consider the simplest example of flops. Y = (xy —
uv =0) C C* has an isolated singularity at the origin. Let

)Y and X"=B,_ Y

(x,u)”

X =B,

X,

Let C C X (resp. C* C X¥) be the exceptional curves of X — Y (resp.
X —Y). Thus, we have the following varieties and maps:

(C"cX)=(0eY)~(CcX).
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(2.3.2.2) Consider the action of the cyclic group Z,: (x, ¥, u, v) =
({x,y,Cu,v), where { is a primitive nth root of unity. This defines
an action on all of the above varieties. The corresponding quotients are
denoted by a subscript n.

The fixed point set of the action of Y is the 2-plane (x =u =0). On
the projective quadric (xy —uv =0) C P’ the action has two fixed lines:
(x = u = 0) corresponding to the above fixed 2-plane and (y = v = 0)
corresponding to the (-eigenspace. On X therefore the fixed point set
has two components: the proper transform of the (x = u = 0) plane and
the image of the (y = v = 0) line. The latter is an isolated fixed point.
(x,v = vx!, u) give local coordinates at the isolated fixed point. The
group action is (x, v’, u) — ({x, ¢™'', Cu). In particular, the quotient
is a terminal singularity (1.3.4).

On X* the fixed point set will have only one component and contains
the exceptional curve C*. Thus X, is smooth.

It is not too hard to compute the intersection numbers of the canonical
classes with the exceptional curves. We obtain that

-1

C, Ky =—"—— and C; Ky-=n-1.

Thus, X, — Y, isthe flipof X, — Y, for n>2.

(2.3.2.3) Before going further let us note two special properties of this
example. At the isolated fixed point on X we have coordinates (x, v', u),
and the curve C is the v’-axis. A typical local Z,-invariant section of
K7 isgivenby o = (0" = x)(dx Adv’ Adu)™", which has intersection
number (n — 1} with C. Since this section is invariant, it descends to
a local section o, of Ky+. Let D, = (o, = 0). By construction, D, =
(", u) - plane}/Z, , which is a DuVal singularity (1.3.3) of type 4, _, .
Since C,-D, = C, -K;nl , one can easily see that even globally D, is a
member of |K;l|.

Another simﬁle way of getting a surface singularity out of the above
construction is to consider the general hyperplane section H, of Y, . This
is given as the quotient of an invariant sectionof Y. v—u" =0 issucha
section whose zero set on Y is isomorphic to the singularity (xy — "™ =
0). This itself is a quotient of c? by the group Z,_, . Using this, H, can
be written as a quotient of C?, and we easily get that H, is isomorphic
to the singularity c’ /Z,. (1, 1).

The first observation made in (2.3.2.3) together with the examination
of many other examples leads to the following conjecture:
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2.3.3. Reid’s Conjecture on General Elephants [100], [60]. The con-
traction map provides a one-to-one correspondence between the following
two sets.

Extremal neighborhoods:

EN = three-dimensional contractible curve neighborhoods C ¢ X
" | such that X has canonical singularities and —K +|C is ample,

and flipping singularities:

not Q-Cartier, and the general D € | — K| has a DuVal

three-dimensional normal singularities P € Y such that K, is
FS =
singularity at P.

Reid’s original hope was that this equivalence can be used to obtain a
proof of the existence of flips. To do this one needs to produce a “nice”
member of |-K,| and then to use this member to construct X . It is still
to be seen whether either of these steps can be done in the spirit envisaged
by Reid.

One direction of the conjecture is proved, and the other is also known
with some restrictions:

2.3.4. Theorem [60, 3.1). For a singularity P € Y as in (2.3.3.FS)
there is a curve neighborhood C ¢ X as in (2.3.3.EN) such that P €Y
is the contraction of C C X .

The proof of this result uses the full force of the existence of flips. Thus
at the moment it cannot be used to show their existence.

2.3.5. Theorem [82] [60, 1.7]. Let f: C Cc X — P €Y be a three-
dimensional contractible curve neighborhood. Assume that X has only
terminal singularities, C-K, <0, and C is irreducible. Then the general
member of | — K| and the general member of | — K| have only DuVal
singularities.

From the point of view of (2.3.3) the proof is again unsatisfactory. This
result appears very close to the end of a nearly complete classification of
extremal neighborhoods. At the moment it is easier to prove that flips
exist than to show (2.3.5).

The second observation of (2.3.2.3) again gives a general feature of
extremal neighborhoods. In this case though there are some exceptions:

2.3.6. Theorem [60, 1.8]. Let f:Cc X — PecY bea three-dimen-
sional contractible curve neighborhood. Assume that X has only terminal
singularities. C-K, < 0, and C is irreducible. Let P € H C Y bea
general hypersurface section of Y through P. Then H is either a cyclic
quotient singularity or one of six exceptional singularities listed in [60, 1.8];
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[58, 7.2]; the exceptional ones are all rational and have multiplicity at most
five.

Comments. We except that the list of exceptions is not much longer if
C is allowed to be reducible. However, if X is allowed to have canonical
singularities, infinitely many new cases seem to appear. We do not know
what to except.

The exceptional hyperplane sections do not correspond in any simple
way to extremal neighborhoods C C X . Several of the cases come from
infinitely many different families of extremal neighborhoods. The pull-
back f"H frequently has much worse singularities than H .

The advantage of (2.3.6) is that one can view Y as a family of fairly
simple surface singularities. X and X~ appear as a family of modifica-
tions of these surface singularities. This makes it possible to have a rea-
sonably explicit construction of X in terms of H. This description is
crucial in understanding more delicate properties of flips. One of the most
important applications is to consider flips in families of three-dimensional
contractible curve neighborhoods. From this point of view flipping in
families is not harder than flipping the individual neighborhoods. This
yields:

2.3.7. Theorem [60, 11.7]. Let f: C, C X, — Y,:t € A be a flat
family of three-dimensional contractible curve neighborhoods. Assume that
X, has only terminal singularities, C,- K x, < 0, and C, is irreducible.

Then the flips X,* fit into a flat family over A.

Comments.

(2.3.7.1) It happens frequently that C,: ¢ # 0 is reducible.

(2.3.7.2) The opposites of a flat family of curve neighborhoods usually
do not fit into a flat family. Consider for instance the family of vector
bundles

0= Gu(-3) = E, = @u(-1) =0, t€Ext (@a(-1),0.(-3)=C.
Then
£ { Oa(=2)+Fa(-2) if1#0,
T Ga(=3)+ (1) ift=0.
Let C, = P C X, be the total space of E,. Every X, is toric, and it is
not hard to see that
P'x (x> +y°+22=0cC? ifr#0,
X, = ¢ a curve neighborhood with an isolated
singularity of index 3 ift=0.
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Therefore the X do not fit into a flat family. (This example also shows
that the so- called “log-flip” is not continuous in families.)

(2.3.7.3) By using (2.3.7) the construction of flips leads to very interest-
ing conjectures concerning deformations of rational singularities. These
will be discussed in §6.

3. Applications of minimal models

3.1. Further study of relative Fano models. Let X be an algebraic
variety with Q-factorial terminal singularities, which is a relative Fano
model (1.4.8.2). Let F C X be a general fiber. Then F is an algebraic
variety with terminal singularities such that —K. is ample. Thus, F isa
Fano variety, possibly with large Picard number.

In low dimensions the typical examples of Fano varieties are P" and the
smooth quadric Q" ¢ P"*'. Thus the basic problem about Fano varieties
is:

3.1.1. Problem. How similar are Fano varieties to P"?

This is a very general question and of not much use without further
clarification. Here are some—successively weaker—technical versions of
being “similar to P".”

3.1.2. Definition. Let X be an n-dimensional variety.

(3.1.2.1) X is said to be rational if there is a generically one-to-one
map g:P" - X.

(3 1.2.2) X is said to be unirational if there is a generically finite map
g:P'—X.

(3.1.2.3) X issaid to be rationally connected if through any two general
points x,y € X there is an irreducible rational curve C_m, cX.

(3.1.2.4) X is said to be uniruled if there is an (n — 1)-dimensional
variety Y"' and a generically finite map g: Plx Y-+ X

3.1.3. Theorem.

(3.1.3.1) [12]. A smooth cubic threefold X, C P* is not rational.

(3.1.3.2) [41]. 4 smooth quartic threefold X, C P* is not rational.

Methods of proof The cubic case relies on the observation that the
intermediate Jacobian is a birational invariant up to direct factors which
are Jacobians of curves. Therefore, one needs to compute the intermediate
Jacobian. This method is applicable to several other Fano threefolds and
to conic bundles, but it seems to work only in dimension three.

Iskovskikh and Manin prove (along the lines indicated by Fano) that
the birational automorphism group of a smooth quartic is finite. Such
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computations are fairly hard. This method again can be applied more
generally, even in higher dimensions [102], [103], [94].

3.1.4. Problems. Is every Fano variety unirational? Is every Fano
variety rationally connected?

Every smooth Fano threefold is rationally connected (cf. [38, 4.1]).
Miyaoka [72] shows that if the Picard number is one, then there is a con-
nected chain of rational curves through any two points. Unirationality is
not known already for smooth quartic threefolds X 4 C P*. The answer is
probably negative.

3.1.5. Theorem [73]. Every Fano variety is uniruled, in fact it is cov-
ered by rational curves C such that —C - K, <2dimX.

For smooth varieties the method of Mori [77] works; this was observed
in [52]. In the singular case a more refined version is needed.

3.1.6. Corollary [73]. Every relative Fano model is uniruled.

3.1.7. Problems. (3.1.7.1) Are there only finitely many deformation
types of Fano varieties with terminal singularities of a given dimension?

(3.1.7.2) Let X be a Fano variety. Is the self-intersection of -K,
bounded by a function depending only on the dimension? Is the mdex
(1.3.2.2) of X bounded by a function depending only on the dimension?

(3.1.7.3) Let X be a Fano variety, and let x,y € X be sufficiently
general points. Is there an irreducible rational curve C _ containing x
and y such that

C,,  (=K) < (some function of dim X)?

Comments. In dimension three there are 104 deformation types of
smooth Fano varieties [36], [37], [83], [84].

Kawamata [48] proves (3.1.7.1) in dimension three under the additional
assumption that the rank of the Picard group is one.

By [59], [66]. (3.1.7.1) is equivalent to (3.1.7.2).

The argument of Iskovskikh [38, 4.1] shows that (3.1.7.3) also implies
(3.1.7.1).

3.1.8. In dimension three the most interesting open question about
relative Fano models is their birational classification. Given two relative
Fano models how do we decide when they are birational? A somewhat
simpler question is to decide which ones are rational. This problem is
settled for most smooth Fano varieties [5] [38], [39], and a lot of work
has been done about conic bundles [5], [102], [103]. See [40] for the
conjectured rationality criterion.

3.1.9. Problem. (3.1.9.1) Find “standard” birational models for fam-
ilies of Del Pezzo surfaces over curves. By this we mean that given
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f: X — C whose general fiber is a Del Pezzo surface, find a “standard
form” f': X' — C and a birational map g which fits into a commutative
diagram:

x -& X
Lf Lr
cC = C

For example, if the general fiber of f is P’ , then we can choose X' =
C x P*. By [14] f always has a section. Maybe one can arrange that
the section does not pass through any singular points, and every fiber is
irreducible and reduced.

(3.1.9.2) Study the birational types of the “standard” birational models.
Some results are due to Alekseev [1].

3.2. Further study of minimal models. Minimal models of a given three-
fold X are not unique. In some cases there can be infinitely many non-
isomorphic minimal models. Fortunately different minimal models are
closely related:

3.2.1. Theorem [47],[55]. Let X, and X, be three-dimensional mini-
mal models with Q-factorial szngulazztzes Then any birational map
fi X, -— X, can be obtained as a composite of flops.

onof First one needs to prove that f is an isomorphism in codi-
mension one and that K, 1is trivial along the locus |JC;, where fis
not defined [33, 4.3]. If fl is not an isomorphism, then by (2.1.12) one
of the C, can be flopped. By [55, 2.4] after finitely many flops we get
X,. qed

Since minimal models are not unique, we need to find properties that
are invariant under flops. There are surprisingly many such:

3.2.2. Theorem. Let X be a three-dimensional Q-factorial minimal
model. Then the following objects are unchanged under flops, and hence do
not depend on the Q-factorial minimal model chosen:

(3.2.2.1) The intersection homology groups IH' (X, C) together with
their Hodge structures [44, 4.12].

(3.2.2.2) The collection of analytic singularities of X [55, 4.11].

(3.2.2.3) The miniversal deformation space Def X [60, 12.6].

(3.2.2.4) The integral cohomology groups H(X,Z).

(3.2.2.5) PicX Cc WeilX.

(3.2.2.6) h°(X, @(D)) for every Weil divisor D.

(3.2.2.7) h'(X,&(mK,)) forevery i and m.

Proof. (3.2.2.2) follows from (2.2.4).

If Cc X --- C™ c X7 is a flop, then the cohomology of X and of
X" can be computed from a Mayer-Vietoris sequence involving X - C, a
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neighborhood U of C,and U~C. U retractsto C = P', thus the only
nontrivial cohomologies of U are H° and H-. Using (2.2.9) we get that
the sequences for X and X are isomorphic. (The product structure is
not an invariant).

The group of Weil divisors modulo linear equivalence is clearly invari-
ant under flops. The invariance of Pic X follows from (2.2.9). Any two
minimal models are isomorphic in codimension one; this implies (3.2.2.6).

If X—Y X" isa flop, then

W(X,E(mKy) =h'(Y, &(mK,)) = k'(X*, O(mK,-)).

This essentially follows from the fact that X x 1s the pullback of K, and
that Y has rational singularities.

Concerning (3.2.2.1) it is worth pointing out that if X ' is any smooth
projective variety birational to X, then JH'(X, C) is naturally a direct
summand of H'(X', C).

3.2.3. The whole point of constructing minimal models was to simplify
the global structure of the canonical bundle. The following immediate
consequence of (1.4.4) is the first important general result exploiting this:

3.2.4. Theorem [6], [44], [45], [97], [105]. Let X be a proper alge-
braic variety with only canonical singularities. Assume that K v s nefand
big. Then |mK| has no basepoints for all m > 0, index X|m .

3.2.5. Problem. Let X be a proper algebraic variety with only canon-
ical singularities. Assume that K ¢ 1s nef and big. Is there a constant N
depending only on the dimension such that |mK | determines a birational
map for m > N?

Comments. It is certainly not true that one can even get a morphism.
This is prevented by the presence of high index singular points.

There has been some positive results in dimension three. If one assumes
that y(&,) < 1, then one can take N = 269 [22]. In general, if 2(Gy) <L
k , then there is a bound depending on k. (@) can be arbitrarily large
for threefolds of general type if the minimal model is sufficiently singular.
Compare (3.2.6.2) and (3.2.7).

In dimension three the above problem reduces to finding an N, such
that the mth-plurigenus is at least 2 for m > N, . For this and other
purposes it is very useful to have a plurigenus formula. As usual, we can
compute only x(&y(mK,)). Singular Riemann-Roch gives a formula, but
an explicit computation of the occurring terms is not easy.

3.2.6. Plurigenus Formula. Let X be a proper threefold with termi-
nal singularities. As was mentioned in (1.3.4.4), and arbitrary terminal
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singularity (P, € X) deforms to a collection S, of cyclic quotient singu-
larities of the form C3/Zr(1 ,—1,a). Let §=S(X) be the collection of
all the S; (with multiplicities counted).
For a pair of integers 7, n define 7 by 0<7i<r and n=7 (mod r).
The following is the Barlow-Fletcher-Reid plurigenus formula [100, 10.3]:

m(m—1)2m -1

2(@y(mK,)) = o )K§§> + (1 =2m)x(@y)
(3.2.6.1) r T
- aj(r—aj) r—aJ
+¥ (m = 12 +E
and
3.2.6.2) (O) = - K, - (X>+Z"2‘1
(3.2.6. ,((X—~2—4X62 524r'
One can rewrite (3.2.6.1) as
n(im - 1)2m — 1 m
(G mK ) = 1)2( )K§)+-1-2—K1\,'cz+x(@)
(3.2.6.3) 2 Wl o
e J(r—aj)
+; " 12r + j};a 2r )

Comments. Since X has only isolated singularities, ¢, makes sense.
Alternatively, one can take ¢, of any resolution of singularities and push
it down to X .

The sum in (3.2.6.3) is a periodic function whose period divides
index(X). Also, if index(X)|m, then the sum is zero, hence we have
only the polynomial part.

It is conceivable that (3.2.5) can be answered by understanding the com-
binatorics of (3.2.6.3). It is not at all clear what the nature of the periodic
part is.

The following result helps us understand K, - ¢,:

3.2.7. Theorem. Let X be a projective threefold. Assume that K v s
nef.

(3.2.7.1) [121], [112]) If X is smooth, then

K < 8K, ¢, = —647(6y).

(3.2.7.2) [64] If X has isolated singularities (e.g., if X is a minimal
model), then

3
K/(Y) <3Ky -6
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If K, is not big, then we do not have a vanishing for the higher coho-
mologies of &, (mK ) on a minimal model. Still the above results can be
used to gain some information about the plurigenera:

3.2.8. Theorem [69], [70], [71]. Let X be a three-dimensional mini-
mal model. Then hO(X, Gy(mK,)) > 1 for some m > 0.

The above two results of Miyaoka are some of the least understood theo-
rems in threefold theory. I think that it would be worthwhile to investigate
them again for simplification or clarification.

The following is one of the basic open problems in the theory of minimal
models:

3.2.9. Abundance Conjecture [98, 4.6]. Let X be an n-dimensional
minimal model. Then &, (mK ) is generated by global sections for some
m>0.

There are some results of Kawamata [46] and Miyaoka [70] about spe-
cial cases. It seems that even in dimension three new ideas are needed for
the proof.

Finally we pose a problem about generalizing the canonical bundle for-
mula of elliptic surfaces to higher dimensional minimal models.

3.2.10. Conjecture (canonical Bundle Formula). Let X be an n-dimen-
sional minimal model. Assume that &, (mK,) is generated by global
sections for some m > 0. Let g: X — I(X) be the Stein factorization of
the corresponding morphism, and A C I(X) be the locus of the singular
fibers. Then there are

(i) a nef line bundle L on I(X),
(ii) an effective divisor }-a,D; on I(X) such that (JD, CA;
(iii) An integer m > maxa,,

such that

CumK) =g (Lo, (3 aD,) &8y (mK, ) .

To be more precise one would like to show that a; depends only on the
degeneration of certain Hodge structures along D,. See [115], [25], (81,
5.13] for closely related results.

3.3. Applications to threefolds. While the current point of view in
three-dimensional algebraic geometry is that minimal models are the basic
objects, it is important to note that the theory can be successfully applied
to several old problems that seemed completely intractable before. The
first such examples are about various birationally invariant properties of
threefolds. It is natural to expect that these are easier to study on a bira-
tional model whose global structure is comparatively simple.
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3.3.1. Theorem [73], [70] (k = —cc characterization). Let X be a
smooth projective threefold. Then the following three statements are equiv-
alent:

(3.3.1.1) There is a rational curve through every point of X .

(3.3.1.2) X is uniruled.

(3.3.1.3) H(X, ©%) =0 for every i>0.

Proof Consider all components of the Hilbert scheme of rational
curves on X . There are only countably many such. If there is a ratio-
nal curve through every point, then one of these components must give a
dominant map. If necessary, we can take a lower-dimensional subvariety
to get a generically finite dominant map.

If X is uniruled, then there is a rational curve through a general point
of X . If we specialize to any x € X, this rational curve will specialize
to a collection of rational curves, one of which will pass through x. If
g: P! x Y -+ X is generically finite, then

R, 0y <@ <Y, 0 ) =17, 0f) K@, o) =0.

Assume (3.3.1.3). Let X' be the model whose existence is guaranteed
by (1.4.9). By (3.2.8) it cannot be a minimal model. Therefore, X' isa
relative Fano model, thus X' and hence X are uniruled by (3.1.6).

3.3.2. Theorem [44], [6], [25] (Finite generation of the canonical ring).
Let X be a smooth projective threefold Then the canonical ring

R(X) = ZH (X, 0%

is finitely generated.

Proof If X is uniruled, then R(X) = C. The canonical ring is a
birational invariant, therefore it is sufficient to consider the case when
X is a minimal model. If K, is big, then (3.2.4) and [123] imply the
result. If x(X) < 1, then the claim is fairly easy [23]. The remaining case
is when X is an elliptic fiber space over a surface §. Here one uses a
version of (3.2.10) to reduce the problem to S [25]. The corresponding
finite generation problem for surfaces was solved by Fujita [24]. q.e.d.

Minimal models also help in trying to understand the group of birational
self-maps: Bir X . This direction was started by Hanamura [31] who later
proved several of his results without assuming the existence of minimal
models [32]. Here we mention a related result:

3.3.3. Proposition. Let X be a three-dimensional minimal model.
Then there is a natural representation

Bir X — Pic X/ Pic’ X,
whose kernel is a compact group.
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Proof. Let p: X --+ X be a birational map. For any Cartier divisor
D the divisor p*D is again Cartier by (3.2.2.5). This defines the repre-
sentation. If H is an ample divisor and p*“H is also ample, then p is an
automorphism by (2.1.6) g.e.d.

The existence of flips in families (2.3.7) implies that suitably chosen
minimal models of a flat family of smooth threefolds again form a flat
family. This way one can prove some results about families of threefolds.

3.3.4. Theorem [60, 1.3] (Deformation invariance of plurigenera). Let
{X,: t € T} be a flat family of smooth projective threefolds. Assume that
T is connected, and that for some 0 € T and some m > 0 we have
hO(XO, ca?;") > 2. Then hO(X[, w?{") is independent of t € T for every
n.

The assumption hO(XO , w?(:") > 2 is probably not needed.

3.3.5. Theorem [60, 1.4] (Moduli space for threefolds of general type).
Let A be the functor “families of threefolds of general type modulo bira-
tional equivalence,” i.e.,

Smooth projective families X/S such that every fiber is a
threefold of general type. Two families X' /S and X 2 /S

H(S) =
(5) are equivalent if there is a rational map f: X' /S -+ X 2 /S

which induces a birational equivalence on each fiber.

Then there is a separated algebraic space M which coarsely represents
A . Every connected component of M is of finite type.

3.4. Applications to deformations of surface singularities. Let S,ited
be a one-parameter family of surfaces. Then the total space X = Us, is
a threefold. Studying birational models of X may lead to various results
on families of surfaces. A special case of this problem, when S;iteA s
a degeneration of K3 surfaces, was the first instance that flops appeared
in the literature as a tool [62].

3.4.1. Degenerations of surfaces. Let S,:t € A be a one-parameter
family of surfaces. We assume that S,: 1 # 0 is smooth but S, may be
even reducible. By the semistable reduction theorem [50, Chapter 2] after
a suitable base change we can take a new degeneration S,': t € A such that
Sy is reduced with normal crossings only as singularities. Let X' = (JS!
be the total space of the family.

Due to the special structure of X’ the minimal model program for X’
is easier than that for arbitrary threefolds. This special case of (1.4.9)
was settled earlier by [114], [106], [79], [80], [47] (the latter is the only
complete published proof). The end result is the following:
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3.4.2. Theorem. Assume that S,:t+# 0 are not ruled. Then, the rel-
ative minimal model of X'[A is a threefold X|A satisfying the following
properties:

(3.4.2.1) X has only Q-factorial terminal singularities, and K+ is nef
on every fiber S, .

(3.4.2.2) S, for t #0 is a smooth minimal surface.

(3.4.2.3) S, is reduced with only the following types of singularities:

i) (xy=0)cC® or (xyz=0)cC®;

(il) (1=0)/Z,C (xy+ f(z",8)=0)/ZcC*/z,(1, -1, a,0), where
(a,n)=1.

Comments. If one restricts the birational type of the general fiber S, ,
then frequently one can restrict the class of singularities even more. These
questions have been worked out in detail for the case where S, is trivial
canonical class.

The above result can serve as a guiding principle to determine which
singular surfaces should appear at the boundary of the moduli of surfaces.
The best choice seems to be the one given in [61, Chapter 5].

The following question is the only missing ingredient in the construction
of a compactification of the moduli of surfaces of general type:

3.4.3. Problem. Find a bound on the order of the group occurring in
(3.4.2.3ii) in terms of the general fiber S,: ¢ # 0 alone. This is not known
even when §, is a quintic in P’

Let f: X — Y be a flat projective family of surfaces. In general the
minimal resolutions of the fibers do not form a flat family. The following
result gives a necessary and sufficient condition.

3.4.4. Theorem ([63] for Gorenstein singularities; [61, 2.10] in gen-
eral). Let f: X — Y be flat family of projective surfaces with isolated
singularities. Assume that Y is connected. Then the following are equiva-
lent:

(3.4.4.1) The self-intersection Ky‘. . K7,~ of the canonical class of the

minimal resolution 7(", of the fiber Xv is independent of y € Y .
(3.4.4.2) There is a smooth family of projective surfaces f: X — Y and

a finite and surjective morphism p:Y — Y such that (X), = X, for

every y€ Y.
3.4.5. Definition.
(3.4.5.1) For a sequence of natural numbers a,, --- , a, we define the

continued fraction [q,, --- , a,] recursively by
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1
[a,]=a,, la;, -~ ,a,l=a,~— G 0]
(3.4.5.2) Let K , be the set of sequences ky,---, k,_, such that
tky, -, k,_\1= (The indices are chosen to work well for the next
deﬁnmon ) It is known (see, e.g., [110]) that

1 (2e-6
#K -2 e-2<e—3>'

(3.4.5.3) Given a cyclic quotient singularity c? /Z,(1, q) let

(e is the multiplicity of the quotient singularity.)
(3.4.5.4) For a cyclic quotient singularity c? /Z,(1,q) let

K(C/Z,(1, ) = {lky, - . k,_ ) € K,_,lk; < a; Vi}.

3.4.6. Theorem [61], [11], [110]. The numbe7 of irreducible compo-
nents of the versal deformation space of c? /Z,(1,4q) is exactly
K(C/Z,(1. 9)).

Comments. [61, Chapter 3] establishes a one-to-one correspondence
between the components of the versal deformation space and certain par-
tial resolutions of the singularity. The above formula was found by Christo-
phersen by studying explicit equations of the versal deformation space.
Some technical details of his proof are still unfinished. Based on the ob-
servation of Christophersen, Stevens showed that there is a one-to-one cor-
respondence between the partial resolutions studied in [61] and the above
continued fractions.

In§6 we will consider the possibility of extending some of these results
to deformations of arbitrary rational surface singularities.

3.5. Applications to the resolution of singularities. Two-dimensional
singularities have unique minimal resolutions, and this is very useful in
their study. In dimension three there is no unique minimal resolution, and
this is one of the reasons why we know much less about three-dimensional
singularities.

As a consequence of the Minimal Model Program we obtain two can-
didates as substitutes for the minimal resolution. Let us formulate their
existence as a separate theorem:
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3.5.1. Theorem [82]. Let X be a three-dimensional algebraic variety
(not necessarily proper). Then there are two birational modifications

term t can c
X — X = X

with the following properties:

(3.5.1.1) X™™ has only Q-factorial terminal singularities, and X
has only canonical singularities.

(3.5.1.2) Kyen is c-ample; Kyem is (toc)-nef

(3.5.1.3) X is unique; X*™ is unique up to flops.

(3.5.1.4) t is crepant, i.e., 'K yan = K yiem .

Since we understand three-dimensional canonical and terminal singular-
ities reasonably well, these objects can be viewed as suitable intermediaries
between X (which has arbitrary singularities) and a resolution (which is
locally nice but globally uncontrollable).

Both (3.4.4) and (3.4.6) can be viewed as applications of this principle.
We hope that in the future (3.5.1) will be used even more.

(3.5.2) Here we want to explain how the point of view given by minimal
models helps in the resolution process of singularities. This answers an
“old dream of many specialists” [28, p. 60]. (To be fair, this is probably
not the kind of answer the specialists dreamed about.)

The Jungian method [28] starts with a threefold X and a finite mor-
phism onto a smooth threefold f: X — Y (eg., ¥ = P3). By embedded
resolution of surfaces we can assume that the branch locus B C Y is a
divisor with normal crossings. This implies that the singularities of X
are toroidal, hence it is much easier to resolve them. In dimension three
it is however not clear how the local toroidal resolutions can be patched
together (especially if we want to preserve projectivity). This is the point
where minimal models come in.

Since X™" is unique and locally definable, it is sufficient to construct
it locally. The local existence of X“" follows from the general result, but
in the toroidal case it is much easier and was established by [99]. Thus we
obtain X",

In dimension three the structure of canonical singularities is sufficiently
understood to proceed with the resolution.

Reid [96], [98] investigates partial resolutions of canonical singularities.
He shows how to construct #: X'*™ — X" as a sequence of explicit
blow-ups. Most of the time we need to blow up only closed points and
curves, but in certain cases some other ideal sheaves are blown up. If the
higher-dimensional minimal model program works, then this step should
also be possible in higher dimensions.

can
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X"™™ has only isolated, terminal and toroidal singularities. For most
applications it is better not to resolve these. Also, the resolution process is
now completely local: there are no compatibility questions involved if the
local resolution process is via blowing up closed subvarieties that dominate
the singular points.

4. How to find extremal rays?

In this section the characteristic of the base field is arbitrary.

The definition of extremal rays is very simple, and in some cases it is
easy to exhibit all extremal rays on a threefold. However, by the nature of
the definition this requires an overview of all curves on a threefold. This
is sometimes very hard. Therefore it is of interest to find other methods
that are more local in nature.

Let us review the situation for surfaces. There are three kinds of ex-
tremal rays.

If C c S isa (—1)-curve, then this fact is shown by the first order
infinitesimal neighborhood of C in S. Therefore no global information is
required to assert that C isa (—1)-curve, and hence generates an extremal
ray.

If CcS isa fiber of a P'-bundle or a line p? , then local information
is not sufficient. Indeed, we can always destroy the extremality of C by
blowing up any point away from C. Thus we need some global informa-
tion. Let C c S be a smooth rational curve of self-intersection 0 or 1.
Then C generates an extremal ray iff every deformation of C stays irre-
ducible. Thus again a fairly limited amount of global information allows
us to decide whether C generates an extremal ray or not.

The aim of this section is to consider the analogous problem for three-
folds. Even for smooth threefolds I am unable to give a complete answer
at this moment.

4.1. Seemingly extremal rays.

4.1.1. Definition. Let X be an algebraic space.

(4.1.1.1) Let Z,f X be the free abelian semigroup generated by closed
k-dimensional irreducible and reduced subspaces of X . Thus an element
of Z; X is of the form

> alvl,

where the V; are k-dimensional closed, irreducible and reduced subspaces,
a, >0 are natural numbers, and the sum is finite.
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(4.1.1.2) We define effective algebraic equivalence for elements of zZ,
Z, € Zk X as follows:

(i) If W is a normal (possibly reducible) pure dimensional variety,
and p: W — C is a flat morphism onto a smooth connected curve,
then any fibers are effectively algebraically equivalent.

(i) If g: W — X is a proper morphism, and Z,Z, € Z+W are
effectively algebraically equivalent, then 8121, 812, € Z] ¢
are also effectively algebraically equivalent, where g, isthe push—
forward of cycles [26, 1.4].

(iii) Finally, take the transitive hull of the relation given by (i) and (ii);

ie., this definition is like the definition of algebraic equivalence but we
require all intermediate cycles to be effective.

Effective algebraic equivalence of Z,Z,¢ Z; X will be denoted by

z,8z,.

(4.1.1.3) Given a cycle Z the symbol QSE[Z 1 will denote all effective
cycles Z; such that a positive multiple of Z is effectively algebraically
equ1valent to a positive multiple of Z,.

One reason for this definition is that effective algebraic equivalence has
the following property:

4.1.2. Proposition. Let f: X — Y be a proper morphism between al-
gebraic spaces. Let Za vl ] and Zb (U] 1 be two effective k-cycles which
are effectively algebrazcally equivalent. Assume that every V. is contained
in a fiber of f. Then every U, is also contained in a fiber of f

Proof. Choose morph1sms pii W, — C,, fibers 4,, B; ¢ W, of D,
and proper morphisms g W, — X Wthh show the effectwe algebralc
equivalence between Za [V;] and Eb ; 1.e.,

Za[V =g..[4,], g.[B]= M*[A ] fori=1, n—1,

8, B,1= Zb ;1.
By induction on / we get that fo g W,— Y maps 4, to a finite point
set. Therefore by [13, 1.5] fo g, factors through the Stem factorization
of p;, hence fog,(B,)= fo 8:.1(4,.,) is again a finite point set. g.e.d.

Algebraic equwalence does not have the above property if ¥ is non-
projective:

4.1.3. Example. Let Z c P* be a cubic hypersurface with a single
ordinary node locally given by the equation xy — uv = 0. Let DX —Z
be the blow-up of this node. The exceptional divisor of p is E = P' xP'.
Let L, L, C E be two intersecting lines. The normal bundle of E is
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Gp(—1, —1). Therefore E C X can be contracted in any of the fiber
directions to get a pair of smooth nonprojective threefolds f;: X — X, .
fi(L;) = point but f(L,_;) is one dimensional. This shows that the
L; ¢ Qills l-

However, L, and L, are algebraically equivalent. This can be seen as
follows. The projection of Z from the node exhibits X as the blow-up
of P? along a curve of type (3,3) on a smooth quadric surface Q. Let
F C X be the exceptional set of the projection g: X — P° . The restriction
g: E — Q is an isomorphism. If a general line / C i degenerates to a
line on @, then in the corresponding limit on X we obtain a line on E
and three lines on F. Thus, L, and L, are algebraically equivalent on
X.

It is worthwhile to note that if Z C P isa generic hypersurface of
degree at least five with a single ordinary node, then the corresponding
lines L, are not algebraically equivalent [10].

4.1.4. Definition. Let X be a proper algebraic space (smooth or pos-
sibly with canonical singularities).

(4.1.4.1) A curve C C X is said to generate a seemingly extremal ray
R= Q:H[C ] if the following conditions hold:

(i) C-K;<0;
(i) if 2,,Z,¢€ ZfX are two l-cycles such that

Z, +Z, € QgCl,

then Z, is numerically equivalent to a multiple of C.

(4.1.4.2) A morphism f: X — Y is called the contraction associated
with R if the following conditions hold:

(i) Y isnormal and f&y =&y ;

(i) an irreducible curve D C X is mapped to a point by [ iff there
is a cycle Z, such that D+Z, € Qi[C]. R is called contractible
if f exists.

4.1.5. Comments.

(4.1.5.1) If C generates an extremal ray, then C also generates a seem-
ingly extremal ray. This is clear from the definition.

(4.1.5.2) It may be more natural to require in (4.1.4.1) that Z, €
Q:E[C ]. This is a stronger restriction. I do not know if the two versions
are equivalent. At the moment I see some advantages of both.

(4.1.5.3) The definition corresponds to what we observed in the surface
case: The only information used is about deformations of multiples of C.
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Allowing multiples of C and deformations over several irreducible curves
is necessary for threefolds.

(4.1.5.4) My hope is that on a projective threefold a seemingly extremal
ray looks very much like an extremal ray and that for nonprojective three-
folds this is the correct generalization of the notion of extremal rays. There
are several results supporting the first hope. Unfortunately, I know very
little about the nonprojective case that supports the second hope.

(4.1.5.5) It seems that in positive characteristic there are more defor-
mations of curves than over C. Therefore it is possible that the above
definition needs to be modified over C. In the theorems this is reflected
by the fact that over € we need to assume the existence of certain rational
curves whose existence can be proved in positive characteristic.

4.1.6. Proposition. Ler X be a smooth projective surface and let Z,
Z, € Z X be 1-cycles. Then the following hold:

(4.1. 6 1) If dimAb X =0 or if Z, is irreducible and Z,-Z >0, then

Z =2, iff 3m> 0 such that mZz, ffngz.

(4.1.6.2) An irreducible curve C C X generates an extremal ray iff it
generates a seemingly extremal ray. If D € Z | X, then

[D] € R7[C] & D € QC].

Every seemingly extremal ray is contractible.

(4.1.6.3) The usual cone theorem holds for = in the following Jorm: If
H isampleon X and ¢ > 0 are fixed, then for any Z € Z'X thereis an
effective cycle

B+ aE € QilZ]
such that the E, are extremal rational curves and ¢B-H > B - (=Ky).

Proof. Z, = Z, if 3m > 0 such that [mZ|] = [mZ,] as elements
in NS(X). Thus if dimAlbX = 0, then mZ, and mZ, are linearly
equivalent. If Z, 1s irreducible, Z,-Z >0, and m is sufficiently large,
then every linear system numencally equwalent to mZ, is nonempty, thus
we can deform mZ, into mz,.

If C ¢ X generates an extremal ray, then by definition it also gen-
erates a seemingly extremal ray. Conversely, assume that C generates a
seemingly extremal ray. We can write

(4.1.6.4) C=B+)Y akE,

where ¢éB-H > B - (-K,), and the E. are extremal rational curves. If
C-C >0, then (4.1.6.4) converts into an effective algebraic equivalence
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by (4.1.6.1).Thus QL C] = QLE,]. If C-C <0, then gither C isa
(~1)-curve, and we are done, or C is a fiber of a not necessarily minimal
ruled fibration and for such curves the claim is clear. This shows (4.1 .6.2).

Tt is sufficient to show (4.1.6.3) for irreducible curves. IfC-C>0,
then the usual cone theorem implies (4.1.6.3). If C is irreducible and
C . C <0, then the previous argument works.

4.1.7. Example. Even for surfaces £ may behave unusually. For
instance let E be an elliptic curve, and let L be a nontorsion degree zero
line bundle. Let X = Proj (& + L). Then, X has two sections S, and
S, with self-intersection zero. These sections are algebraically equivalent
but S, ¢ QlS; ;1.

For threefolds there are only partial results.

4.1.8. Definition. Assume that C C X generates a seemingly ex-
tremal ray R = Q[C].

(4.1.8.1) We say that R covers X if for every x € X there is a 1-cycle
Z. € Q}IC] such that x € supp Z, .

(4.1.8.2) We say that R rationally covers X if in addition there is a
rational component of Z_ containing X . If x is smooth, then in positive
characteristic these notions are equivalent (cf. [13, 1.8]).

4.1.9. Theorem. [36,§4] Let X be a normal threefold with Q-factorial
singularities. Assume that C C X generates a seemingly extremal ray R
which rationally covers X . Then R is contractible, and we have one of the
following cases:

(4.1.9.1) dim N,(X) =1 ;in particular, X is Fano.

(4.1.9.2) dimN,(X) = 2 and the contraction g: X — Y is onto a
smooth curve Y . The fibers of g are all irreducible.

(4.1.9.3) The contraction g. X — Y isontoa normal projective surface
Y. If the characteristic is different from two, then g is generically a P!
bundle (in the étale topology). In characteristic two the generic fiber can
also be a planar double line.

Proof. Conditions (4.1) and (4.3) of [56] are clearly satisfied, hence the
results follow from [ibid. 4.5-6].

4.1.10. Theorem [56, 1.4]. Let X be a smooth projective threefold
whose Kodaira dimension is nonnegative, l.e., RY(X, K3™) > 0 for some
m > 0. Assume that C C X generates a seemingly extremal ray R.
In characteristic zero assume in addition that C is rational. Then R is
contractible. The collection of all curves in R covers a surface E, and we
have one of the following situations:

(4.1.10.1) E is a smooth minimal ruled surface with typical fiber C and
C-E=—1. Only the fibers of E arein R.
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(4.1.10.2) E = P* and its normal bundle is ag(~1).

(4.1.10.3) E = P* and its normal bundle is @(~2) .

(4.1.10.4) E = Q, where Q is a quadric cone in P, and its normal
bundle is @:(~1)|Q.

The cone theorem for ) is not known for smooth threefolds. The proof
of [78, 1.4.1] gives the following:

4.1.11. Theorem [78, 1.4.1}. Let X be a smooth projective variety
over a field of positive characteristic. If H is ample on X and ¢ >0 are
Jixed, then for any Z € Z +X there are effective cycles.

A+ aE € QL[Z] and A+B+) (a,+b)E,; € QLlZ]

such that the E; are rational curves satisfying 0 < E;-(—K,) < 1+dim X,
and &B . HZB (=Ky).

4.1.12. Remarks. (4.1.12.1) This formulation is stronger than [78,
1.4.1]. Of course mZ ~ B + ) b,E, but again we restrict the kind of
algebraic equivalence that we allow.

(4.1.12.2) Essentially nothing is known about characteristic zero ver-
sions of this result.

4.2. How to recognize extremal rays? We consider the following ques-
tion: Given a curve C which generates a seemingly extremal ray, how do
we decide whether C generates an extremal ray? We will always assume
that the seemingly extremal ray is one of those described in (4.1.9-10).

The above question has a finer version. Namely, if C does generate an
extremal ray we may want to know whether

[D] e R'[Cl & D € QLC].

If this holds, then we will say the seemingly extremal ray generated by C
equals the extremal ray generated by C.

4.2.1. Proposition. Let X be a projective variety. Assumethat C ¢ X
generates a contractible seemingly extremal ray R. Let . X — Y be the
associated contraction. If Y is projective, then C generates an extremal
ray. The converse is also true in characteristic zero if X has canonical

singularities.

Proof Assume that Y is prmecuve and let H beampleon Y. Let
[D] € R[C]. Then f(D)-H = const-f(C)-H = 0, hence f(D) is a
point.

Conversely, assume that C also generates an extremal ray of NE(X).
The contraction of R*[C] (1.4.7) has to coincide with f. In positive
characteristic the missing ingredient is the vanishing R’ fG,=0.
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4.2.2. Corollary. Let X be a normal projective threefold with isolated
Q-factorial singularities. Assume that C C X generates a seemingly ex-
tremal ray R which rationally covers X. Then C C X generates an
extremal ray.

Proof. let g: X — Y be the morphism constructed in (4.1.9) (¥ =
point for (4.1.9.1)). If Y is projective, then C C X generates an extremal
ray. The projectivity of Y is clear except when dimY = 2. Y isanormal
surface, and every point of Y is finitely dominated by a smooth point.
Therefore Y has only Q-factorial singularities, hence Y is projective
(4.3.4). q.ed.

If dimN(X) > 1, then it is probably always true that the seemingly
extremal ray generated by C equals the extremal ray generated by C. The
analogous question for Fano threefolds raises very interesting questions
whose answers are known in special cases only.

4.2.3. Problems. Let X be a smooth Fano variety (i.e., —K, is
ample).

(4.2.3.1) Is the vector space AE,(X) = {1-cycles}/{algebraic equiva-
lence} finitely generated? The answer is yes in positive characteristic by
[78, 1.2].

(4.2.3.2) Assume that dimX = 3 and PicX = Z. Let C,D € X be
two curves. Is D € Q:E[C 1?7

The situation turns out to be more complicated for the seemingly ex-
tremal rays described in (4.1.10).

4.2.4. Proposition. Let D C X be a Cartier divisor on a smooth pro-
jective variety. Assume that —K,|D is ample and —D|D is nef and nu-
merically nontrivial. Then there is an extremal ray R C NE(X) such that
if C c X isan irreducible curve and [C1€ R, then C C D.

Proof. Observe that the assumptions imply that D is a (possibly sin-
gular) Fano variety. Thus the conditions are very restrictive.

Let H ¢ X be an ample divisor. Let

t = max{s|H + sD in nef},

and let
F={zeNE(X)|z-(H+1tD)=0}.

By construction F is an extremal subset of NE(X) such that
K |(F — 0) is negative. Therefore F contains the class of an effective
curve, in particular ¢ is rational. Thus F is an extremal face and con-
tains at least one extremal ray.

4.2.5. Corollary. Let X be a smooth projective threefold, and let C C
X generate a seemingly extremal ray R which is one of those described in
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(4.1.10). If E~P? or E= Q (the quadric cone in ?3), then the seemingly
extremal ray generated by C equals the extremal ray generated by C .

In the next subsection we will see an example of a seemingly extremal
ray of type (4.1.10.1) which is not an extremal ray. In the positive direction
we have the following useful result:

4.2.6. Proposition (Pinkham, unpublished). Let X be a smooth pro-
Jjective threefold, and let E C X be a smooth minimal ruled surface with
typical fiber C such that C - E = —1. In Ng_llx is not ample, then the
seemingly extremal ray generated by C equals the extremal ray generated
by C.

Proof. It is clearly sufficient to show that C generates an extremal ray.
By (1.2.4) we can write

C=[limD]+> akE,,

where the E; generate extremal rays, and D;-K,>0. 3 a,E; #0 since
C-Ky =~-1. NE(E) is generated by C and by another element S €
NE(E) which may not be represented by a cycle with rational coefficients.
NE"IiY is not ample iff S-E>0.

Split D, into two parts D; = 4, + B;, where 4, is made up of those
irreducible components that are contained in E, and B; is made up of
those irreducible components that are not contained in E . Thus we obtain

C EaC+bS+[limBi]+ZaiEi,
where a, b >0.If a> 1, then
O0=(a—1)C+bS+[limB]+> akE,,

which is impossible since X is projective. Therefore taking intersection
with E gives

0>(1~-a)C-E=bS-E+[imB]-E+) a(E, E).

On the right-hand side, S-E£ > 0 since NE’lfY isnot ample and [lim B,]-E >
0 by construction. Thus there is a curve E , such that E, - E <0, hence
E, C E. Of course E, has to generate an extremal ray in NE(E) too.
S ¢ RY[E,] since S-E>0 and E,-E < 0. Thus [C] € R*[E,].

4.2.7. Corollary. Notation as in (4.2.6). If C does not generate an
extremal ray in X, then E is contractible to a point.

4.2.8. Corollary. Let X be a proper smooth nonprojective threefold.
Let C C X be a smooth rational curve. Assume that B.X is projective.
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Then

either C =0, Ny = F(-1) +&(-1), C is contractible f: (C C
X)—(0€Y) and Y is projective,

or C #0, the opposite X --+ X~ exists and X is projective.

Proof. By (4.2.6) C has negative bundle. Therefore C' can be con-
tracted, and the inverse flip X --» X~ exists by (4.3.5). Let H' be avery
ample divisor on B.X, and let H C X be the image of H .

If CH >0, then X is projective by (4.1.1). If C =0, then C-K,, =0,
and the adjunction formula gives that Nc =2g(-1)+&(-1). Applying
the Basepoint-Free Theorem (1.4.4) to H gives the morphism fiX-7Y
onto a projective variety Y with a single ordinary node.

Otherwise C - M < 0 for some divisor M and C-H < 0. Hence, for
the inverse flip C~ C X~ we have

C” M >0 and C -H >0.

Therefore, mH ™ + M~ isample on X~ for 1 < m (5.1.1.).

4.3. Examples of seemingly extremal rays. (4.1.3) shows that there
are seemingly extremal rays which are not equal to an extremal ray. It
is not too hard to get similar examples of seemingly extremal rays which
do not generate an extremal ray. However, in all known constructions
the exceptional surface was rational. Moishezon asked whether this was
necessarily the case. The following example answers this question.

4.3.1. Example. There is a smooth proper scheme X of dimension
3 and a smooth curve C C X such that X is not projective but B X is.
C can have arbitrarily high genus.

The construction will be done in two steps with auxiliary lemmas col-
lected at the end.

4.3.2. Step 1. Assume that there are projective varieties U and |4
of dimension three and a morphism f: U — V satisfying the following
properties:

(4.3.2.1) U is smooth.

(4.3.2.2) There are two points P, Q € V' such that f’1 is an isomor-
phism over ¥V —{P, Q}.

(4.3.2.3) f~ Y(P) = C is a smooth curve of genus g, and f (Q)
is a smooth rational curve.

(4.3.2.4) The normal bundle of C is negative.

(4.3.2.5) The normal bundle of L is the direct sum of two line bundles
@(a) and @’(b) such that a<0,b<0,and (a,b)=1.

(4.3.2.6) RT[C] =R "[L]c NE(U).

Then one can construct an example as in (4.3.1).
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Proof. Let (L™ c U™) be the opposite of L ¢ U given by (4.3.5), and
let /7 : U™ — V be the corresponding morphism. U~ —C and U™ —L"~
are both quasiprojective, but U™ is not projective since [C] and [L7]
generate a line in NE(U ). We claim that B U™ is projective. To see
this it is sufficient to show that B U™ /V is relatively projective.

Let H C U™ beadivisor suchthat H~-L” >0. Let EC B.U™ be
the exceptional divisor of the blow-up n: B.U~ — U™ . By assumption
(4.3.2.4) the normal bundle of E is negative. If m is sufficiently large,
then the divisor

-mE+n H™
is B,U /V-ample.

Of course U~ has singularities along L~ . By (4.3.5) these singularities
are isolated; let R C U™ be the singular set. By (4.3.4), (U™ — R) is not
quasiprojective. Let X — U™ be a relatively projective resolution of these
singularities such that (U™ —R) C X . Then X is not projective but B.X
is.

4.3.3. Step 2. Construction of f: U — V asin (4.3.2).

Construction. Let us start with a surface S C P° of degree d, . Assume
that S contains a line L and a smooth planar curve C of degree 4, .
Assume that LN C = & . The normal bundles are

Nys=@Q2-d)IL and Npg=&(1+d, -d,)C.

We can apply (4.3.6) to conclude that there is a morphism #: S — S onto
a projective surface S such that L and C are contracted to points, and
7 is an isomorphism on S~ (LU C). Let G ¢ S be a smooth ample
curve disjoint from #(LUC), andlet G=7n""'G.

Embed S c P° c P* and let V € P* be a sufficiently general point.
Let F c P* be the cone over G with vertex ¥. Thus SN F consists
of the curve G and a finite point set P(S, F). Finally, let H C P bea
sufficiently general hypersurface of degree d, containing § and F.

4.3.3.1. Lemma. Assume that d, is sufficiently large. Then H has
the following properties:

(Sing H) the singularities of H are the following:

(i) An isolated singularity at V.
(ii) Ordinary double points at P(S, F).
(iil) Ordinary double points at some other points of S. We may assume
that the set of these—P(S)—is disjoint from L and C. In general
there will be singular points along G .
(iv) Ordinary double points at some other points of F . We may assume
that the set of these—P(F)—is disjoint from G.
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(Div H) The group of Weil divisors modulo algebraic equivalence is gen-
erated by S, F, and [@(1)] over Q.

Proof. The statements about the singularities are easy.

In order to see (Div H) let us take a general hyperplane W C P*. Then
SNW and FNW are two smooth curves intersecting transversally. By
the Noether-Lefschetz theorem the Picard group of a general surface of
large degree containing these curves has rank three. On the other hand
(cf. [18]),

Weil(H) = Pic(H — Sing H) — Pic(WNH) =7’ .

This shows (DivH). g.e.d.
We will resolve the singularities of H in three steps. First we blow up
the sheaf &(S) to obtain p,: H, — H, i.e,

H, =Proj, » &(iS).
i=0
@(S) is Cartier outside P(S)U P(S, F), thus pfi is an isomorphism
outside P(S)UP(S, F). Let S, C H, be the proper transform of S. By
construction &(S,) is p,-ample. Also, S, =S and
N5[|H; =O(1+d,~dy)|S.

Next we resolve the singularity at V. This gives p,: H, — H,. The
exceptional set is disjoint from S, . Let &(—E) be p,-ample where E is
a suitable p,-exceptional divisor. Let F, be the proper transform of F .

Finally we blow up &(F,). This gives p,: Hy — H, which is an iso-
morphism outside P(F). Let F, be the proper transform of F,. Let
U=H,.

Observe that by construction

M =@ (aF,) ® py@(-bE) ® p;0,2(cS,) ® p3p,0,C(d)

is very ample on U for suitable ¢ € b < ¢ € d. We may also assume
that H'(U, M) =0 and that d = e(dy—d,— 1) for some e.
If 1<j<e-c~-1 and d, < d,, then

H'(S,, M2&(jS,) =H'(S, El(e —c— j)(d; — d,— 1)) 2F(aG)) = 0,
and
Mg &((e —c)S))|S, = (aG) is generated by global sections.

Therefore the conditions of (4.3.6) are satisfied, and we obtain a contrac-
tion map f: U — V which is an isomorphism outside ;. On §, it
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induces the map given by &(aF). Thus f contracts the two curves L
and C and is an isomorphism elsewhere.
The normal bundles of L and C in U can be computed from the

sequences
0= Npys = Ny = Ny plL = 0.

0— NC[S — NC|L" — Slwlc ~ 0.

In particular they are both negative and deg N LU = 3~d,. We can choose
d, in such a way that dy — 3 is a prime number, therefore condition
(4.3.2.5) can also be satisfied.

The Picard group of U is generated (over Q) by the classes & (S)),
@(F;), p3p3p,@(d) and by p,-exceptional divisors. The Dp,-exceptional
divisors are all disjoint from L and C and so is F;.

éﬁ)(sﬂlS} gp;p;pr@’(l + dz - d3)|S1 >
thus R[C] = R"[L] C NE(U). Therefore all the conditions of (4.3.2)
are satisfied for a suitable choice of S and H.

4.3.4. Lemma [51, p. 328, Corollary 3]. Let W be a normal, proper
algebraic space with Q-factorial singularities. Let T C W be a finite set.
If W — T is quasiprojective, then W is projective.

4.3.5. Lemma. Let L C U be a smooth rational curve in a smooth
threefold. Assume that the normal bundle of L is the direct sum of two line
bundles &(a) and &(b) such that a <0 and b < 0. Then the opposite
(L cU) - (L” c U") exists in the category of algebraic spaces. If
(a,b)=1, then U™ has isolated singularities.

Proof. The problem is local around L. As in [78, 3.33] we obtain
that a suitable neighborhood of L in U is analytically equivalent to a
neighborhood of L in the total space of the vector bundle &, (—-a) +
&, (—b). The latter admits a torus action, and the existence of the opposite
becomes an exercise in toric geometry. See [99] for similar computations.

4.3.6. Theorem (Castelnuovo’s contractibility criterion). Let W be a
proper algebraic space and let S ¢ W be a Cartier divisor. Let M be a
line bundle on W generated by global sections. Let ¢: W — W' be the
Stein factorization of the corresponding morphism. Assume the following:

(4.3.6.1) H' (W, M) =0,

(4.3.6.2) H'(S, 8,0 M(jS))=0 for 1<j<k~-1,and

(4.3.6.3) &c ® M(kS) is generated by global sections. Let cont: S — S
be the Stein factorization of the corresponding morphism.

Then M(kS) is generated by global sections, and the Stein factorization
Cont: W — W of the corresponding morphism has the following properties :
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(4.3.6.4) Cont|W —S =¢|W -5,

(4.3.6.5) Cont|S = cont, and

(4.3.6.6) W is projective if W is.

Proof. One can easily check that only the above conditions are used in
the proof given in [34, V.5.7] for the classical case.

4.3.7. Remark. The above example is also interesting from the point
of view of projectivization by blowing up. Let X be a proper Moishezon
threefold. By [75] there is a sequence of smooth blow-ups such that the end
result is projective. By (4.3.4) the last necessary blow-up is the blow-up of
a curve. We see that this curve need not be rational.

However, the example also shows that there are rational curves around,
namely the proper transform of L™, and we could also blow up the proper
transform of L™ to achieve projectivity. Some considerations suggest that
this may always be possible.

4.3.8. Conjecture. Let X be a proper Moishezon threefold. Then
there is a sequence of blow-ups centered at points or smooth rational curves
such that the resulting threefold is projective.

5. Nonprojective threefolds

The aim of this section is to review and simplify some results about
nonprojective threefolds and to ask some questions suggested by flips and
flops. We will consider only threefolds that are close to being algebraic,
namely compact Moishezon threefolds (possibly with some mild singulari-
ties). These are the same as proper algebraic spaces. We start by discussing
some ampleness criteria.

5.1. Ampleness and projectivity criteria. All results of this subsection
are valid over an arbitrary ground field.

The basic ampleness criteria of Nakai-Moishezon, Seshadri and of
Kleiman can be formulated for algebraic spaces too. The proofs given
in [51], [33] are for schemes, but they apply to algebraic spaces without
modification once the conditions are suitably changed.

5.1.1. Theorem (Nakai-Moishezon criterion [86], [74], [51, IIL.1]). Let
Z be a proper algebraic space and let H be a line bundle on Z . Then
H is ample on Z iff for every irreducible closed subspace X C Z the
dim X-fold self-intersection of H|X is positive.

5.1.2. Theorem (Seshadri criterion [33, 1.7]). Let Z be a proper alge-
braic space, and let H be a line bundle on Z . Then H is ample on Z iff
there is a positive constant € such that for every irreducible curve C C Z
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we have
H-C > emax{mult, C}.
xeC -

5.1.3. Theorem (Kleiman criterion [5, IV.2]). Let Z be a proper
algebraic threefold, and let H be a line bundle on Z . Assume that Z has
only Q-factorial singularities. Then H is ample on Z iff H induces a
strictly positive linear function on

NE(Z) - {0},

and no irreducible curve C C Z is numerically equivalent to 0.

In particular, Z is nonprojective iff either NE(Z) contains a line
(through the origin) or there is an irreducible curve C C Z which is nu-
merically trivial.

Proof. 1f Z is a proper algebraic space of dimension » with Q-
factorial singularities, then the quasidivisoriality condition of [51, IV.2]
is satisfied by subspaces of dimensions » and n — 1. In dimension three
this is sufficient to make the proof work. I do not know what happens in
higher dimensions.

Peternell noted (unpublished) that for smooth Moishezon n-folds in
characteristic zero one can prove Kleiman’s criterion using projectivization
with a sequence of smooth blowups. g.e.d.

For smooth threefolds (5.1.3) was strengthened by [92] using analytic
techniques. We will give a simple algebraic proof of his result which also
works in the presence of certain singularities.

5.1.4. Theorem (cf. [92]). Let Z be a proper algebraic threefold, and
assume that Z has only normal Q-factorial singularities. Then Z is non-
projective iff there is an irreducible curve C C Z such that

~[C1e NE(Z).

Proof. The conditions are sufficient by (5.1.3). To get the converse let
C ¢ Z be an irreducible curve. If C is numerically trivial, then

-[C1=[Cle NE(Z),

and we are done. So we may assume that there is no such C, thus by
(5.1.3) NE(Z) contains a line. This means that there are sequences of
effective 1-cycles C; and D; such that

lim[C,] 4+ lim[D,] =0 and lim[C;] # 0.
By the Chow lemma we can find a projective threefold Z " and a proper

birational morphism f: Z' — Z. There are only finitely many curves
B; C Z such that f ~! is not an isomorphism generically along B Iz Let
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B C Z' be any irreducible curve such that f: B" — B, is finite, and
let B) be a rational multiple of B} such that f,[B}] = [B,]. For any

other curve B c Z let B' ¢ Z' be the proper transform. Thus for any 1-
cycle 4 in Z we have defined a I-cycle 4’ in Z' (with possibly rational
coeflicients) such that if L is a line bundle on Z , then

L-A=fL-4.

Take an ample divisor H on Z' and let H = f(H'). Since Z is
Q-factorial, some multiple of H is Cartier; we may assume that in fact
H is Cartier. Then f"H = H' + E, where E c Z' is an effective divisor
and f(E)CUB,;.

0= H-(lim[C,]+1im[D,]) = H -(im[C;]+im[D/])+E -(lim[C,]+Lim[D]]) .
Also, im[C,] # 0 hence lim[C]] # O and therefore
H' - (im[C;]+ im[D]]) > H - (im[C}]) > 0.

Hence
E - (im[C]]+ lim[D]]) < 0.

E is an effective divisor, and the B;. are the only transforms contained
in E. Therefore there is at least one curve—call it B;—and a positive
constant & such that if a, is the coefficient of B, in C;+D,, then a, > ¢
holds for infinitely many values of /. Now take C = B, and then

1. T
~[C]=¢"' im[C, + D, - ¢B,] € NE(Z). q.e.d.

The following result is interesting because it provides a characterization
of projectivity without giving a criterion of ampleness.

5.1.5. Corollary. Let Z be a proper algebraic threefold, and assume
that Z has only normal Q-factorial singularities. Then Z is projective iff
there is a line bundle L on Z such that L-C > 0 for every irreducible
curve C C Z. (L need not be ample.)

The following is a very interesting open problem:

5.1.6. Problem. Let X be asmooth proper Moishezon threefold. As-
sume that X is not projective. Can one find an effective l-cycle C ¢ X
such that C is numerically trivial?

5.2. Projectivization with flip or flop.

5.1.2 Let us return to a construction used in the proof of (5.1.4). Let
Z be a proper normal Q-factorial algebraic space of dimension three.
Let f: Z' — Z be a birational projectivization. Let H' be a very ample
divisoron Z' andlet H = f(H'). We may assume that H is Cartier. Let
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B = UB C Z be the fundamental set of f~'. Then H is very ample
on Z — B and has positive intersection with every curve not contained
in B. If H- B; > 0, for every j, then Z is projective by (5.1.5). (In
fact it is easy to see that A is ample.) If H-B; < 0, then B, can
be contracted (cf. [53, 4.10]), and we can hope that the opposite (2 1.5)
exists. If we are lucky, then after finitely many such curve surgeries we
obtain a threefold X* and a line bundle H™ such that H™ is nef and
big. In general X~ may have fairly complicated singularities. We may
hope that some multiple of H™ is basepoint free, thus X * dominates
a projective variety. I do not know any example where this cannot be
done with suitable choice of H . On the other hand, the procedure should
involve inverses of flips, which sometimes do not exist. Therefore I do not
want to make any conjecture. The following form of the problem is very
interesting:

5.2.2. Problem. lLet X be a proper algebraic threefold (smooth or
with mild singularities). Can one find a (possibly very singular) projec-
tive variety X© such that X and X" are isomorphic in codimension
one? This means that there are subsets B ¢ X and B* ¢ X~ and an
isomorphism X — B = X" — B such that dimB < 1, dimB™ < 1.

This question is especially interesting for threefolds with K, nef, since
extremal ray theory does not give anything for them. For these threefolds
the answer is very satisfactory.

5.2.3. Theorem. Let X bea proper algebraic threefold with Q-factorial
canonical singularities. Assume that K, is nef. Then after finitely many
flops one obtains a proper algebraic threefold X~ with Q-factorial canonical
singularities which is a small modification of a projective variety Y. K,
is nefand Y has only canonical singularities. Furthermore,

[H'(X,Q =IH (Y, Q).

The isomorphism preserves Hodge structures but it does not preserve prod-
ucts.

If X is smooth, then X* is also smooth, and Y has only terminal
hypersurface singularities (1.3.4.2).

Proof. Let H beasin (5.2.1) and let L = H+ mK, for a sufficiently
large m. Let C ¢ X be an irreducible curve such that L-C<0. By
[55, 4.10] C is contractible. Since m is sufficiently large, K, - C = 0.
Therefore the flop of C exists [47, 6.10] and any sequence of L-flops
terminates [535, 6.2]. Hence after finitely many flops we obtain X * and
L™ such that X* has Q-factorial canonical singularities, K- is nef and
L™ is nef and big. By the Basepoint-Free Theorem (1.4.4) some multiple
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of L™+ K - 18 basepoint-free. This gives
x-Lxt Ly

where ¢ is a composition of flops, and p is the morphism induced by a
large multiple of L¥ + K = H +(m+ DK - - There are only finitely
many curves C* c X* such that H™ - C* < 0, thus the same holds for
LT+K - In particular, p contracts only finitely many curves. The state-
ment about the intersection homology groups follows easily from general
results [55, 4.12].

5.2.4. Corollary. Let X be a proper algebraic threefold with Q-fac-
torial canonical singularities. Assume that K is nef. If X is not projective,
then it contains a smooth contractible rational curve.

One can weaken (5.2.2) by allowing B ¢ X or BY ¢ X to have
dimension larger than one. If we require only that dimB < 1, then any
proper birational morphism f: X* — X provides an example. It is more
difficult to find X" if we require that dimB™ < 1.

5.2.5. Preposition. Let X be a proper algebraic threefold with termi-
nal singularities. Assume that X is not uniruled. Then there is a projective
variety X* and closed subsets B ¢ X and BY ¢ X such that dimB" < 1
and X — B is isomorphicto X™ — B .

Proof. By (1.4.9) there is a projective threefold with terminal singular-
ities X* such that K,- is nef, and X" is birational to X. We claim
that this is the required example. Let Y be a resolution of the graph of a
birational equivalence between X and X :

x Ly L xt,
We can write
K, =p*KX~I~E1 +F,
Ky =q¢ Ky +E,+G,,

where the E,, F;, G, are positive linear combinations of divisors satisfy-
ing the following conditions: For an irreducible divisor B C Y,

if B is a component of E;, then dimp(B) < [ and dimg(B) < [;
if B is a component of F, then dimp(B) < 1 and dimg(B) = 2;

(5.2.5.1)

if B is a component of G,, then dimp(B) = 2 and dimg(B) < 1.

These conditions determine the divisors E;, F,, G, uniquely. Moreover,
since X has terminal singularities, the support of E, + F, contains all
p-exceptional divisors. By (5.2.5.1) we have

(5.2.5.2) P'Ky=q Ky +G,+(E,~E ~F).
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We need the following easy lemma:

52.53. Lemma. Let g: U — V be a proper birational morphism
between algebraic spaces. Assume that U is smooth and projective. Let
D, c U be the g-exceptional divisors, L be a line bundle on V., M be a
g- nef line bundle on U, and G c U be an effective divisor such that none
of the D, is a component of G. Assume that

gL=M+G+)_ dD,.
Then d; >0 for every i.
Proof Taking general hyperplane sections of U the problem can be

reduced to the case when U is a surface. Then G becomes g-nef and
hence can be absorbed into M . Let us write

gL=M+D"-D",
where the D' (resp. D) are nonnegative linear combinations of g-
exceptional curves without common components. The intersection matrix

of the exceptional curves is negative definite, thus if D™ # 0, then there

is an exceptional curve C C supp D~ such that C-D™ < 0. Thus
0=C-f'L=C-M+C-D"-C-D” >0.

This is a contradiction. g.e.d.

Applying the lemma to (5.2.5.2) we conclude that F, = &. Therefore
B = p(E, + E,+G,) and B" = g(E, +E,) satisfy the requirements.
g.e.d.

My main interest in this proposition is that in some cases it answers the
following question:

5.2.6. Conjecture. Let X be a proper Moishezon space with terminal
singularities, and let S € X be a proper subset of codimension at least
two. Then there is a proper and irreducible curve C C X which is disjoint
from S. More generally, there should exist such a curve C through any
sufficiently general point of X .

To put this into perspective observe that in Zariski’s example of a non-
projective surface (blow up 12 general points of a plane cubic and contract
the proper transform of the cubic) every curve of the surface passes through
the unique singular point.

5.2.7. Proposition. Let X be a Moishezon threefold with terminal sin-
gularities. Assume that X is not uniruled. Let S C X be a subset of di-
mension 1. Then through any sufficiently general point x € X there is a
smooth irreducible curve C C X which is disjoint from S

Proof. We use the notation of (5.2.5). Let x € X — (S U B). Since
X" is projective, two general hypersurface sections of X~ through Xx
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give a smooth curve C* ¢ X¥ which is disjoint from B”, and from
the proper transform of S, pog™' isan isomorphism along C™, hence
C=po q"l(C ™) is a curve with the required properties.

For uniruled manifolds a different argument, communicated to me by
J.-M. Hwang, settles the conjecture:

5.2.8. Proposition (Hwang, unpublished). Let X be a smooth, proper
uniruled Moishezon manifold of dimension n, andlet S C X be a subset of
codimension at least 2. Then through any sufficiently general point x € X
there is a rational curve C C X disjoint from S.

Proof. Since X is uniruled, there is a (nonproper) variety Y of di-
mension 7 — 1 and a dominant morphism g: ¥ x P' — X . For general
y € Y the map

a2+ Ou+ -+ 0 2T, L[y} xP — g T |{y} x P’
| ——

(n—1)—times

is generically injective. In particular, g~ Ty{y}x= P! s generated by global
sections. Let Hom(ﬁl’l , X) be the space parametrizing morphisms of P'
to X.Let UC Hom(E”I , X) be an open neighborhood of g|{y} xP' such
that for every f € U the pullback f~ T, is generated by global sections.
Asin [77, §1] we obtain that U is smooth of dimension /zO(LP1 , fTy) at

f.
For s € X and p € P’ let ULP C U be those morphisms f such
that f(p) = s. Since [~ T, is generated by global sections, by [ibid,
Proposition 3] we obtain that US’ ’ is smooth of dimension

W@, Ty e @u(-p) = k'@, /' Ty) —n.

Let U; C U be those morphisms whose image intersects S. Then

U= U U ,-

pe?l seS

Thus, dimUg < dimU — 1. Therefore, if f € U is sufficiently general,
then the image of f is disjoint from S.

5.3. Moishezon threefolds with b, = 1.

5.3.1. Notation. For the rest of this section X will be a smooth Moi-
shezon threefold such that the rank of the Néron-Severi group is one. In
particular, this condition is satisfied if 4,(X) = 1. We fix a generator &(1)
of the Néron-Severi group such that @ (k) is effective for some k > 0.
The construction of (5.2.1) gives an effective divisor H which has to be
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numerically equivalent to a positive multiple of &(1). Therefore, there
are only finitely many irreducible curves C C X such that C-&(1) < 0.
Note that it is possible that the self-intersection & (1)(3) of Z(1) is
negative.
Up to numerical equivalence we can write

K,=06(m), m=my €.

We try to classify X according to the sign of m1.
5.3.2. Theorem. Notation as above. Assume that m > 0. Then there
is a morphism
fi X=X

onto a projective variety X with at most terminal hypersurface singularities
(1.3.4.2), and there is an ample line bundle G5(1) on X such that

(1) 2 f1((1)).

S is small and the self-intersection of & (1) is positive. Furthermore, the
group of Weil divisors of X modulo algebraic equivalence has rank one.

Conversely, if X is a projective variety with at most terminal hyper-
surface singularities such that the group of Weil divisors modulo algebraic
equivalence has rank one, and f: X — X is a small resolution, then X is
a Moishezon threefold with tk NS(X) = 1 which is nonprojective if f is
not an isomorphism.

Proof. By (5.3.1) there are only finitely many curves B S CX such that
&(1):B ;< 0. Since m > 0, we conclude that there are only finitely many
curves Bj C X such that KX-B]. <0.1If KX-BJ. < 0 then by [19, Lemma
5; 58, 5.17 one can deform Bj inside X . This is impossible, thus &(1)
and K, are nef. By the Basepoint-Free Theorem (1.4.4), some multiple
of @(1) gives the required morphism onto X .

5.3.2.1. Remark. If X is allowed to have Q-factorial terminal or
canonical singularities, then there can be curves which have negative inter-
section with K, . These can be flipped, and after finitely many flips some
multiple of H* becomes basepoint free.

5.3.2.2. Example. Let X be a general hypersurface of degree k > 3
with an ordinary node given locally by the equation xy — zt = 0. Let
X be obtained by blowing up (locally in the Euclidean topology) the ideal
(x.z). Then PicX ®Z, and X is not projective. K, = f &k -5).

5.3.2.3. Corollary. Let g: X — T be a smooth, proper, holomorphic
morphism between complex spaces. Assume that T is connected and further
that for some O € T the fiber X, is a smooth projective threefold with
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by(X,) = 1 such that m = m X, 0. Then every fiber of g is projective, in
fact g is projective.

Proof We may assume that 7 is irreducible. Let us consider the line
bundle Wy/r - By assumption cu];/T is very ample on X, for k£ > 0,

hence there is a Zariski open set 0 € U, C Z such that a)g} is very ample

on X, for t € U,. By upper semicontinuity of 1® we conclude that
hO(X,, a)l}"{) < const-k> for k > 0 for every ¢t € T. Thus every fiber of
g is Moishezon.
From (5.3.2) and (1.4.2) we see that hl(X,, Gy (m+s))=0 for s >0.
Thus ’
(X, Gy (m+5))

is independent of t € T for s > 0. As in (5.3.2) there are morphisms
Z: X — T and f: X — X such that

G (1) = [ a(1).

We claim that f is an isomorphism. If f is not an isomorphism over
a point 7 € T, then we take a general disc #: A — T through 7 and
consider the family over A induced by base change. Thus we have

]FA:XA—AYA.

f, is an isomorphism except over finitely many points of YA . The central
fiber of X, has only isolated hypersurface singularities, hence X, itself
has only isolated hypersurface singularities. The claim follows from the
next easy result:

83.24. Lemma. Let 0 € U be a four-dimensional isolated hypersur-
face singularity. Let f:V — U be a prop morphism. Assume that f is
an isomorphism over U — 0 and that f~'(0) is at most one-dimensional.
Then f is an isomorphism.

Proof let D C V be a small three-dimensional disc intersecting
£71(0) at a single point. Then f(D) ¢ U is a divisor near 0, Cartier
on U —-0. By [30, XI.3.1.4] this implies that f(D) is Cartier at 0. There-
fore f is an isomorphism (cf. (6.1.2)). q.e.d.

If m =0, then (5.2.3) gives the following:

5.3.3. Theorem. Let X be a smooth Moishezon threefold such that
K, is trivial. Then afier finitely many flops one obtains a smooth Moishe-
zon threefold X+ which is a small resolution of a projective variety Y . K,
is trivial, and Y has only terminal hypersurface singularities. Furthermore

H(X.Q=IH(Y,Q.
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The isomorphism preserves Hodge structures, but it does not preserve prod-
ucts.

The m < 0 case seems the hardest, and there are only partial results.

5.3.4. Theorem [87], [88]. Notation as above. Assume that m < 0.
Then

(5.3.4.1) m> —4;

(53.4.2) m=-4 if X=P;

(5343 m=-3 if X = Q* (the smooth quadric in Y.

5.3.5. Corollary. Let X be a Moishezon threefold which is homeo-
morphic to P* (resp. Q3 ). Then X is isomorphic to P’ (resp. Q3 ).

5.3.6. Remark. (5.3.4) and (5.3.5) are claimed [91]. Unfortunately
there is a gap in the proof of [ibid, Lemma 3.5]. Therefore (5.3.4) should
be attributed to Nakamura, and (5.3.5) seems new. In a letter (March
1990) Peternell informed me that he was preparing an article containing a
proof of (5.3.5). Nakamura [87], [88] already observed that (5.3.4) implies
(5.3.5) provided x(X) < 3.

Proof of (5.3.5). Let L be the generator of H (X, Z) with positive
self-intersection. As in the case when X is assumed projective [35], [8] one
can easily compute that K, = —4L (resp. K, = —3L). With the notation
of (5.3.1) L =& (+1). Assume that L =& (-1). Then K, = &(4) (resp.
Ky =& (3)) hence by (5.3.2) we get that

0<e)¥ =-L% <o,

which is impossible. Therefore K, = &(—4) (resp. K, = &(-3)), and
the result follows from (5.3.4).

5.3.7. Remarks. (5.3.7.1) The proof presented for (5.3.4) gives useful
information about the m = —2 case too. I know very little about the case
m = —1. Recently Nakamura extended his method to the case m = —2.
It seems that he will be able to go further than (5.3.12).

(5.3.7.2) The idea of the proof is to study the linear system |&(1)|. We
have to show that it is very ample. Nakamura [87], [88] studies the base
locus very carefully. Here we study the image of the rational map given
by |&(1)|. Then only new ingredients are (5.3.8) and (5.3.11). The other
lemmas can all be found in [87], [88].

The first step in the proof of (5.3.4) is the following lemma.

5.3.8. Lemma. Let X be a normal proper n-dimensional algebraic
space. Let M be a Cartier divisor on X which is ample in codimension
one (i.e., there is a codimension two subset Z C X such that M|X — Z is
ample). Then

HX L E(K, + M) = 0.
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Proof. If r is sufficiently large, then the linear system |rM| is very
ample when restricted to X — Z. Let f: X' — X be a proper, smooth,
birational projectivization such that

firM| = |H'| + ZaiEi,
where |H'| is basepoint free and big, and > E; is a divisor with normal
crossings only. Then
£ 3 — 1 ! al
fM=—H+ > —LE,.
Let [ ] denote the integral part of a real number. Then by (1.4.2) and {89,
3.6]

J ! s _ & . .
W(x', e (Ke+ M= [2]E))=0 forj>0,
and
] * a. .
RfE(Ky+/ M- [F|E)=0 forj>0.
Let a
F=16(Kp+/M=-3 [L]E).
Then Hj(X,F) = 0 for j > 0, and we have an injection i: F —
@ (K, + M) which is an isomorphism in codimension one. Thus
0=h"NX,F) = KN X, OK, + M)
is surjective.

5.3.9. Corollary. Notation as in (5.3.1). Assume that m < 0. Then

(5.3.9.1) PicX =7,

(5.3.92.0) KX, 80k)=0ifk<;

(5.39.2.1) K'(X,@k) =0ifk<0;

(5.3.922) K(X,@K) =0ifk>m;

(53.92.3) R(X,OK) =0ifk>m;

(5.3.9.3) 2(Oy) = 1.

Proof. (5.3.9.2.0) and (5.3.9.2.3) are clear. (5.3.9.2.1) and (5.3.9.2.2)
are dual. Since #(1) is ample in codimension one, (5.3.8) implies
(5.3.9.2.2) for k> m.

The only remaining vanishing is hl(X , @) = 0. This will be done by
studying the Albanese map. Assume that we have a nontrivial albanese

map alb: X — Alb(X). Alb(X) is Moishezon and hence projective. Let
L be ample on Alb(X). Then alb”™ L is a nontrivial line bundle on X
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which is trivial on the fibers of alb. Since rk NS(X) = 1, this implies that
alb is generically finite. Therefore h°(X, &(m)) = h°(X, O(Ky)) > 0
[116, 10.1], which is impossible.

These results imply that y(&y) = 1 and that Pic X isdiscrete. If Pic X
contains torsion, then we can construct an étale cover X — X . (5.3.8)
gives that hz(ﬁ;‘;) = /23(@’)7) = (. On the other hand,

1 - h'(F5) = 1(@p) = deg(X/ X)(Oy) = deg(X/X).

Therefore Pic X is torsion free and has rank one.
5.3.10 Corollary. Notation as above. Then the following hold:
(5.3.10.1) m > -4;
(5.3.10.2) If m = —4, then

XX, Ok) = Lk + D)k +2)(k+3) and o(1) =1
(5.3.10.3) If m = -3, then
A(X,00) =Lk + 1)(k+2)(2k+3) and ()P =2.
(5.3.10.4) If m = -2, then
2X.EW) =W)P Lk + 1)k +2) +k + 1.

Proof. (5.3.9) computes y(X,&(k)) for m < k < 0. Since
x(X,@(k)) is a polynomial of degree at most three, knowing it at four
places specifies it exactly. The leading coefficient is obtained from Rie-
mann-Roch. q.e.d.

The following is the main step in the proof:

5.3.11 Lemma. Notation as above. Let s = hO(X, @ (1)) and let

hi X =Y cP!

be the induced map. If m < =3 orif m = -2 and s > 4, then h is
generically finite.

Proof. Step 0. We will need several times the Del Pezzo-Bertini clas-
sification of varieties of minimal degree in P" (cf. [20]). The following
statements will be needed:

If Y ¢ P” is a nondegenerate k-fold of degree d,then d >n+1-k.
If equality holds and there is a nonempty open subset U C Y such that
every hyperplane section of U is irreducible, then either ¥ =P" or Y is
a quadric hypersurface of rank at least 4.

Since every member of |&,(1)] is irreducible, this implies that if degY
=s—dimY, then Y iseither P° or @’ (P! and P? are excluded since
s > 4).
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Step 1. By (5.3.9-10) we get that s > 4 if m = —4 and s > 5 if
m = —3. Thusinallcases s > 4. @(1) is the effective generator of Pic X,
therefore every member of |&(1)| is irreducible. Since dim|&(1)] > 2,
this implies that |@(1)] is not composed of a pencil. Thus, dimY > 2.

Step 2. Let H,, H, € |@(1)] be two different members, and let C =
H, N H, be the intersection curve (with scheme structure). Then

(i) HYX, @) — H(C,&(1)|C) is surjective.
(i) A%@)=1.
(iii)
hl(@) )_ { 0 if7n§—3,
Tl iftm=-2.
(1v)
0 if m=—4,
h(C G(-DIC)=< 1 if m= -3,
s—=2 ifm=-2.

All these statements can be obtained from (5.3.9) by standard diagram
chasing.

Step 3. Assume that dimY = 2. Then Y C 1 P! isa nondegenerate
surface, and hence has degree d > s — 2. By Step 0 we have in fact
d >s—2. f cannot be a morphism since 4, & (1) = 0 holds for only
finitely many curves 4, .

Every section § € HO(X, @ (1)) gives a map
S(=1): Oy(-1) = Oy

Let I, C &, be the ideal generated by the images forall s € H° (X,&(1)).
Then B = Spec( v/15) C X is the scheme theoretic base locus of |&(1)].
For general H, and H, the intersection curve decomposes as

C=FuD,U---UD,,

where D, are the moving components, and suppF = suppB. The re-
duced structure of F is independent of the H, (for general H,), but the
scheme structure along F may depend continuously on the choice of H,.
The moving curves are parametrized by the points of Y, at least gener-
ically. For generic y € Y the arithmetic genus of the curve D, and the
intersection number &(1)- D, are independent of y.
Since
1> h' (@) >d k&),

!
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we conclude that 4'(&,) = 0. Thus D, = P'. Also,

s=22h'(C,E(=1|C) 2 d k' (D, Gy(-1)ID,).
Since d > s — 2, this implies that 4'(C, @,(~1)|D,) = 0, so that
deg@,(1)|D; < 1.

Let H € |@,(1)| be a divisor not containing D;. H contains B, and
D, intersects B since C is connected by (ii) of Step 2. Therefore, H and
D, have at least one intersection point along F . Thus, their intersection
number is 1, and they intersect transversally at a smooth point of H .

Assume that the intersection points of D, and B do not depend on the
choice of y € Y for generic y. Then D, U---U D, is connected, hence

s=22h' (@ (=D|C) = ' (@ (-1)|D,U---UD,)
=d-y(D,U---UDy)>2d~1.
Therefore, d =s—1 and x(D,U---UD,)=1. This implies that the D,
intersect at a single point p, and the embedding dimension of D, U---UD,
at p is d > s—1. On the other hand, the general H € |@,(1)| is smooth at
p,thus s—1<d < 2. This contradicts s > 4. Therefore, the intersection
points of Dy and F move with y. Thus, dimF = 1, the D, are disjoint
and they intersect the same irreducible component £ C F.

By the above results, the general H € |@y(1)] is generically smooth
along E, thus at the generic point of E the scheme B is contained in a
smooth surface. In particular, I, is a local complete intersection at the
generic point of E. Therefore, if s,,5, € HO(X , @(1)) are sufficiently
general, then the inclusion

(51("1) H 52(“1)) - IB
is an equality at the generic point of E. This means that /. and [, agree
generically along E .
A general section & of &, (1) gives amap h: G, — G.(1). Let

G = iml@. 1 G.(1)].

G is a subsheaf of &.(1) which is generated by a global section. Its image
is contained in I, ® @-(1), hence it is generically zero along E. On each
of the curves D, it is nontrivial with at least one section. Therefore
s=hX,o0) =2+r%C,e01) >2+h%C, G)
>2+d2>224+s5-1=s5+1.
This contradiction shows that ¥ cannot be a surface.



178 JANOS KOLLAR

Proof of (5.3.4). The linear system |&@,(1)| gives a map

fiX--Y, cP,
where Y is a threefold of degree d. Two general members H,, H, €
|#,(1)] intersect in a curve C = F U D, where F is the fixed part, and
D is the irreducible moving curve.

deg@y(1)|D =deg f-degY + b,

where b = 0 iff f is a morphism. Since m < —3, D = P' by (iii) of
Step 2. By (iv) of Step 2,

deg f-degY +b—1=h'(D, 8y (~1)|D) < h'(C, Gy (-1)|C)
0 ifm=-4,
<
"{1 ifm=-3.

For m = —4 this implies that b = 0, degf = degY = 1. Thus
Y = IP’3, and [ X — P’ is a birational morphism. Since P® is smooth,
the exceptional set is a divisor. Since PicX = Z, there cannot be any
exceptional divisor. Thus, f is an isomorphism,.

For m = —3 we obtained s > 5, thus degY > 2. Therefore, again
b=0,and f is a birational morphism onto a quadric in P*. A singular
quadric has reducible hyperplane sections, and these give reducible divisors
in |@,(1)], a contradiction. Thus Y is smooth, and as before fiX —
Q4 c P isan isomorphism.

5.3.12. Theorem. Notation as above. Assume that m = —2. Let
s = hO(X, @(1)) andlet f: X --+ Y be the map given by |@.(1)|. Then
the following hold.:

(5.3.12.1) s<7.

(5.3.12.2)  If s > 4, then either

(5.3.12.2.1) f is a morphism with Stein factorization X — Y — Y,
and Y is a Fano variety of index two possibly with terminal hypersurface
singularities; or

(5.3.12.2.2) s=4,and f: X --= P® is birational ; or

(5.3.12.2.3) s=5, and f: X --+ Q@ is birational.

Remark. The corresponding Fano varieties are the following:

(i) s=4, Y isa double cover of P® ramified along a quartic.
(i) s=35, ¥=7 isa cubic hypersurface in P*.
(iii) s=6, Y =Y is a complete intersection of quadric hypersurfaces
in P’.
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(iv) s=7, Y =Y isa 3-fold hyperplane section of the Grassmannian
Gr(1,4)cP’.
A Fano variety of this latter type is called ¥ (see, e.g. [38, IL.1]).

5.3.13. Corollary. Let X be a Moishezon threefold which is homeo-
morphic to the Fano variety V. Then X is isomorphic to the Fano variety
V..

2

Proof. The Betti numbers of V; are b = b, =0 and b, = 1 [38,
1V.3.5]. Thus, any Moishezon threefold homeomorphic to ¥; has x(&) =
1. Let L be the generator of H° (X, Z) which satisfies L =5, Let
K, = —xL. From Riemann-Roch it follows that

5x° + dx = 48y(%) = 48.

This has x = 2 as the only integral solution. As in the proof of (5.3.3),
L is the effective generator, thus K, = &,(-2). By (5.3.10.4)

s=h"(X, 8p(1) 2 1(X, Gy(1) = 7.

Therefore, by (5.3.12), |@,(1)]| is base free and maps birationally onto a
Fano variety Y of index two and degree 5 in e, possibly with terminal
hypersurface singularities. If ¥ indeed has a singular point y, then pro-
jecting from y we obtain a threefold Z ¢ P° of degree 3. Thus Z has
minimal degree, and therefore we obtain a contradiction as in Step 0 of
(5.3.11). Thus Y is smooth, and f: X — ¥ has to be an isomorphism.

Proof of (5.3.12). We use the notation of the proof of (5.3.11). If
|#,(1)] is basepoint free, then Y is a Fano variety of index two. Therefore
we need to consider the case when there are base points, i.e., b > 0. By
(i) of Step 2, 1 = h' (&) > h' (&)

Assume first that hl(@’D) = 1. Then

degf-deg¥ + 1< degf -degY +b=h'(D, F.(~1)|D)
<hY(C, Gp(-1)IC) =5 -2.

Since degY > 5 — 3, this implies that deg/ = 1 and deg? =5~ 3. If
§ > 6, then Y contains reducible hyperplane sections, a contradiction.
Thus ¥ =P or ¥ = Q3. As before, the singular guadric threefold is
excluded.

Now assume that hl(@D) = 0. If b > 2, then the above argument
works. If b = 1, then as in the proof of (5.3.11) we obtain that &.(1)
has a subsheaf isomorphic to a line bundle of degree deg f-degY on D.
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Thus
s=2+4k%D, o)D) > 2+ K (P, O(deg [ - deg ¥))
= degf-degY + 3.

This is the same inequality as before, and leads to the same numerical
possibilities.

5.3.14. Examples. There are infinitely many examples of nonprojec-
tive threefolds which behave as in (5.3.12.2.2-3). These were indepen-
dently discovered by Hironaka, Fujiki, and perhaps others.

In P* take a smooth quadric Q and blow up a smooth curve of type
(3,n) on Q. The proper transform of the quadric has normal bundle
(=1, 2 ~ n), thus it can be contracted in one direction to get a smooth
Moishezon threefold. For every n > 4 this gives an example for
(5.3.12.2.2).

Similarly, taking a smooth quadric @ in Q3 and blowing up a curve
of type (2, n) produce examples for (5.3.12.2.3).

In all of these cases one can contract the proper transform of @ in the
other direction. This gives a singular projective Fano variety satisfying the
requirements of (5.2.2).

6. Deformations of rational surface singularities

In this section we want to explore some questions raised again by codi-
mension two modifications, namely various aspects of small resolutions.
Applied to deformations of rational surface singularities we obtain several
interesting conjectures and results.

6.1. Small modifications of threefold singularities.

6.1.1. Definition. Let 0 € X be a germ of a three-dimensional nor-
mal singularity. A small modification of X is a three-dimensional con-
tractible curve neighborhood C C Y together with the contraction map
f:CcY—=X.

The following easy proposition connects small modifications with the
divisor class group Pic(X —0) [47, 3.1]

6.1.2. Proposition. (6.1.2.1) Let f:Y — X be a small modification
as above, and let D C Y be an f-ample Cartier divisor. Then the following
hold

(6.1.2.1.1) mf(D) C X is not Cartier if m >0,

(6.1.2.1.2) f,&,(mD) =&, (mf(D)) for m 20, and

(6.1.2.1.3) Yo & (mf(D)) is a finitely generated & algebra.
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(6.1.2.2) Conversely, let D' c X be a divisor such that

(6.1.2.2.1) no multiple of D' is Cartier, and

(6.1.2.2.2) S°%°_ &, (mD') is finitely generated & algebra.

Then Y = Projy, > o o @’X(mD') and the projection map f: Y — X give
a small modification of X .

One can always find an ideal I C &, which is isomorphic to (D') (as
a module), and then the mth symbolic power of [ is 1" > @(mD'").
For this reason the algebra 3 - ﬁX(mD') is called the symbolic power
algebra of D'.

This gives a purely algebraic approach to finding small modifications:
we have to compute the local divisor class group and then decide when
is the symbolic power algebra finitely generated. There are several results
concerning the first problem.

(6.1.3) Let 0 € X be a three-dimensional isolated singularity. Let S
be a small sphere around 0, and let Z = X NS be the link of X . This is
a compact 5-dimensional manifold, independent of S (up to diffeomor-
phism). Then the first Chern class

¢,: Pic(X - 0) —» H(Z , Z)

is an injection, and an isomorphism if 0 € X is rational [21, 6.1]. This
result is very useful, but it is frequently very hard to compute Z and its
cohomologies. The simplest case should be isolated hypersurface singular-
ities, but even here there are many unsolved problems.

Let 0 € X c C* be an isolated hypersurface singularity. By [30, X.3.4]
its local Picard group is torsion free, and hence a finitely generated free
abelian group. There are some easy ways of recognizing nontrivial ele-
ments of Pic(X —0). Assume for instance that the equation of X can be
written as

u(x)v(x) —s(x)t(x) = 0.
Then
D = (u(x) =s(x)=0)
is a nontrivial element of Pic(X — 0). Every time a divisor D C X is a
complete intersection in ¢’ , we can write the equation of X in the above
form.

6.1.4. Example. If X is defined by a homogeneous cubic form C(x)
=0, then Pic(X —0) has rank 6 and is generated by the (cones over the)
lines on the corresponding cubic surface in P’. In analogy with the case
of curves on surfaces in P° one can expect that Pic(X — 0) is generated
by simpie divisors if X itself is simple. See (2.2.7) for another example.



182 JANOS KOLLAR

(6.1.5) Let X be a canonical singularity, and let p: ¥ — X be a reso-
lution of singularities such that the exceptional divisor £ = E, U---UE,
has normal crossings only. Then every E, is rational or ruled [96, 2.14],
hence the groups

2 ~ D .0
H'(E,, Z) = Pic(E,)/ Pic (E,)

are readily computable. Thus we can also compute H? (Y, 7). Since
(6.1.5.1) rank(Pic(X — 0)) = rank(Hz(Y, 7))~ k,

we can compute the rank of Pic(X — 0). However the computations get
very messy even in simple examples, unless some shortcuts are used.

let X=(=0)C C* be an isolated singularity. Let us assign weights
to the variables by w: x; — w;, € Z. Let f = f,+ f,,, +-- be the w-
homogeneous decomposition of f. The coordinate ring of the w-tangent
cone

T(X) :=Clx,, x5, X3, x,1/(fy)

is w-homogeneous. Let g; be the dimension of its w-degree i piece.

6.1.6. Theorem [21, 7.5]. Notation as above. Assume that f, = 0
defines an isolated singularity (i.e., [ is semiquasihomogeneous in the sense
of [2, 12.1]). Let N =d — 3 w,. Then

rank(Pic(X - 0)) <a,_, - Z Ay >

and equality holds if X is rational.

Proof. let p:Y — X be the w-weighted blow up. The fiber over 0
is the weighted hypersurface E = (f; = 0) C P(w,). By assumption Y
has only quotient singularities, hence the local divisor class group of every
point is torsion. By Hodge theory (see, e.g., [21, §8])

rank(H'(E, ©) = 1+ @y, = 3 ay,,, -
Now use (6.1.5.1). q.e.d.

At least for terminal singularities this approach should give a complete
description of the local divisor class group.

Very little is known about the finite generation of symbolic power alge-
bras of rank-one sheaves: Y é’X(mD') . There are some old examples
due to [95] that show that in general the above symbolic power algebra is
not finitely generated. Recently more examples were found by [16]. In the
positive direction the best result so far is the following:

6.1.7. Theorem [98, 2.12],[47,6.1]. Let xe X be a three-dimensional
canonical singularity. Then the symbolic power algebra of any divisor is
finitely generated.
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Comments. In general, different divisors D' ¢ X may give rise to
the same small modification. This defines an equivalence relation on the
divisors, or even on the elements of the vector space Pic(X —0)®Q. This
equivalence relation gives a polyhedral decomposition of the vector space
Pic(X - 0) ® Q [98, §7]; [47, §6]. For terminal singularities one can relate
this decomposition to the Weyl chambers of the corresponding Dynkin
diagram, but in the canonical case there is no known relation to reflection
groups.

It would be very interesting to extend the above results to more general
singularities. A reasonable question seems to be the following.

6.1.8. Problem. Let 0 € X be a three-dimensional singularity. As-
sume that some hyperplane section 0 € H C X is a quotient singularity.
Is the symbolic power algebra of any divisor finitely generated? What
happens if H is any rational surface singularity?

Among the divisors of a singularity X there is a distinguished one: the
canonical divisor K, . Finite generation of its symbolic power algebra is
needed for flipping. There is much more known about this special case.
One general result is:

6.1.9. Theorem[61,3.5.b]. Let 0 € X bea three-dimensional isolated
singularity. Assume that some hyperplane section 0 € H C X 1s a quotient
singularity. Then the symbolic power algebra of the canonical divisor,

> Oy (nK,),

n=0
is a finitely generated & -algebra.

6.2. Deformations of rational surface singularities. (6.1.9) was used in
[61, §3] to describe the components of the deformation space of a quotient
singularity H in terms of certain partial resolutions of H . It seems that a
large part of this correspondence can be extended to deformations of any
rational surface singularity H . I circulated informal notes about these
problems in the past two years and received very useful comments from
T. de Jong, J. Stevens, D. van Straten, and J. Wahl. Several of my original
conjectures were thus transformed into theorems. The starting point is the
following generalization of (6.1.9):

6.2.1. Conjecture. Let 0 € H be a rational surface singularity, and
let 0 € X be the total space of a one-parameter smoothing of 0 € H.
Then the canonical algebra

o>
Z@X(HKX)
n=0

is a finitely generated &, -algebra.
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6.2.2. If this is true, then the Proj of the above canonical algebra gives
g:Y — X, where g is an isomorphism outside the origin, g'l(O) con-
sists of finitely many curves, some multiple of K, is Cartier, and K, is
g-ample. Let H' = g~ 'H; this is a proper modification of H .

Unfortunately, I can prove essentially nothing about the singularities of
Y or H'. For instance, is it true that Y has only rational singularities?
Is it true that Y is Gorenstein in codimension two? A positive answer to
these questions would mean that in codimension one H' has only double
normal crossing points. I will see (6.3.3) that H' is not always normal.
This makes the situation more complicated, but it also leads to very inter-
esting examples.

For the rest of this section I will pretend that H' satisfies the following
condition:

. Reduced, Cohen-Macaulay surface with at worst
) double normal crossing points in codimension one.
Substantial changes are required if H' does not satisfy these conditions.

A positive answer to the above conjecture gives a possible description
of the components of versal deformation spaces of rational singularities.
The crucial thing to notice is that locally H' < ¥ is very special.

6.2.3. Definition. Let 0 € S, be a reduced surface singularity such
that S§,~0 is Gorenstein. Let 0 € Z be the total space of a one-parameter
smoothing S, of S;. We say that the smoothing is Q-Gorenstein (qG for
short) if some multiple of the canonical class of Z is Cartier. (This makes
sense since Z is normal.)

In fact, in this case the order of K, in Pic(Z — 0) is the same as the
order of K 5, in Pic(S, — 0). This follows from:

6.2.4. Lemma. Let 0 € Z be a three-dimensional singularity with a
hyperplane section 0 € S C Z. Assume that Z — S is smooth (normal
would be sufficient). Let L € Pic(Z —0) have finite order. Then L|S—0¢
Pic(S — 0) has the same order. Equivalently, the kernel of the restriction
map Pic(Z — 0) — Pic(S — 0) is torsion free.

Proof. Assume that L € Pic(Z — 0) has order £ >0 but L|(S —-0) =
&|(S —0) . Using a nowhere zero section of L* we construct a k-sheeted
cover p: Z — Z. p“l(S) is connected since p‘I(O) is a single point, but
p"I(S )— p"I(O) has k connected components isomorphic to S—0. Such
a surface singularity is not smoothable by [101, 3.4].

6.2.5. Proposition (Wahl). Let 0 € S, be a surface singularity satisfying

(x). A smoothing S,:t € A is qG iff ¢, (K;) € Hz(Sl, Z) is torsion. If



FLIPS, FLOPS, MINIMAL MODELS, ETC. 185

S;:t € A is another smoothing of Sy = S, in the same component of
DefS,, then S, is qG iff S, is qG.

Proof. Let 0 € X be the total space of the smoothing. Then by the
proof of [64, 5.1] (X -0, S,) is 2-connected. Hence Hz(X -0,2) -
H*(S,, Z) is an injection and ¢,(K ) € H*(X -0, Z) is torsion iff ¢,(K)

€ H(S,, Z) is.

Since the condition depends only on the topology of §,, it depends
only on the component of the deformation space and not on the particular
smoothing,.

6.2.6. Definition. A smoothing component of a versal deformation
space of a surface singularity 0 € S satisfying () is called a @G compo-
nent if one (or every) smoothing in it is gG.

A singularity will be called a qG singularity if its deformation space has
at least one qG component.

6.2.7. Remark. It would be much nicer to have a functorial definition
of a qG-family. The reasonable definition is the following:

Let Z/T be flat, Cohen-Macaulay and of relative dimension two. As-
sume that the locus where the fibers are not Gorenstein is finite over 7.
Then Z/T is qG iff (w?%)** is locally free for some m > 0.

At the moment I have some technical difficulties working with this def-
inition.

It is important to note that very few singularities have gG components.
One restriction is given by:

6.2.8. Proposition [64, 5.6-9]. Let 0 € S be a rational singularity
with minimal resolution p: T — S and let Kr/s be the relative canonical
divisor, written as a Q-linear combination of the exceptional curves. If S
has a qG component, then KT/S . KT/S eZ.

Proof Assume for simplicity that there is a compact surface S whose
only singular point is 0 € S and that S admits a qG smoothing §,. Let
T — S be the minimal resolution. Then
x5 Kes=Kr Kr— K5 Ks
= K‘T-KT—KST! K§[ e€Z.

KT/S ) KT/S

In general one can either prove that such a compactification exists or argue
as in [64, 5.7].

6.2.9. Corollary.

(6.2.9.1) A quotient singularity CZ/ZH(I . q) has a qG component if

nl(g + 1) [64, 5.9].
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(6.2.9.2) Let 0 € S be a rational singularity such that the dual graph
of its minimal resolution has a curve C of self-intersection (—n) which is
intersected transversally by k curves of self-intersection (—2). If S has a
qG component, then (2n —k)|2(n — 2)%.

Proof. The first requires careful computation. The second one is easy
from (6.2.8). q.e.d.

Extracting two important properties of H' in (6.2.2) we arrive at the
following notion which generalizes the notion of P-resolution introduced
in [61, 3.8] for quotient singularities.

6.2.10. Definition.

(6.2.10.1) Let H be a rational singularity, and let g: H' — H be
a proper modification. Assume that H' is normal. H' is called in P-
modification of H if

(i) K is g-ample, and
(ii) every singularity of H' has a QG component.

(6.2.10.2) Let Def?® H' denote the subset of Def H' consisting of de-
formations that induce a qG deformation of each singularity of H . Thus,
up to a smooth factor, Def?® H' is the product of the local Def’®(x, H')
forall x € H'. By (6.2.5-6), Def?C H' is the union of some components
of DefH' .

It is less clear what the correct definition is when H' is not normal.

6.2.10'. Definition. (6.2.10'.1) Let H be a rational singularity, and
let g: H — H be a proper modification. Assume that H' is Gorenstein
outside finitely many points. H' is called a P-modification if

(i) Ky is g-ample,
(i) R'g,&, =0,and
(iii) H' has a smoothing which induces a qG smoothing of each sin-
gularity of H'.

(6.2.10".2) Let Def?® H' denote the closure of the subset of Def H'
consisting of smoothings that induce a G smoothing of each singularity
of H'.

6.2.11. Definition. Let H be a rational singularity. A P-modification
g: H — H is called weakly rigid if it has no positive-dimensional defor-
mations among P-modifications of H, ie., if g,: Ht' — H is a flat defor-
mation of g: H — H over A, where H, is a P-modification for every
t,then H/ = H' forevery .

6.2.12. Proposition. Let H be a normal surface singularity, and let
g: H — H be a normal and proper modification which is dominated by
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the minimal resolution of H. Then H' has no positive-dimensional family
of deformations among proper modifications of H .

In particular, a normal P-modification which is dominated by the mini-
mal resolution is weakly rigid.

Proof. Let Hl' — H be a flat deformation over A, and _ﬁ; be the
minimal resolution of H, . By [61, 2.10(i)],

Kﬁr.KﬁlzKﬁo.Kﬁo’ teA.

On the other hand, ﬁo 1s the minimal resolution of H, and _ﬁ, is ob-
tained from the minimal resolution of H by blowing up some points
(possibly none). Thus

Kﬁ:'KﬁrsKﬁo.Kﬁo’ teA.

Hence the equality holds, and ﬁt is the minimal resolution of H for
every ¢t. By [61, 2.10(ii)] the family Ht' can be resolved simultaneously,
and the claim is clear. q.e.d.
In order to formulate a general conjecture, we need a definition.
6.2.13. Definition. Let U/S be a flat family of reduced surfaces with
rational singularities only. Define a functor P — mod(U/S) as follows.
Given p: S’ — S let

Pairs (Z'/S’, g), where Z'/S" is a qG-family

P d(U/S)(S) (6.2.7) and g: Z' — U xS’ is a proper mor-
—mo —
phism such that for every s’ € S’ the restriction

g:Z' xg {s'} = U x4 {p(s')} is a P-modification.

6.2.14. Conjecture. Forevery U/S asabove, the functor P—mod(U/S)
is represented by a separated algebraic space P — mod(U/S) which is
proper over S.

Comments. One should keep in mind that the tentative definitions of
P-modification and qG-family make the conjecture somewhat vague.

The conjecture is a generalization of the results in [4]. Separatedness
should be expected since K is assumed to be relatively ample in (6.2.10).

I expect that the proof of [4] can be modified to prove the existence
and separatedness of P — mod(U/S). The difficult part should be the
establishment of properness.

Let Def H be a versal deformation space of a rational singularity, and
let % /Def H be the universal family. Assume that P — mod(%/ Def H)
exists and is proper. Then for every component C ¢ Def H there is a
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unique component P — mod(C) of P — mod(%/Def H) such that P —
mod(C) — C is surjective, proper, and birational.

One can view (6.2.14) as a refinement of a conjecture posed in [119, p.
241.]

Even the existence of P—mod(U/S) has interesting consequences. Let
g: H' — H be a P-modification of H, and H, be a sufficiently general
qG-smoothing of H'. As in [4] we can assume that H, contains no com-
pact curves for ¢ # 0. By [118, 1.4] and [60, 11.4] the family H, can
be contracted to a flat family H, of deformations of H . Thus, H[' — H,
can be induced by a morphism p: A — P —mod(%/Def H). Let Cy be
a component of P — mod(%/ Def H) containing p(A).

Let W c Def H be the open subset parametrizing smooth deformations
of H. It is clear that P—mod(%|W /W) = W . By construction Cp: and
P—mod(%|W /W) intersect nontrivially. Therefore, there is an irreducible
component C, of Def H such that the induced morphism Cp — Cy
is an isomorphism over an open set. If H " is weakly rigid, then by the
valuation criterion of properness Cp — Cp is even proper. This yields
the following;

6.2.15. Conjecture-Corollary. Let H be a rational surface singularity.
There is a natural injective correspondence

gG-components of deformations of
weakly-rigid P-resolutions of H

} — {components of Def H } .

This result gives an effective procedure to exhibit irreducible compo-
nents of DefH .

6.2.16. Known cases. Conjectures (6.2.1) and (6.2.14) are proved in
the following cases:

(6.2.16.1) If C is the Artin component, then P —mod(C) exists [4].
The minimal Du Val resolution is the corresponding P-modification. Thus
the conjecture is true if the deformation space has only one component.
This is for instance the case for rational double and triple points.

(6.2.16.2) quotient singularities [61, Chapter 3];

(6.2.16.3) quotient of simple elliptic and cusp singularities [61, Chapter
5;
(6.2.16.4) quadruple points [111].

(6.2.16.5) [III, Proposition 6] implies 6.2.15 in many cases.
6.3. Examples. (6.2.15) can be used to exhibit examples of compo-
nents of deformation spaces. It is especially simple to understand those
P-modifications that are dominated by the minimal resolution.
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Let H be a rational surface singularity with minimal resolution f: H —
H,and D, c H be connected subsets of curves, pairwise disjoint. Con-
tracting D, to a point for every / one obtains a partial resolution

H—-H 5 H.

The following is easy:

6.3.1. Lemma. K. is g-ample iff every (-2)-curve in H is con-
tained in or intersects | D;.

Therefore, if every D, is a resolution of a qG singularity, then H
is a P-modification. The simplest qG singularity is c’ /Z,(1, 1) whose
resolution is a single (4)-curve. Thus we obtain:

6.3.2. Example. Let H be arational surface singularity with minimal
resolution f: H — H . Every (—4)-curve in H gives rise to a component
of the versal deformation space of H .

More complicated P-modifications arise in the following examples which
were developed jointly with J. Stevens.

6.3.3. Example. Consider any rational singularity with the following
dual resolution graph:

o

[SXe)
[ Xe}
4 O
w0

[SNe}

These singularities are rational of multiplicity 5. They have at least one
equisingular modulus: the cross ratio of the four curves intersecting the
central (—4)-curve.

Two P-modifications are easy to see.

(6.3.3.1) Contract all (—2)-curves. This gives the Artin component.

(6.3.3.2) Contract the (—2) on the left and the (—4)-curve.

There are no other normal P-modifications dominated by the minimal
resolution.

(6.3.3.3) There are at least three other normal P-modifications. To ob-
tain these, blow up the intersection point of the (—4)- and the (—3)-curves.
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Thus we have

2
o
o o o o 0
2 2 5 1 4
o
2

We can contract the (—4)-curve on the right, any of the three

o o
2 5

configurations, and the (—2)-curve on the left if it does not intersect any
contracted curves. We have to check that after these contractions the
canonical class is relatively ample. This is an easy computation.,

(6.3.3.4) There is also a nonnormal P-modification. On the central
(—4)-curve there are four distinguished points, corresponding to the four
intersection points. We denote these intersection pointsby N, E, S, W
corresponding to the directions in the above diagram. There is a unique in-
volution 7 of the central (—4)-curve such that 7(N) =S and 7(E) =W .
To get the P-modification, first contract all curves except the central (—4)-
curve C. This gives the normal surface " ¢ H” . Then for every x € C”
identify x and 7(x) (cf. [3, 6.1])) to obtain a nonnormal surface germ
g: C'c H — H. Along C' we have generically normal crossings points.
There are also two pinch points and two singularities of the form

(xy =0)C C*/Zy(1, =1, 1) and (xy =0)cC C*/Z,(1, -1, 1).

H' has only qG singularities; xy +¢ = 0 is a smoothing at the two

non-Gorenstein points. Easy computation gives that
C' Ky =3iC" (K +C") =1,

hence K, is g-ample.

We still need to check that H' is qG-smoothable. This is done by using
the following technical lemma whose proof we omit:

6.34. Lemma. Let C' c H' be the germ of a surface along a smooth
curve. Assume that locally along C' the surface H' is one of the following:

(6.3.4.1) normal crossing point: {xy =0) C c;or

(6.3.4.2) pinch point: (x2 - yzz =0)C c’ s or

(6.3.4.3) semi-log-terminal point: (xy = Q) C <C3/Z"(1 , —1,a), where
(a,n) =1 (c¢f [61, Chapter 4]). For these singularities the qG deforma-
tions are exactly those that can be obtained as (xy + tf(z",t) = 0) C
c’/z, (1, -1,a,0).
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Let the number of pinch points by p, and C"' ¢ H" be the normalization
of H'. Then

(6.3.4.4) For H' one can define a functor of qG deformations, in partic-
ular, the sheaf Zé(H') c T YH'). These sheaves are isomorphic except
over a point of type (6.3.4.3) .

(6.3.4.5) Yqé(H') is concentrated along C', it has zero dimensional
torsion at the pinch points, and the quotient by this torsion is a line bundle
L on C'.

(6.3.4.6) degL = C" - C" +p (note that C"-C" is automatically an
integer by the choice of the singularities (6.3.4.3)).

Applying the lemma to our situation we get that

T 6(H')/(torsion) = G (~4+2 +2) .

Therefore H' hasa ¢gG smoothing.

I do not know if these are all the components of Def H or not.

From the construction it is clear that one can produce similar examples
for higher multiplicity rational singularities.

6.3.5. Example. Consider rational singularities of multiplicity 8 such
that the minimal resolution has one (~5)-curve C and six (—2)-curves
intersecting C transversally.

There are 22 P-modifications dominated by the minimal resolution:

(6.3.5.1) The minimal Du Val resolution; this gives the Artin compo-
nent.

(6.3.5.2) We can contract any of the six subconfigurations:

o o
2 5

This is the dual graph of the quotient singularity c? [Zy(1, 2).
(6.3.5.3) We can contract any of the 15 subconfigurations:

2
[¢)

wO
[E¥e}

O

These are dual graphs of Z,-quotients of simple elliptic singularities of
multiplicity 6.
(6.3.5.4) There is no G component. This follows from (6.2.9.2).
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(6.3.5.5) In certain cases there are nonnormal P-modifications. Let
P, ---, P, € C be the six intersection points. Assume that there is an in-
volution 7: C — C such that t{P,--- , P} ={P, -+, Fg},and 7 has
no fixed points among {P,,--- , P,}. Under these assumptions we can
repeat the construction in (6.3.3.4) to obtain a nonnormal P-modification.

If we vary the six points generically, then 7 will not exist, hence there
is no corresponding flat deformation of H'. This shows that the corre-
sponding component does not exist for small generic deformations of the
singularity.

Also note that there can be several involutions 7, and these give different
P-modifications. To get some examples, choose an isomorphism C =
CU {oc}.

If P, are the sixth roots of unity, then there are four possible involu-
tions:

i 1 .
Ty 2 =2 ri:z»»—»Cm IE (i=1,2,3),
where { is a primitive sixth root of unity.
If {P,, -, P}={0, 00, £1, +i}, then there are six involutions
+i z+7

Z s e

where 774 =1.

zZ -

Again I do not know whether these are all the components of the defor-
mation space.

6.3.6. Example. Consider any rational singularity with the following
dual resolution graph;

2
[
e} 0 0 e}
2 2 3 4
o]
2

There are five P-modifications dominated by the minimal resolution:
(6.3.6.1) The minimal Du Val resolution.
(6.3.6.2) Contract all (—2)-curves and the (—4)-curve.
(6.3.6.3) Contract any of the three configurations

o o
3 4

(this is the dual graph of Cz/Zlg(l , 5)) and the (—2)-curve on the left if
necessary.

[S¥e}
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(6.3.6.4) There is also a one-parameter family of P-modifications. To
get these, blow up any point x on the (—3)-curve different from the inter-
section points. Thus we have a (—1)-curve and the following configuration:

2
o]
(6.3.6.5) g ——9——o—¢

[SXe]

If we contract the above configuration, then we get a proper modification
g: H, — H with one exceptional curve C, which is the image of the
(—1)-curve. One can compute that

Ky -C,=1.

The following lemma shows that every H, is a P-modification.

6.3.7. Lemma. Anysingularity with dual resolution graph asin (6.3.6.5)
has a qG component.

Proof. (xzz ~I~xy2 +2° Jr—ayzz2 =0)C C? is an elliptic singularity with
resolution:

oo

(6.3.7.1) o

[N¥e]

O

Taking the quotient by the Z-action (1,2,3) we obtain a singularity as in
(6.3.6.5). Conversely, for any singularity as in (6.3.6.5) one can take the
3-fold cover given by the canonical class, and the cover turns out to be one
of the singularities in (6.3.7.1). The required gG smoothing is given by

(xzz + xy2 + 20+ ayzz2 +t=0)/Z;. q.ed.

J

If x degenerates to one of the four intersection points N, E, S or
W on the (—3)-curve, the P-modification H, degenerates into a different
type of P-modification. The following are the dual graphs of the minimal
resolutions of these four P-modifications; in all cases everything except the
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(—1)- curve is to be contracted:

4 1 2
o o] o]
« O o e [o]
HN' 2 2 4 4
o
2
Hy is the same as H,, upside down.
2
[o]
HW o o o o 1< o o
2 5 1 2 2 4 4
O,
2
[o]
- 0 Q o [o] (o} Q o] o]
Hg: § 2 4 4 1 2 2 6
[#]
2

Thus we obtain a flat family of P-modifications parametrized by Pl
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