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TWO-DIMENSIONAL GRAVITY AND
INTERSECTION THEORY ON MODULI SPACE

EDWARD WITTEN

Abstract

These are notes based on two lectures given at the Conference on Geome-
try and Topology (Harvard University, April 1990). The first was mainly
devoted to explaining a conjecture according to which stable intersection
theory on moduli space of Riemann surfaces is governed by the KdV
hierarchy of integrable equations. The second lecture was primarily an
introduction to the “hermitian matrix model” of two-dimensional gravity,
which is a crucial part of the background for the conjecture. Analogous
but more general theories also exist and are sketched in these notes. The
generalization in the first lecture involves considering intersection theory
on the moduli space of pairs consisting of a Riemann surface £ and a
holomorphic map of £ to a fixed Kahler manifold X . The simplest
analogous generalization in the second lecture involves a chain of hermi-
tian matrices.

1. Introduction

At first sight, two-dimensional general relativity appears “trivial,” at
least as a physical theory, since for instance the Einstein-Hilbert action

1
(1.1) 1:5/\/@‘12

is a topological invariant, so that the Einstein field equations are automat-
ically obeyed.

Yet actually, on further investigation, two-dimensional quantum gen-
eral relativity proves to be a strikingly rich theory. What is loosely called
“critical” two-dimensional gravity is an essential ingredient in string the-
ory. “Noncritical” two-dimensional gravity is a much more difficult subject
which has been intensively studied with various motivations including pos-
sible applications to string theory and to the large N limit of quantum
gauge theories with gauge group SU(N),

In the earliest approach to the subject, introduced by Polyakov [54],
noncritical two-dimensional gravity is related to a quantum field theory
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with Liouville action. This has been intensively studied [32], [11] by seek-
ing to exploit at the quantum level the integrability of the classical Liouville
equation —¢+e® = 0. A variant of this involves a different gauge choice
that is claimed to lead to a sort of SL(2, R) structure [42]. In a very dif-
ferent approach, two-dimensional gravity has been studied by counting
triangulations of surfaces, which can be related to “matrix models” [14],
[1], [41]. This approach has been developed with spectacular success, most
recently with complete solutions in the “double scaling limit” by Brezin and
Kazakov, Douglas and Shenker, and Gross and Migdal [13], [25], [35]. An-
other approach [52], [46] uses ideas of “topological quantum field theory”
and can be reduced to a description in terms of the cohomology of the
moduli space of Riemann surfaces. (Yet another approach was proposed
at this meeting by 1. Singer.)

A variety of arguments indicate that the theories constructed by these
different approaches are equivalent. In addition to heuristic arguments,
Liouville theory can be compared to the matrix models by comparison of
critical exponents (which in Liouville theory can be computed by a scaling
argument [21], [14]). Topological gravity is related to Liouville theory by
an elegant argument due to Distler [21] that involves a variant [28] of the
usual bose-fermi equivalence on Riemann surfaces. The topological field
theory approach is related to the matrix models by explicit comparison in
genus < 3, by the “string equation” and another similar equation that can
be derived in both frameworks, and by formal analogies.

Purely in mathematical terms, the proposal that topological gravity is
equivalent to the one matrix model leads to a striking conjecture. Since
topological gravity amounts to the study of stable intersection theory on
the moduli space of Riemann surfaces, while the one matrix model is
a soluble problem related to the KdV hierarchy, the conjecture that these
are equivalent amounts to a conjecture that the KdV hierarchy governs the
stable intersection theory on moduli space. §2 of this paper is devoted to a
precise and self-contained formulation of this conjecture, and a description
of the evidence for it. §3 is devoted to a generalization in which one
considers a Riemann surface X together with a holomorphic map of X
to a fixed complex manifold A/ . §4 is an introduction to the one matrix
model and its relation to the KdV hiearchy. This section can be read
independently of §§2 and 3. At the end of §4 we also briefly consider
a matrix model analog of the generalization of the topological theory to
include A .

§82 and 3 are primarily an exposition of ideas that have appeared else-
where [59], [19], with a few details added. §4 is an exposition of work of



TWO-DIMENSIONAL GRAVITY AND INTERSECTION THEORY 245

many authors, including the recent work of Brezin and Kazakov, Douglas
and Shenker, and Gross and Migdal [13], [25], [35].

We are grateful to P. Deligne for help in understanding the compact-
ification of moduli space and the string equation. Key points were also
raised by M. F. Atiyah, H. Neuberger, D. Kazhdan, G. Segal, and I. M.
Singer.

2. Stable intersection theory on moduli space

Let //g’n be the moduli space of Riemann surfaces of genus g with »

ordered punctures, and let .Z c. . be its compactification obtained by ad-
joining curves with double pomts [16]. This is the (compactified) “moduli
space of stable curves,” which arises naturally in string theory. M gon is
not a manifold but an orbifold (locally the quotient of a manifold by a
finite group), so intersection theory is well defined on //2’ , but intersec-
tion numbers are in general rational numbers rather than mtegers
Such moduli spaces are endowed with natural cohomology classes, as
described by Atiyah and Bott in the gauge theory case [4] and by Mumford,
Morita, and Miller in the case we will be considering [50], [48], [45]. Let
Y be a stable curve with marked points x,, X,, -, X, . It is essential
that, though ¥ may have singularities (double points), the moduli space of
stable curves is defined in such a way that the x; never coincide with these
singularities. Thus, each x; has its complex cotangent space T*Z[_\_ , and
these vary holomorphically with x,, giving n holomorphic line bundles
,’i’(i) over A g One can think of the x; as sections of the universal
curve €4, , over #, . 1f Kz, is the cotangent bundle to the fibers

N
of ?// ~>/{ then _f =X, (K;é/,)
Let a’ d . d be nonneganve integers such that

(2.1 Y d;=3g-3+n

i=]

This is the dimensional condition under which the intersection number
I d 2
(2.2) (AN el )™ 2 )

may be nonzero. We will denote this number as

(2.3) <Td[Td2"'Td ).

n
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These quantities, which will be our main interest, are closely analogous to
the intersection numbers on instanton moduli space that Donaldson intro-
duced [22] in studying smooth four-manifolds.’ The ordering of factors
in (2.2) and (2.3) is of course immaterial, since the cohomology classes
in question are even dimensional. If r, of the 4, are equal to 0, r, of
them are equal to 1, r, of them are equal to 2, etc., then it is sometimes
convenient to write

(2.4) (Td,’[dz'“fd,) = <‘[60’[,1'1‘[;2...>.

The notation in (2.3) reflects the fact that (like their analogs in Don-
aldson theory), these numbers have a quantum field theory interpretation
[52], [46], [9]. Indeed, (t 4,%a," " Ta, ) is the (unnormalized) expectation
value of a product of “local operators T with respect to a certain Feyn-
man path integral measure. Though we will not explain this path integral
interpretation here, its existence is one of the things that makes plausible
the conjecture that these objects are related to the hermitian one matrix
model, which is also defined by a kind of path integral.

The (z 4,5, Ta, ) are closely related to the intersection numbers of the
stable cohomology classes on moduli space studied by Mumford, Morita,
and Miller [50], [48], [45]. In that formulation, one considers the projec-
tion m:.A4 gl V4 g0 = // , and defines 2n-dimensional cohomology

classes x, on A 2.0 o by

(2.5) K, =7,(c, ().

(Z is again the line bundle whose fiber is the cotangent space to the one
marked point of // . Wedefine k_, = 0.) Itis known that the x ’s obey
no stable relations [45] and it is conjectured that the stable cohomology
of moduli space (in a sense explained in [45], [36]) is a polynomial algebra
generated by the x’s. It is natural to consider intersection numbers of the
K ’s, which we will denote as

(2.6) (x K ~-~icr):(1cr]/\;crz/\---/\icrn,%’g).

h n

As a special case of the comparison between the 7’s and the ks, con-
sider first the expectation value of a single 7,

d

(2.7) (rd>=/ /(&)

'/'/g‘]

"In [59], we worked with ¢, = d!t;, in order to agree with the conventions of the
literature on matrix models.
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(Of course, this is nonzero only if d = 3g —2.) By performing first the
integral over the fiber of n:.# 1™ M g > We get immediately that

(2.8) (rd)=/7 Ky = {K4_)
In general, we have by definition

& d d
(2.9) (tdlrdz---rdn)=/7 e F ) A Ay (Z )
To get a similar expression for (chr1 oK, ), let F (/// ) = //{ X~
%(2)%7g X7, %7, 2, 7? be the n-fold fiber product of n coples
AV NS %(1)/2’ of the universal curve over .Z,. Let 7, be the
projection of %,(#,) onto the ith factor Gl o, let K¢ .« D€ the
cotangent bundle to the fibers of %(,.)Zg, and let § (KJ( / )

Then by the definition of the x’s, we have
& \d & \d,
(2.10) (icdl_l;cdz_l : "Kdn~1> = /?(7 )cl(,zfl)) PA A (Zy)

The key observation is now the following. A point in & (/Z o) labels a
stable curve X and » ordered marked points in £ which are arbitrary
so that in particular two or more of them are permitted to coincide. As
long as we keep away from the locus in %, (Zg) on which two or more
of these points coincide, there is a natural 1-1 map % (4 )~ V4 o
These varieties are thus birationally equivalent. The equivalence is only
birational since /é’ , barametrizes a family of genus g curves with n
marked points wh1ch are never permitted to coincide. {Compactification
is achieved by permitting I to degenerate to a curve with a larger number
of components when naively two or more points are becoming coincident.)
Thus, though % (%’ } and //Z’ , are birationally equivalent, they (and
the curves they parametmze) d1ﬁ"er on a certain divisor at infinity.

On the Zariski open set on which & 4 g) and A2 . (and the curves
they parametrize) have a natural identification, the line bundles ,?( ) and

21.) also have a natural identification, as is immediate from their defi-
nitions. Thus, (2.9) and (2.10) differ only from the contribution of the
divisor at infinity. The analysis of the effects of this divisor in comparing
(2.9) and (2.10) is a universal local problem which naturally leads to addi-
tional terms involving the conjectured generators of the stable cohomology.
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One finds
{14, sz) = <Kd,—lkd2~1> + <Kd,+d2~2>’
(2.11) {7 7g,7a) = (g _1Kq _y¥g _y) + Ky 1a 24 1)
Ky pa,—2Ka,—1) T Ky a oK 1)+ 2064 q g _3)>

and so on, as we will sketch after explaining the “string equation.” These
relations are invertible (they are given by a triangular matrix with 1’s on
the diagonal) and show that the information contained in the intersection
theory of the 7°’s is the same as the information contained in the intersec-
tion theory of the ks,

Let us now heuristically explain the motivation for the way that we
will organize the data. Given a quantum field theory Lagrangian ., and
operators 7,, it is natural to consider a more general Lagrangian

(2.12) yz,’z‘f)-}:zi/z,,
i z

where the ¢, are known physically as “coupling constants.” Thus the Feyn-
man integral, in genus g, becomes

z.t

(2.13) F, () = /(FIELDS) FeTii ),

We can expand the exponential

(2.14) e }:H (/ )

{n;} i=0

with the sum running over all sequences {n;} of nonnegative integers,
almost all of which are zero. So one sees that the path integral in (2.13) is
the generating function of the intersection numbers (TO r'f‘ --+). Summing
over genus, as is natural in string theory, we would need to consider the
“total free energy”

(2.15) F(t;) =) F,(t)
g=0

With this motivation, the natural object that we wish to consider is
the generating function of the stable intersection theory on moduli space,
defined by

(2.16) Flty, t,, ZHL ng n,rn 2_..)_
{n} i=0

3
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Here it is understood that for every sequence {n,}, (1'0 71 r,’ --+) is to
be computed in genus g, where

(2.17) 3g-3=> n(i-1).

If the g determined by this formula is not a nonnegative integer, one
defines (roﬂrl r, -+-) to be zero. For g =0,1,2,---, the genus ¢
contribution F (1) is defined by restricting the sum in {2.16) to sequences
{n;} obeying (2.17). For our purposes, the sum in (2.16) can be regarded
as a formal series, but the conjecture that will be stated presently would
mean that (2.16) is an expansion of a natural function, defined in an open
set in the space of the ¢;.

There is actually a slight imprecision in the definition (2.16), since we
have not given a meaning to the symbol (1), which is the contribution
from the zero sequence n, = n, = --- = 0. This sequence corresponds
according to (2.17) to curves of genus 1 with no marked points. This is
a degenerate case, since the virtual dimension of %’ o (predicted from
the Riemann-Roch formula for the moduli problem) 1s O but the actual di-
mension is 1. In the present paper, the object (1) will play no role, and we
could simply set it to zero, but the natural value is the Euler characteristic
of /| , as an orbifold, which is

(2.18) (1) = —5.

We will now introduce a convenient notation for the derivatives of F .
We define

0 0 0
(2.19) ((lefdzu.rdn» - atd[ atag ‘..a[d

F(ty, t), ).

It is evident that ((rdl -++7,)) reduces to (rd ) if one sets 1, = ¢, =
= 0. As a special case of (2. 19) one occaswnally uses the symbol (( )
to represent the functional F(z,, 7, --). We also write
7] 0
(220) (oo = 57 gy Fe

2a. The conjecture. Our basic conjecture is that F(z,, ,,---) is de-
termined by the following two conditions:
(1) The object U = 8F /81, obeys the KAV equations,

oU _ 8 ,

R,.(U,U,U,- ),
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where U = 8U /0ty, U= 8*U /812, etc., are the derivatives of U with
respectto 7y, and R, (U, U, U, ---) are certain polynomials in U and
its ¢, derivatives that are well known in the theory of the KdV equations
(and can be defined by a recursion relation that is given below).

(2) In addition, F obeys the “string equation,”

8F 1o i 8F

(222) 5&5 s 2 + i_‘._l'a—ti.

=

The two statements can be summarized by saying that stable intersection
theory on moduli space is equivalent to the “hermitian matrix model” of
two-dimensional gravity. That formulation was the original context for
the conjecture.

Consequences of the conjecture. We will first verify that the conjecture,
if true, does uniquely determine F .

The first part of the conjecture obviously determines U(f,¢,,,,13, ***)
in terms of the “initial data” U(#,, 0,0, 0, ---). The second part of the
conjecture implies upon setting ¢; = 0, for i > 0, that the initial data are

(2.23) Ulty, 0,0, ) =1,

Thus the conjecture suffices to determine U .

It is easy to see from the point of view of intersection theory on moduli
space why the initial conditions for U must be those given in (2.23). In
fact, the dimensional condition (2.17) implies right away that the numbers
(13) for n=1,2,3, .- vanish unless n = 3, while (rg) receives a con-
tribution only in genus zero. The moduli space of genus zero curves with
three labeled marked points consists of a single point without symmetries
(since the three points can be uniquely mappedto 0, 1, oc by SL(2, C)),
so (tg) =4, ,. Hence (using (2.18) for the n = 0 contribution),

oC
(2.24) F(t5,0,0,0,--)=>_
n=0
This indeed corresponds to the initial conditions U = ¢.
We now want to show that the conjecture suffices to determine F' and
not only U = F. Note first that the string equation is equivalent to an
explicit relation among the intersection numbers

n n n
(2.25) <TOHTd,> :Z< Tdi—o‘u,>+5n,25d,,05d1»0'
i=1 j=1 \i=1
(It is in this form that the string equation can naturally be deduced from
algebraic geometry, as we will see soon.) This can be used to determine

™St

n |
Al =% 1
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all intersection numbers, and thus F, once U is known. As a simple
example, it follows from (2.25) that

(2.26) (1) = (T,.,T9Ty) = EYI
n+2 1,=0

(In fact, one can easily show inductively that the KdV prediction for (2.26)

is (r3g_~2) = 1/((24)% - g!).) This can be generalized in the following el-

ementary but clumsy way to give an algorithm to compute an arbitrary

genus g intersection number:

(2.27) W = (rd Ty ).

We can suppose that none of the d; are 0, since factors of 7, can be
eliminated using (2.25). This bemg so, the dimensional equation
2(d, —1) = 3g — 3 gives an upper bound d; < 3g -2 for (2.27) to
be nonzero. Suppose, inductively, that for some integer r it is known
that the KdV equations plus the string equation determine all intersection
numbers in which all d; > 1 and one of the d;,say d|,is >r. We can
start the induction w1th r=3g—1. We want to 1mprove the bound from

r to r—1. The quantity
!

(2.28) W = <Tdi+2‘rd2”'rdk10r0>

can be determined form the KdV equations plus the string equation, since

it is

(2.29) w=| 9 0 9
azdﬁ?_ oty atdk

U ;

t,=0
and we know that the KdV equations plus the string equation suffice to
determine U . Now, two uses of the string equation (2.25) to eliminate the
two factors of 7, in (2.28) may leave us with an expression still containing
7,8, since there may be factors of T, or 7, in (2.28), and these may
become 7,’s upon using the string equation. If so, use the string equation
again until after finitely many steps all 7,’s are eliminated. After doing
s0, one obtains an expression exhibiting W’ as a positive multiple of W
plus genus g intersection numbers containing Tge2 OF Tg. that are
already known from the induction hypothesis plus genus g correlatlon
functlons containing Ty and a smaller number of t,’s than are present

n (2.27). Repetition of this procedure to ehmmate all 7,’s eventually
expresses W in terms of objects that are already known by the induction
hypothesis. This completes the demonstration that the conjecture suffices
to determine the generating function F .
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Alternative ways of writing the equations. The polynomials R, that
appear in the first part of the conjecture can be defined inductively by the
formulas

OR, ., 1 [aU 8R, 18
(230) &=V, a1, "2n+1(?§QR" 2Uaz 45 3R)

(This recursion relation among the generalized KdV potentials R, was
obtained in [31] from the theory of the resolvent of the Schrédinger op-
erator. The proof establishes the not obvious fact that the right-hand side
of the second equation in (2.30) is indeed the ¢, derivative of a poly-
nomial R, ,,. The Schrodinger operator enters via the inverse scattering
method [30] which is the basis for the integrability of the KdV equation.)
This recursion relation can be interpreted as stating that the KdV flows are
Hamiltonian flows for two different symplectic structures. Since, in view
of the definition of U, the left-hand side of (2.21) is the same as

0
5?(;<<T)1T0>> H

it is clear that upon integrating once in #, (a step that can be justified
using the string equation), (2.21) amounts to the statement that

(2.31)

(2.32) {(r,7o)) = R, (U, u,u,--).

With the aid of the recursion relation, we get the alternative version
{({1,ToTo))

(2.33) 1 2 2 1 4

= ({0 T + 247, () + 4Ty

which captures the full content of the KdV equations. A still more explicit
version 1is

(7 T()T0>

g
(Z n— 1 Té» '
g'=0

(2.34)
+2§: T (T +%<<fn-113>>g—1)-

2b. Evidence for the Conjecture “Matrix models” and “topological
gravity” were both proposed originally as candidates for simple approaches
to two-dimensional gravity. They are based on similar apparently * ‘trivial”
Lagrangians, and this suggested the conjecture advanced in §2a that they
might be equivalent. This thought was encouraged by formal analogies
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between the two that will be apparent in §4. It was also encouraged by the
fact that the methods used [37], [51] to compute the Euler characteristic of
moduli space (which is the partition function of an appropriate topological
field theory) are close cousins of the methods used in the matrix models.

Apart from such heuristic considerations, the evidence for the conjec-
ture consists mainly of the following:

(a) The “string equation” (2.30) can be verified directly, in the intersec-
tion theory.

(b) One can verify directly that the KdV equations (2.21) hold in the
intersection theory for genus g < 3. (We will here only consider g < 2,
and refer to work of Horne [37], comparing to results of Faber [26], for
g=3)

(c) One can also, by direct methods, prove another equation analogous
to the string equation which follows from the string equation together with
the KdV equations.

This is the evidence for the conjecture that can be stated without any
reference to physics. Physicists consider Distler’s relation of topological
gravity to Liouville theory [20] to be an important indication that the
conjecture is true. Also, E. and H. Verlinde have proposed [57] physical
arguments that may eventually lead to a proof of the conjecture.

The string equation and its cousins. To obtain the string equation, one
considers the moduli space .Z g nel of stable curves X with n+1 marked

points X, --- S Xy which we regard as sections of the universal curve
zf/zf el /zé’ _ne1 - EXcept for certain low values of g and n, which
will have to be treated separately, there is a projection n: A — /ﬁ’

g . n+l
that forgets the first point x,. (This projection does not exist for g = O

= 2,and g = 1,n = 0, because then forgetting x, will render Z

unstable.) The line bundles of interest on V4 g.nel and # ¢.n aT€ i’j 0=

x;(Kz,,) and = x;(K%/ﬂ,‘,), respectively, where Ky 4 and Kz 4
are the cotangent bundles along the fibers of €7, ,., — #, ,., and

J/Z’ //

There is a subtlety here that plays a crucial role in understanding the
string equation and the analogous formulas (2.11) relating the 7, ’s to the
Mumford-Morita-Miller classes x,_, . A point in ://?g_%l corresponds to
a connected, stable curve ¥ perhaps with more than one component. Sta-
bility means in particular that any genus zero component of Z has at least
three marked points, including possible double points. It may happen that
“forgetting X, ” causes a particular genus zero component to contain only
two marked points. If so, that component must be contracted to a point.
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This occurs on the divisors D; , indicated in Figure 1, in which a genus
zero component contains x, x , and precisely one double point. (It also
occurs if a genus zero component contains X, and two double points, but
that happens in complex codimension two and will not affect comparisons
of line bundles.) Because of this, though there is, analogous to the map
nA — A that “forgets x,”, a corresponding natural map of

g.n+1 g,n

universal curves 7: &N g1 — & // o this map is not a fibering. 7
does not just “forget x,”; it may be descnbed by the instruction “forget
X, and contract any genus zero components that become unstable as a

result.”

FIGURE 1. A CURVE THAT WILL BECOME UNSTABLE IF
Xy I8 “FORGOTTEN.”

Because of this, it is not the case, as one might have naively expected,
that 7, = n (< ' y) - To work out the discrepancy, note that a nonzero

local sectlon s of K;Z I determines a nonzero local section X; (s) of ,z’
which intuitively is obtained by “evaluating s at x;.” Via the forgetful

map 7 %’g wel //g . ;(s) pulls back to a sectlon T xj *(s) that
vanishes precisely on the divisors D ;- In fact, if ng:E' — % is any map
between curves, and s is any local holomorphic differential on X, then
n;}(s) vanishes on any component of X that is mapped to a point in
Z. Applying this to the fibers of 7, ?Zg 4 we see that

. g.n?
nz(s)=0 onthelocusx(D)Cr?%’ s - Hence, nx(s)~x n(s)

vanishes on the divisor D w1th a sunple ZEero as one sees on more careful

examination. The fact that a local nonzero section X; “(s) of ,z’ (j bulls

back to a section ©” X; *(s) with a simple zero on D corresponds to a
formula

(2.35) Z) :Zj>®@(D )
J:
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At the level of first Chern classes, this means that

(2.36) ¢ (F;) =" (e, (Z;)) +D;1.

We are now ready to consider the intersection number

(2.37) <10Hrd> // ./\cl(,?

temporarily avoiding the special cases g =0, n=2 and g=1, n =0,
Note the factor of 1 = cl(.,iﬂo)0 in (2.37). Now, obviously,

(2.38) 0=/ _ (/\c Z) )

N

since the pullback of a cohomology class from .Z gon

could not be a top-

dimensional class on // ey If it were so that ,z” (.,53”(]) for
J=1,---,n,then (2. 37) would vanish. We must use mstead the correct
formula (2.35), which implies

n—1

* -~ * —~ JRy

(2.39) ¢,(Z,)" = (T e, (L)) +ID,1- 3 (&) (2" (e, (L))"~

m=0
Now, the line bundle .Z i is trivial when restricted to the divisor Dj ,
since on the universal curve over D B the point X; is on a rigid object, a
genus zero component with three marked points. So we can discard terms
in (2.39) with m > 0. Since it follows directly from the definition that
D.nD ;= 0 for i # j, in evaluating (2.37), we can drop terms proportional
to [D;]-[D;], so (2.37) becomes

(2.40) <rOszf> 2/ D] /\CI("??,-))"'""
i=1 g .+l i=1

(In case one of the exponents is negative, we set ¢ (.i”( j))"1 = 0.) Inte-

grating over the fibers of m:./, .| —.#, . we get the final result
(2.41) <10Hrdi> Z<H1d 5 >
i=1 j=1

We still must consider the special cases g =0, n=2 and g=1,n=
0. The only nonvanishing intersection number of this type is

(2.42) (10TpTg) =1
for g=0.
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We will leave it to the reader to verify that (2.41) and (2.42) are pre-
cisely equivalent to the string equation (2.22). (2.41) alone, without the
exceptional contribution for g =0, n = 2, would give (2.22) without the
£2/2 term.

This completes the explanation of part (a) of the evidence for the con-
jecture. As for (c), another equation of a similar nature can be obtained
by looking at

(2.43) < H T, > // ¢ (Zo) A (cl(%)))d"-

g.n+1

Now, in evaluating (2.43) we may actually replace the &, by n*(i”(;))
for i=1,---,n. The second term in (2.35) does not contribute, since
cl(i”(o)) -[D;] = 0. In evaluating (2.43) by integrating over the fiber
of m:#

o

4 one has a natural identification a:. /4

- g.n+1 g.n? g.n+l
EM g.n The relative canonical bundle K,ig 2 has degree 2g — 2 along
the fibers of ./, , — ., . It is not true, as one might think naively,

that 3”(0) = a*(Kig / »)- The correct relation, by reasoning just as that
which led to (2.35), is

(2.44) Zo 2o (Kz,.) ), OD)).

(Intuitively, a differential form on a curve X with n marked points is
permitted to have poles at the marked points.) Thus, ’970) is a line bundle

of degree 2g — 2+ n along the fibers of .Z conel = ;/Zg,n . So integrating
along the fibers in (2.43) we get

(2.45) <r1 Hrd> (2g — 2-L12)<Hrd>

i=1

with 2g — 2 + n being the degree of the canonical line bundle of a genus
g curve with » marked points.

As in the discussion of the string equation, there is an exceptional case
here, which arises for g = 1, n = 0, where there is no projection map

M| | — A4, . In this case, the exceptional contribution is

(2.46) (1)) =

2

This comes from a factor of Tli which can be understood, for instance,
for the existence of an elliptic modular form of weight 12 with a simple
zero at the cusp, and a factor of % because the generic elliptic curve has
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two symmetries. Now, (2.45) and (2.46) are equivalent to a differential
equation

6F ] 1
(2.47) m <2g 2+>:t16t)F + 5701

This can be rewritten in a way that does not refer to g if one recalls that
the right-hand side of (2.45) is nonzero only if 3g—3+n=}_,d,, which
amounts to the statement that genus g correlation functions obey

0
(2.48) (Z(z - 1)‘157 —(3g - 3)) F,=0.
The above equations combine to give
(2.49) OF 1 . 8F 1

5 =3 g(m + 1):,.7977 + 55

This result is part (c) of the evidence for our conjecture, because in fact it
can alternatively be deduced if one assumes that U = F obeys the KdV
equations as well as the string equation.

Comparison of t°s and k ’s. Let us now sketch how one similarly ob-
tains the formulas (2.11) relating the 7,’s to the x,_,’s. To explain the
ideas, it should suffice to indicate the origin of the first equation in (2.11),

(2.50) (74,7a,) = (kg _1Kq 1) + (Kg g, )-

(We may assume that d,, d, > 0, since otherwise, with x_; =0, (2.50)
is a consequence of the string equation.) To analyze this, we consider the
moduli space .Z .2 of curves X with two marked points x, and x,. It
has two projections

(2.51) ni:zg’ ——*//g 1
where m, “forgets” x, and =, “forgets” x, . (The inverted naming of the
7 ’s will make later formulas less painful. ) Here //{ , i=1,2,arethe

two copies of .Z e obtained by “forgetting” one of the points We also
have the usual two line bundles over .# c. , defined by ,z’ x; (Kg 1 R
K 2 is the relative cotangent bundle of the universal curve Slmﬂarly

on w4, ,), we define =z =
cotangent bundle to the universal curve over //Z/
According to (2.35),

(2.52) 0\ (Z,)) = m3(c,(Z5))) + D,

= X; (K, /,,) where K¢// is the relative
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where D is the divisor in .# 2.2 parametrizing curves which have a genus
zero component containing X, , X, , and precisely one double point. Since
d, >0 and ,9”(1) is trivial when restricted to D, we can rewrite the defi-
nition of <Td, 7,) in the form

(2.53) (le A Td2> = (CI("Z ) A 72?,(C (& ;)))dz , Zg,l) s
dropping the second term in (2.52). Similarly,
(2.54) Cl("zl)) =T (C (Gzﬂ(l))) [D].

Writing out the analog of (2.39) and discarding the terms with m # 0 for
the same reason as before, we get

(2.55) ()" =} (e (Z) ™ + D] 7} (e (Zyy)
So

(t074) = (m(e(ZN" Am3(e,(Z)™. 7, )
+ (my (e (L) AT (e ()™, D).

Now, D isacopyof ., . When restricted to D, 7]())) = 73(Z,
K, "z where K, 7 is the canonical bundle to the fibers of D = .Z .1
A . g (Indeed, if one restricts to D and then forgets x, or x,, then the
genus zero component containing x; and X, in the curve parametrized
by D “collapses” and x, or x, isidentified with the one marked point of
D4 .1 .) Hence, by definition of the Mumford-Morita-Miller classes,
(2.57)

(71, (Z0 ™ A m3(e (Z)™, D) = (Ko™ D) = (e g )

Now, practically from the definition in (2.10), we have

(2.56)

)

(2.58) (g e y) = <7z’;(c1(3' N AT (e (o) }/‘Zg’z).

. . — . T — s P )
In fact, we can identify ///g’2 with 52%’5, = ﬁl)%g x;f_;g f(z)/z’g. The

two factors of Z.4 , are A (g') | » and the two projections defined in (2.51)
are the projections of the fiber product onto the factors. With this inter-
pretation, the n;(,if;)) indeed coincide with ,ZI.) of (2.10), so (2.10) is
equivalent to (2.58).

% That is, these two varieties are naturally isomorphic. The families of curves that they

parametrize are not the same. Computing the effect of the difference is the point of the
present computation.
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Combining (2.56), (2.57), and (2.58), we have obtained (2.50). The
analogous equations expressing (le ---rdn) for n > 2 in terms of inter-
section products of x’s (and vice-versa) can be obtained similarly.

Analogy with homotopy theory. We will now make a brief digression.
Equations (2.22) and (2.49) can be formulated as the statement that the
functional Z = e , which physicists call the “partition function,” is an-
nihilated by the linear operators

0 12, o}
L-‘“—E“LEZO'*'?—;I”VBTI.’
(2.59 L
| SN S T
VT 2 for 16

§ ==

These operators generate a Lie algebra with [L;, L_,] = L_, . This alge-
bra is a subalgebra of the Virasoro algebra (the universal central extension
of Diff(Sl)), and (2.59) has an obvious similarity to standard realiza-
tions of the Virasoro algebra. This fact has suggested a flight of fancy.
The subject we are investigating in these notes has some notable analo-
gies to the generalized K-theory investigated in [47]. The parameters ¢,
are analogous to the parameters 7, = t(CP") which in [47] determine a
ring homomorphism ©:%"~ — Z, with %~ being the complex cobordism
ring. The critical hypersurfaces (corresponding to formal group laws of
height n, for various n) of that theory have an analog in the present
theory which will be apparent in §4. The invariants of almost complex
manifolds that we will consider in §3, which depend on the parameters
t, , are somewhat similar to the complex cobordism invariant determined
by 7 which is essential in [47] (but the invariants considered in §3 are
not cobordism invariants, so something is wrong with the analogy in its
present form). Now, in K-theory, a sort of Virasoro algebra enters in the
form of the Landweber-Novikov operations, and this motivated the guess
(made in different forms by the author, G. Segal, and J. Morava) that
(2.59) is in fact part of a Virasoro algebra that is relevant to the intersec-
tion theory problem. Recently, it has been shown to follow from the KdV
equations that the partition function Z is indeed a highest weight vector
for a Virasoro algebra of which (2.59) is part [18], [29].

Verification of the conjecture for low genus. In our sketch of the evidence
for the conjecture, what remains is to explain statement (b)—that, at any
rate, the genus < 3 contributions to U obey the relations that follow from
the KdV equations. We will first describe a shortcut for verifying this for
g < 2, referring to [37] for a similar discussion in genus three, and then
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we will reconsider the genus zero and one cases in a more leisurely and
perhaps more informative way.

In genus zero and one, the dimensional condition 3g -3 =5_,(d;, - 1)
makes it impossible to have all d; > 1 in a nonzero intersection number
(1474 "T4). A nonzero result requires factors of 7, or 7,. On the

1 n

other hand, (2.22) and (2.49) can be used to eliminate factors of 7, and

7,, reducing everything in genus zero to the special case (13) =1 and
reducing everything in genus one to the special case (7,) = 513. Since
(2.22) and (2.49) as well as the values for these special cases follow either
from algebraic geometry or from the KdV conjecture that we are testing,
the conjecture is valid for arbitrary correlation functions in genus zero and
one.

In genus two, (2.22) and (2.49) can be used to reduce everything to a
knowledge of (7,), (7,74), and (T;) . Using the KdV equations plus the
string equation, one determines these to be

(260) <T4> = '1_1132' s <72T3> = 35gp > <T§_) = 575+

(An algorithm for computing these numbers was explained in (2.26) and
the following discussion. An algorithm that is longer to prove but much
quicker to use follows from the Virasoro equations of [18], [29].) Using
(2.8) and (2.11), one has

<T4> = <K3> >

(2.61) (1573) = (K Ky) + (K3),
(T3) = () + 3(kc 1) + 2{kc3).
Mumford’s formulas in genus two give

(2.62) (K) = 1He3, (K%)= 5155 (1) = 535-

From these one can verify the genus two KdV formulas (2.60), completing
the verification that the KdV and intersection theory results coincide in
genus < 2.

This completes the promised shortcut. To give a clearer picture of what
is going on, we will now reconsider the genus zero and one situation in
somewhat more detail.

2¢. Leisurely approach to genus zero and one. Perhaps it is time to
explain what is surprising about our conjecture and what is the difficulty in
proving it. In genus zero, one, and two, the uncompactified moduli spaces
M are affine varieties, and the cohomology classes k, € H*(Zg’n)

“e.n
vanish when restricted to /z«i’g.”. The x,’s may thus be taken to have

b
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their support on the compactification divisor at infinity in A gon? and
this makes computations relatively easy. In higher genus, //{ is far
from being an affine variety, and [45] the x,’s are definitely ’not ZETo
when restricted to the “finite” part of moduli space.

Nevertheless, the KdV relations are surprisingly close to the sort of
results that would hold if the cohomology classes of interest were trivial
when restricted to .#, , . Let us reconsider (2.34):

g
(20Tl = 3o | 2 (i Tl (Fo) o
g'=0
g
(2.63) +23 (T, T g ((Tg)) ey
g'=0

The right-hand side of (2.63) looks very much like a sum_ over p0551b1e
degenerauons of a stable curve, to two branches of genus g and g-— g,
for 0 < g’ < g, or to a single branch of genus g—1. The possibilities are
sketched in Figure 2. In each degeneration, a double point appears, which
leads to two additional factors of 7, (one on each branch in the case of a
separating degeneration).

NN

s
Iy
()

(a)

(b)

FIGURE 2. THE POSSIBLE DEGENERATIONS OF A STABLE
CURVE OF GENUS g TO (A) TWO COMPONENTS WHOSE
GENERA ADD TO g ; OR (B) ONE COMPONENT OF GENUS
g—-1.
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Now, as we will see, (2.63) is rather similar to the type of formula
that would hold if the line bundles of interest were trivial on the finite
part of moduli space for all g, n—yet strikingly different, because of the
innocent looking factor of 1/(2n+1). To understand these assertions, we
will consider genus zero (and one) in more detail. In genus zero, (2.63)
reduces to

1 3 2 2
(2.64) ((T,,T()T()))o = m(((fn_lfo»o(('co))o + 2((1'”_110))0((‘[0))0).
We will see how a similar but not identical formula arises from algebraic
geometry.

Explicit treatment of genus zero. We will study the general n point
function in genus zero:

(2.65) (letd:mrd).

n

We recall that this is to be computed by intersection theory on .#Z 0.n>
which is the moduli space of stable genus zero curves T with » marked
points Xx, , Xy, '+, X,. In particular, Ty represents ¢, (Zl))d‘, where
,9”(1) is the cotangent bundle to X at X, . Assuming &, > 0, we write
schematically 7 4 = cl(,?( )T a1 and we will evaluate ¢ (,E”( 1y) explicitly
by computing the divisor of a rational section of ,5”(1 ) To write such a

section explicitly, we use the fact that the finite part A |, of the moduli

space consists of configurations of n distinct points on CP' (which we
represent as CUoc ) modulo the action of SL(2, C). A convenient section
s of ‘5’?1) on the finite part of moduli space can be described by the
formula

1 1
(2.66) s=dx, (xl-—x l—xl_x),
n-—- n

which has the requisite SL(2, C) invariance. This section obviously has
neither zeros nor poles on the finite part A, of moduli space. But we
have to consider the possible degenerations.

The differential

(2.67) w=dx < ! - )
X—Xx X-X,

n—1

on a smooth genus zero curve £ may be characterized by saying that it
has poles only at X,_, and x,_, with residues 1 and —1, and no zeros.
If ¥ degenerates to a curve with two branches %, and Z,, one defines
the sheaf of differentials on X as follows: a differential on I is a pair
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(w,, w,), where w, for i=1,2 are differentials on X,, and the w,; are
permitted to have simple poles, with equal and opposite residues, at the
double point. With this definition, on a stable curve of genus zero, even
a degenerate one, there is a unique differential @ with poles only at two
given marked points x,_, and x, , of residues 1 and —1. This differential
has no zeros on branches containing x,_, or x,, but, depending on the
nature of the degeneration, may be identically zero on other branches. For
instance, if, as in Figure 3, X has two branches X, and X, with x,_,
and x, on the same branch, say X, , then s is identically 0 on X, since
otherwise its restriction to X; would be a differential with at most only
one simple pole (at the node). Let D be the divisor that parametrizes
such curves.

% %,

FIGURE 3. A GENUS ZERO CURVE WITH MARKED POINTS
X,, "+, X, DEGENERATING TO TWO COMPONENTS, ONE
OF WEICH CONTAINS X, AND ONE OF WHICH CONTAINS
X,_;» X, . THE OTHER POINTS MAY BE DISTRIBUTED IN
AN ARBITRARY FASHION.

The section s in (2.66) is obtained by evaluating @ at x = x, . There-
fore, in view of the facts noted in the last paragraph, s has no poles, even at
infinity in moduli space. But s vanishes on the divisor D. A closer exam-
ination shows that s has a simple zero on D. Let S denote the finite set
{2,3,--,n-2}. The divisor D of zeros of s is a union of components
D, y,where S=XUY isa decomposition of S into disjoint subsets,
and D, , is the divisor consisting of two component curves X, with one
of the two components containing precisely x, and the x;, je X, while

the other component contains precisely x,_,, x,, and the x;, j € Y.

W i = [D]- = Dy L] . Thi

.e have schematically Ty [D] T4 -1 YsxurlPx vl Ty -1 This

gives

(2.68)  (1,7,7Ty) = > (Tq 1 ATy ATg A ATy, Dy y).
S=XuYy )

Part of the beauty of the compactified moduli spaces .Z ¢ is, however,
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that the divisors at infinity are themselves moduli spaces of the same type.
In this case, Dy , can be identified with the product V4 0,260, xM ey
where n, and n, are the cardinalities of the finite sets X “and Y. So
(2.68) is equivalent to the much more useful expression

<Td,Td2Td3"'Tdn>

(2.69) = > (%41 I1 Ty o) (To- [l 7 )
S=XUY jex key

This is an inductive formula that determines the left-hand side in terms of
a product of similar expressions with smaller values of # or of the 4°’s.
The factors of 7, that appear explicitly on the right-hand side of (2.69)
represent the double point that appears on each branch in Figure 3.

Now, it is useful to write (2.69) in the following way. A special case of
(2.69) is the case n = 3, in which S is empty. One gets then

(2.70) <lerd11d3> = (Td1—170)<707dfd3)-

Of course, we are working here at ¢, = 0, as is indicated by the use of the
symbol (---) (rather than ({---))). Let us differentiate (2.70) with respect
to ¢, for some /. The resulting equation

(2.71) (tdI Tifdzrd3> = <Td1—lriT0>(TOTdZTd3) + <Td1——170>(TOTde3Td3)

is valid since it is simply the n = 4 case of (2.69). In a similar way, one
sees that the multiple derivatives of (2.70) with respect to the ¢; all vanish;
indeed the vanishing of the k th derivative of (2.70) is equivalent to the
validity of (2.69) for n =k + 3.

The fact that (2.70) vanishes together with all of its derivatives at t; = 0
is equivalent to the single statement

(2.72) (Tg 70 T4 )0 = (Ta _1ToMol(T0T4,Ta o

(at least as a statement about formal power series, which is all we claim
since here we are not considering analytical questions concerning the na-
ture of these functions of the 7,). Indeed, this one equation is the gen-
erating function for the derivatives of (2.70) and thus for the totality of
equations (2.69).

The special case d, = dy = 0 of (2.72) is clearly very similar to (2.64).
From this point of view, however, the factor of 1/(2n + 1) in (2.64),
which has no counterpart in (2.72), appears rather strange. Because of its
dependence on #, it could not arise in a derivation on the above lines.

Actually, (2.64) and (2.72) are so similar without being identical that at
first sight one is tempted to think that they could scarcely be consistent.
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However, there are many ways to demonstrate their consistency. We will
give one argument that will be useful background for §3.

To begin with, consider the objects ({t,T,,)),. These are functions of

to> bty -+ . Let us, however, evaluate them at f, =¢, =--- = 0 to get
functions of ¢, only, defined by
(2‘73> Gn,m(to) = (<anm>>lzlzt2=---=0'

This process of restricting to functions of f, only will be important, so
let us introduce some terminology. We will call the infinite-dimensional
affine space A of the t; the “phase space” (or “full phase space”) of the
theory, and we will call the line defined by ¢, = 0, i > 0, the “small phase
space.” From (2.24), we have ¢, = ((1,7,)), on the small phase space, so
(2.73) is equivalent to the statement that on the small phase space,

(2.74) (T, 0o = Gy ({{ToTo))o)-

We claim that (2.72) means that (2.74) is true, without modification, on
the full phase space. We already know, of course, that (2.74), and therefore
also its 7, derivatives, vanish on the small phase space, so in particular

(2.75) (70T, T)o = Gy ({{TgT0))g) - {(to))o
on the small phase space. We will use (2.72) to show that the 7, derivatives
of (2.74) vanish on the small phase space also for k > 0.

The first derivative of the left-hand side of (2.74) with respect to ¢, ,
on the small phase space, is

<<Tkrnrm>>0 = <<7'-k—lTO>>0<<T0’tnfm>>0
= (11 TN - G m(({ToTNg) - {(T3)o

where (2.72) and (2.75) have been used. The first derivative of the right-
hand side of (2.74) with respect to ¢, is

(2.76)

(2.77) G:z,nz(“f()r()))())'<<TkTOTO>>0 = G:z,m(<<fofo>)o)‘<<Tk~170>>0'“Tg))o'

Comparing these, one sees that the first derivative of (2.74) with respect
to the 7, vanishes on the small phase space.

Inductively, if it is known that the r th derivatives of (2.74) with respect
to the 7, all vanish on the small phase space, then precisely the same
argument shows that the (r + 1)th derivatives of (2.74) vanish on the
small phase space. Therefore, (2.74) is valid to all orders in an expansion
in powers of the 7, and therefore (2.74) is valid on the full phase space.

To make this more concrete, let us now determine the functions G
We leave it to the reader to deduce from (2.69) that

(2.78) (r. 7T rg) =4

n-m s,n+m+1?

n,m:°*
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from which it follows that on the small phase space

tn+m+1
(2.79) (o = oS s
Thus,

t'H‘m"l‘l
(2.80) Gyl = G T T

In particular, setting m = 0, we have

({roto e

(2.81) (1, 7))o = NCESVE
Differentiating with respect to ¢, we then also have
3 2\\n
2 {({ToNol{To))
(2.82) (T, 7o) = ——(L—(;ZTM.

From these facts, the reader may straightforwardly deduce the genus zero
KdV relation (2.64). Alternatively, we may say the following. In view of
(2.32), (2.81) for m = 0 implies that the function which, according to our
conjecture, is the generalized KdV potential R,,, (U, U, U, ) is

Un+1

where *--- > denote terms involving derivatives of U which will arise as
contributions from genus g > 1. It can indeed be seen (from the explicit
form (2.34) of the KdV recursion relations) that if we consider the kth
derivative 8%U /8t§ to be of degree k, then the genus g contribution
to R, ., is homogeneous of degree 2g. Of course, (2.83) agrees with the
KdV theory for the contribution of degree 0.

In addition, (2.81) makes it possible to rewrite the genus zero approxi-
mation to the string equation in an interesting way. The ¢, derivative of
the string equation (2.22) is

(2.83) R, (U, U, U, )

oC
(2.84) Us=ty+ Y 1,11,
s
and—in a genus zero approximation—we can now write this as

(2.85) U= Z’f%—-
—
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This looks like an equation for a fixed point of a general formal transfor-
mation U — )¢, U'/i! of the affine line. This again suggests the analogy
with homotopy theory that has been mentioned earlier.

Genus one. We will now, more briefly, indicate a similar treatment
in genus one. We consider a genus one curve X with n marked points

X;, -+, X, and the general correlation function

(2.86) (rd Ty, '--rd) .

Again the basic idea is to find a suitable section s of .,.z” 0 and write
T = Is]-t d - . Actually, it is more convenient to take s to be a section

of ‘,fﬁl” and then write

s

(2.87) Ty = -[1-—2]- Ty
Indeed, if (on the Zariski open set in .#Z In in which X has only one
component) we regard X as an elliptic curve with X, as the origin, then
the elliptic modular form A of weight 12 with a simple zero at the cusp
can be interpreted as a section of ,S”( fz)’lz . It has no poles, and vanishes only
when X degenerates. In the theory of modular forms, the only relevant
degeneration is the degeneration of I to a rational curve with double
point, where A and hence also s has a simple zero. Let us call this
divisor D, . In the present context there is an additional possibility: s
vanishes when X degenerates to a union of two components, of genus
zero and one, respectively, as sketched in Figure 4, provided that x| 1s
on the genus zero component. (The reasoning showing that s vanishes
in this situation, with a 12th order zero since it is a section of .,z” el , 18
similar to the reasoning that we used at an analogous point in the genus
zero discussion. Heuristically, an elliptic curve, even if it degenerates
to two components of genus zero and one, has a nonzero holomorphic
differential, but this vanishes identically on the genus zero component as
it would otherwise be a nonzero differential on that component with at
most only a single pole at the node.) We will refer to this divisor as D,
So we have

I [ 01

(2.88) i1 =2 + (D, 1.

As in the genus zero discussion, n is essential that the divisors on which
s vanishes are themselves moduli spaces of stable curves with marked
points. Thus, the divisor D, on which ¥ degenerates to a rational curve
with double point is in the orbifold sense

(2.89) D, =314

0,n+2"
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FIGURE 4. A GENUS ONE CURVE X WITH MARKED POINTS
Xy; Xy, , X, DEGENERATING TO TWO COMPONENTS
OF GENUS ZERO AND GENUS ONE RESPECTIVELY, WITH
X, ON THE GENUS ZERO COMPONENT AND AN ARBITRARY
DISTRIBUTION OF THE OTHER POINTS.

The n + 2 marked points here are the n that were present originally and
the two copies of the double point on the normalization of Z; and the
factor of % arises because the two copies of the double point have no
preferred ordering, but we have defined ZZO’H in terms of configurations
of ordered points. The divisor D, , is reducible, corresponding to the fact

that the points x,, x5, -+, X, rhay be distributed on the two branches
in an arbitrary fashion. For every decomposition S = X UY of the
set $=1{2,3,.--,n} as a union of disjoint subsets X and Y, D,

has a component Dy .y y in which precisely the x., j € Y, are on
the genus one branch. Dj ., , is a copy of %MY x M Lsn, » Where
n, and n, are the cardinalities of X and Y, respectively. Writing
f"d,f.dz"”fdn) = (le—lrdz"'Tdn’ [s])/12 and using (2.88) and the facts
just indicated, we get

(rdlfdz'”Tdnh = Z <le—1 H Ta To)o ' (To H de>1
(2_90) S=XuY JjeX JjEY

2
+57(Tq 1T, T, Tolor

By reasoning exactly analogous to that which led from (2.69) to (2.72),
the totality of equations (2.90) is equivalent to a single statement about
generating functionals,

(2.91) (1,00 = (7, Tol{Teh)y + 55 ({Tu_1 ToTolor

One can also deduce a sort of genus one analog of (2.74), namely
3
(2.92) F, = ﬁ(ln(((ro))o) - 2).

Indeed, this equation holds on the small phase space (where (Té)o = 1;
the —2 in (2.92) comes from (2.18)). Its derivatives with respect to the ¢,
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can, inductively, be shown to vanish, using (2.91) and the genus zero re-
cursion relations; this establishes that (2.92) holds on the full phase space.
By differentiating (2.92) with respect to the 7, ’s, one can get formulas ex-
pressing {(7,)),, ((7,7,,)), €tc., in terms of genus zero quantities (which,
using (2.74), can all be expressed in terms of the ({1g)),).

In §3, we will generalize this story by introducing a rather general “target
space” M , and see that a considerable amount of the structure that we

have described generalizes.

3. Couplinghto sigma models

The analogy of the problem that we have been studying to ordinary
string theory is greatly strengthened if one couples the purely “gravita-
tional” problem to “topological sigma models.” (These correspond to a
mathematical problem studied by Floer, Gromov, and others [27], [34].
The relation of this problem to quantum field theory was suggested in [2].
A Lagrangian realization was found in [58], and was developed further in
[81.)

Fix a compact Kdhler manifold M and a Riemann surface X with a
fixed complex structure, to begin with. (The Ké&hler condition on M can
be weakened, as noted below, but this is not central for our purposes.)
Let % be the moduli space of holomorphic maps of X to M, of a fixed
homotopy type 4, and let &% =, 7.

Let us begin with a few comments on different methods and goals in the
mathematical and physical work in this area. In the mathematical litera-
ture, the goal has been to relax the Kdhler condition. Intersection theory
on the % is usually regarded as the definition of the problem, and analyt-
ical problems involving these spaces are the crux of the matter. From this
point of view, the theory has been developed for general compact sym-
plectic manifolds; a symplectic structure determines an almost complex
structure uniquely up to homotopy by requiring that the symplectic form
is positive and of type (1, 1), and a notion of almost holomorphic maps
from Riemann surfaces exists for general almost complex manifolds. The
main success of the mathematical theory has been to obtain exotic invari-
ants of symplectic manifolds and to use them to prove theorems about
such manifolds.

Physically, the starting point is not intersection theory on moduli space
but the existence of an appropriate topological sigma model Lagrangian,
which one attempts to quantize. The Lagrangian exists for arbitrary al-
most complex manifolds A, and one aims to develop the theory in this
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generality. From this point of view, a priori one is studying Feynman
path integrals, not intersection theory on moduli space. However, there
are formal arguments [58] which, when the % are smooth and compact,
give a reduction of the Feynman path integral to classical intersection the-
ory. Those arguments break down when the behavior of the moduli spaces
& is bad, but one would expect the Feynman integral itself to provide
a more general definition of the desired “intersection numbers” even in
such a case. The goal of the physical discussion is to construct quantum
field theories, to explore a possible “unbroken phase” of string theory, and,
in the present context, to explore how much of the discussion of the last
section has an analog.

Letting K denote the canonical line bundle of A, the content of the
theory that we will be discussing depends very much on the sign of ¢,(K).
If ¢,(K) > 0 and the dimension of A is not very small, the theory
will be rather dull since the formal dimensions of the moduli spaces will
almost all be negative. A much more interesting situation arises when
¢,(K) < 0 (a condition that singles out a much smaller class of Kéhler
manifolds, including CP"), since then the moduli spaces generally have
positive formal dimension.

For ¢,(K) < 0, one has nice finiteness conditions; any correlation func-
tion (as introduced in the next subsection) receives contributions only from
finitely many components of moduli space, and it seems likely that all of
the unknown functions that will be introduced later can be determined
from computation of finitely many special cases. Also, for ¢,(K) < 0,
the topological sigma model if studied by conventional physical methods
is “asymptotically free,” and has much better properties.

The discussion in this section will be particularly informal. We will not
attempt to determine the appropriate class of target spaces M, and we
will assume that the moduli spaces %, behave favorably. We should also
note that, although we will concentrate on models derived from Kahler
manifolds, there are other classes of models that obey the same general
conditions (such as the models derived from matrix chains, which we will
consider in §4d, and much less well understood models associated with the
two-dimensional analogs of Donaldson theory.)

We will limit ourselves to the case 7,(M) = 0 to avoid a number of
questions that have not yet been elucidated.

3a. Correlation functions. Let . be the moduli space of holomorphic
maps of ¢:X — M, and let ®@:..% x L — M Dbe the corresponding “uni-
versal instanton.” For x a pointin X, let ®_ be the restriction of @ to
& x «. Every cohomology class o € H (M) determines a cohomology
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class W, = @ (a) € H" (%), which is obviously independent of x since
any two points on X are cohomologous. (One can consider integral coho-
mology at this point, but we will eventually be thinking in terms of real
cohomology.) If « is the Poincaré dual to a submanifold H Cc M, then
W, is Poincaré dual to W), = {¢|p(x) € H}. One denotes the intersection
numbers of the W as

B (G, (R)E (%) E, (X)) = (W, AW, A AW, 5.

As in (2.3), the motivation for the notation is that these intersection num-
bers can be represented as the expectation value of a product of local
operators ¢, with respect to some Feynman path integral measure. In
(3.1), the x; are arbitrary distinct points in X, and W, = <I> (a;). To
avoid cluttermg this section with minus signs, we will assume that M has
only even-dimensional cohomology so that the ordering of terms in (3.1)
is immaterial.

Of course, (3.1) vanishes except for contributions from homotopy class-
es A4 such that

(3.2) Y dima; = dim &,

According to the Riemann-Roch formula, the virtual dimension of 5’j is
(3.3) dim_ %, = (1 - g) - dim . M - (¢”(c,(K)), T),

where ¢ is any map of the homotopy type A. Thus, for ¢ (K) < 0,

only finitely many & ’s have the right dimension to contmbute to (3.1),

and there are no problems of infinite sums. In general, we would have
to modify the discussion to keep track of the homotopy type. (The right
modification is actually part of what we will do anyway later in forming
the generating functional F', but we do not wish to introduce it now in
an ad hoc fashion.)

Actually (for an appropriate class of target spaces M ), the intersection
numbers (3.1) are independent of the complex structure on X. Math-
ematically, this is a corollary of the existence of an appropriate moduli
space ./, , of pairs of objects (X, ¢), where I is a stable curve of genus
g with n marked points x,, -+, x,, and ¢:X — M is a holomorphic
map. Physically, one would deduce the independence of complex structure
by using the BRST invariance of the Lagrangian.

3b. Topological field theory. In fact, these intersection numbers obey
the axioms of a “topological quantum field theory,” in a sense spelled out
in detail in [3], adapted from Segal’s axiomatization of conformal field
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theory [55]. These axioms require one to associate to every circle C a
vector space V., and to every Riemann surface £ bounding a collection
of “incoming” circles C;, i € X, and “outgoing” circles C ,je€Y,a
linear transformation @5: @,y V- — &,cy V¢, - The main requlrernent

(sketched in Figure 5) is that if Z is obtamed by joining the outgoing
boundary of X, to the incoming boundary of Z,, then one wants

(3.4) Oy = Dy oDy

Physicists describe this by saying that “one can calculate the transition
amplitude by summing over physical intermediate states.” In addition to
(3.4), one imposes a similar condition relating ®; and CDZ , where X’ is
obtained from X by cutting on a nonseparating cycle

T, 3,

FIGURE 5. A KEY TOPOLOGICAL FIELD THEORY AXIOM IS

A COMPOSITION LAW ‘Dz = (Dz o (D): THAT MUST HOLD
2 1

IN THIS SITUATION,

To realize these axioms in the case at hand, one takes V. for every
circle C to be a copy of H (M, R). This vector space has a natural
metric given by Poincaré duality, so one need to distinguish incoming and
outgoing circles. The metric will play an important role in what follows.
If H , o €L,isa basis for the real cohomology of M , then the metric
is n, = (H_ AH_, M). This is an invertible matrix whose inverse will be
denoted by #°"

If T is a surface bounded by circles C,, --- , C, , then the linear trans-
formation ®; which is part of the topological field theory data is simply a
vectorin ®'_, V. = ®,_, H (M, R). This vector is given by the correla-
tion function (Of’ O"’ RN ) The only property that needs to be verified
is the composmon law (3. 4) (and its analog for nonseparating cuts). We
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will investigate this in the next paragraph. To simplify notation, we will
specialize the following discussion to the case of genus 0 with 7 = 4, which
proves to play a special role. Other cases (and the rest of the topological
field theory axioms) can be discussed similarly.

(b)

FIGURE 6. A CONFIGURATION OF FOUR POINTS X, '* ,
X, IN GENUS ZERO, AND ONE OF ITS THREE DEGEN-
ERATIONS,

The four point function (&, (x,)F,(x, )Z,(x3)F5(x,)) is computed, as in
Figure 6, by fixing a configuration of four points x,, --- , x, onacurve X
of genus zero, and evaluating an appropriate intersection on 5’6, 4+ Sup-
pose that one degenerates the configuration of four points to the boundary
of moduli space, where X decomposes into two components X, and X,
which share a double point P. A holomorphic map ¢:X — M is by def-
inition a pair (¢,, ¢,), where for i = 1,2, ¢, is a holomorphic map
L, — M, obeying ¢,(P) = ¢,(P). If &7, f and & are the moduli
spaces of holomorphic maps of X, 21 ,and X, to M, then the condition
@,(P) = 9,(P) defines a cycle X in | x J”z, and we can identify .
with X . Since X C & x5, we can compute the four point function by
counting intersections on J” x 75 . Moreover, if x, x, lieon Z, and
Xy, X, lie on X,, then we can think of ag., @’ as representing classes

Wa(1 , Wél in H” (#]), and &f’l G5 as representing classes W},(Z), W;»(z)
in H"(%), which are then pulled back to H™(#] x ). We then have

(3.5)  (6.6,60) =W AW AW AW ALX], A x H).

In the last step we are thinking of [X], the Poincaré dual to X , as a class
in H* (# x ;). To put this in a more useful form, we reexpress [X] by
using the Kunneth decomposition of the diagonal A ¢ M x M, which in
real cohomology reads

(3.6) [Al= > #"H, xH,_.

o,t€L



274 EDWARD WITTEN

Here [A] is the Poincaré dual of the diagonal in M x M . Correspondingly,
one has [X]=3_ . r]'”WG(” x Wr(z) , 50 (3.5) becomes

(3.7) (8,0,8,85) = > (8,0,8,)0" (G.5,5).

at
This is precisely the topological field theory axiom which we had aimed to
explain, and though we have focused on the four point function in genus
zero, the general case is no different.

The four point function in genus zero has, however, a special signifi-
cance. Since the left-hand side is symmetric in «, 8, 7, and 4, but the
right-hand side does not obviously possess this symmetry, we deduce that
38) Y n"C.EECNCEE) = 0 C.EENE.0,0).

ag,T G,T

This equation means that if we define

(3.9) f;ﬂ‘; = (@a@/}ﬁ,)
and

) 70
(3.10) g =" Fog
then the formula
(3.11) G.C,=> 1,0

defines a commutative, associative multiplication law on H (M ,R) (which
in addition is compatible with the metric # in the sense that n(4, BC) =
n(BA, C) forany A, B, C; this amounts to the statement, clear from the
definition, that f By is completely symmetric). This ring has an identity,

namely &, , where 1 € HO(M, R) is the identity in the ring H (M, R).
(Conversely, it can be shown in an elementary fashion [17], [59] that from
such a ring structure one can reconstruct a two-dimensional topological
field theory. In higher dimensions, topological field theories are not clas-
sified so easily.)

By our definitions, (3.9) is to be computed by summing over all homo-
topy classes of holomorphic maps X — M, with Z a curve of genus zero.
A particularly simple role is played by the null-homotopic maps. This
component of % can be identified with A itself, since a holomorphic
map that is also homotopic to zero is constant. Unwinding the definitions,
one finds that if one considers only the null-homotopic maps in computing
A 5, » then one recovers the classical ring structure on H (M, R). This is
a graded ring in which all elements of positive degree are nilpotent. The
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higher homotopy classes of holomorphic maps contribute in such a way
as to deform H™ (M, R) to a structure which tends to be less degenerate,
especially if ¢, (K) > 0, and in general is no longer graded. For example,
for M = CP", the classical cohomology ring is R[x]/(x"™'), where x
is a generator in degree 2, but it is straightforward to compute that the
“quantum corrections,” that is, the contributions of the higher homotopy
classes, deform this to a “quantum cohomology ring” which is isomorphic
to R[x]/(x""'=1). If ¢,(M), as an integral cohomology class, is divisible
by r, then the quantum cohomology ring is graded by Z/2rZ, as one can
see from the Riemann-Roch formula for the dimensions of the N s,

We will later generalize this in the following perhaps surprising way. We
will find a function F on the vector space H (M, R), with the property
that at any pointin H™ (M, R), the third derivatives of F are the structure
constants of a commutative associative algebra. Thus, if y°, ¢ € L, are
affine coordinates for H™ (M, R), and

5°F
oy°ay’ oy’
(£ will not be a cubic function, in general, so the f’s are not constant)
and faﬁ‘s =7""f,4,  then at any point in H™(M, R), the formula

(3.12) fop, =

(3.13) o, =1,

defines a commutative, associative (and of course metric compatible) alge-
bra. This is equivalent to saying that F obeys the overdetermined system
of equations

oo OF _ OF o OF __ OF
0y°0y*ay” ayay'ay’ 0y°0y°0y° ay‘ayfay’’
for which we will find for each M a canonical solution.
3c. Coupling to gravity. This structure becomes considerably more in-

teresting if we let the complex structure on T vary. Thus, the basic object
of study will henceforth be the (compactified) moduli space /I’;,. of sta-

(3.14)

n
ble pairs (X, ¢), where Z is a curve of genus ¢ with n distinct, ordered

marked points x,, -, x, and ¢:X — M is a holomorphic map. It is
now possible to combine the two constructions that we have considered
in this paper. On the one hand, each marked point X; has a complex
cotangent bundle T*Z!_\,‘ ., and these vary over /l;‘n to give n line bun-
dles ;iﬂ(l.) . On the other hand, let €4 ¢.n be the “universal curve” over
,/lf;,.,z . We can regard the marked point xl.:t/l/é‘” — BN g.n asa section of
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the universal curve. If @: z,@V , — M is the “universal instanton,” then
for i=1,---, n onehas rnaps CI)ox /If - M , and this gives for each
i a natural map from o € H (M) to Wl o= (@ox)(a) e H(A, ).

Corresponding to each of the marked pomts x; , we can thus define natural
cohomology classes in H" (/Vg!n) of the form

d-W

I,a'

(3.15) Cl(,fiﬁ(i))

Here d is a nonnegative integer, and we may as well consider o to run
over a finite set corresponding to a basis L of H" (M, R). Symbolically,
as in §2, we represent these classes by “quantum field theory operators”
(FICZR 3 or, for brevity, simply 7 4o and we write
<Td1 ’“xrdz’a: o Tdn’an>
-~ d

= (e (Z) AW 4 ¢\ (Zn)

Again as in §2, we introduce formal variables (“coupling constants”)

(3.16)

) /\I/Vna ‘/I/é,n)'

Zf ,r=0,1,2,---,a€ L, and we define the “generating functional”
(3.17) F(£8) = ("),

More concretely, this is to be

(3.18) =3 H <HT >

{n }r a

where the n,_ are arbitrary collections of nonnegative integers, almost
all zero, labeled by 7, . The correlation function on the right-hand side
is to be summed over all values of the genus g of £, and all homotopy
classes of holomorphic maps ¢:X — M . However, a nonzero contribu-
tion arises only if the genus and the homotopy class obey an appropri-
ate dimensional condition. If d(a) is the dimension of the cohomology
class « € H (M, R), then the dimensional condition is now, from the
Riemann-Roch formula,

(3.19) 6g—6+(2g——2)dimCM—2/Zgo*(cl(K)) =% n (2r—-2+d(a)).

r,ae''r,a

For ¢,(K) < 0, this condition ensures that the coefficient of a given mono-
mial H(zf)"’~“ receives a contribution only from finitely many homotopy
classes of maps; in this case F can be regarded as a formal power series,

3 By analogy with standard terminology in conformal field theory, one sometimes refers
10 the &, = 14(€,) as “primaries” and the 7,4(£,), d > 0, as “descendants.” If m=
dim H™ (M, R), the model we are discussing then “has m primaries.”
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as in §2. (Otherwise, F must be expanded as a series in LR , where
the n, are integers and y; = tg"; here the «; run over a basis of the
two-dimensional cohomology of M.)

As in §2, it is convenient to write

(320)  {frgle) T (@) = o s F(E).
d, d

Thus, if one sets all #* =0, the symbol (()) reducesto (). Asa special
case of (3.20), we write ((1)) = F.

Our goal in the rest of this section is to show that at least part of the
discussion of §2 generalizes in this more elaborate situation.

3d. Analogs of the string and KdV equations. First of all, one important
part of the discussion of §2, namely the string equation (2.22), generalizes
straightforwardly. We recall that the origin of that equation was that one of
the operators (namely t;) correspond to the identity, a zero-dimensional
cohomology class. The analogous object in the present context is 7y(&))

(or simply 7, ;), where @, corresponds to 1 € HO(M , R). We consider
a general genus g correlation function

(3.21) <10’1 -szﬂai>
i=1

of this operator with n other operators. As in §2, this is to be evaluated
by integrating a certain cohomology class over /I/g ; if the cohomology
class in question were a pullback from /Vg’ then (3 21) would vanish. A
nonzero result comes, again, only from the second term in (2.35). Treating
this in a similar way, we arrive at the generalized string equation:

oF
(3.22) — = t ZO+ZZI |
a1, 2 loe P I+ 51
It is also possible to find a general analog of (2.49), but we will not enter
into this here.
In particular, it follows from the string equation that if all tf = 0 for
r >0, then

(3.23) ((Tg 1 To.a)) = %ﬂz{j,

which will be useful later.
In the rest of this section, we will see that at least in genus zero and
genus one, one can find analogs of the KdV flows. To begin with, we
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consider a genus zero curve X with marked points x,,--- , x,, and a

general correlation function

n?’

(3.24) (T, 0, %0, Td,_ o Td e )

n—1*"n—1

This can be treated precisely as we treated (2.65) in §2. Symbolically,
Ty e, = [s] T4 ~1.0,° where [5] is the divisor of a section s of Ji’(l) . For
s we pick the same section that we used in §2, namely

1 1
(3.25) s=dx1-<xl_x _xl—x>'
n— n

1

Its divisor again consists of certain degenerate configurations in which X
has two branches X, and X,. As a holomorphic map ¢:X — M is a
pair ¢:X;, — M obeying a condition ¢ (P) = p,(P) at the node P, we
must again, as in the derivation of (3.7), carry out the Kunneth decompo-
sition of the diagonal in M x M to express this condition in terms of the
cohomology classes we are using. Upon thus modifying the derivation of
(2.69), we arrive at the generalization of that equation, namely
(le,alrdz,az.”rd a z'(2',1,&")

n—1*"n—1

(3.26) ZZ Z <Td1”1»G;Hde,aj.TO,a>

6,7 S=XUY jex
gt
7 '<T0,T.Hrdj,aj'Td”_l.an_lrdn,an>'
JEY
Just as in the derivation of (2.72), we may now assert that the totality
of equations (3.26) for n > 3 is actually equivalent to a single relation

among the genus zero generating functions, namely
(3.27)

cT
<<Td§ ,a]TdZ,aztdS,%))O = Z<(Td]—l .Q]TO.G>>O n (<TO,TTd:,a:Td3,a3>>O'
ag,T

Now, (3.27) has the following consequence. The derivative of (3.27)
with respect to #5* is the equation

<(Td] .aITd:,azrd3.03Td4.04>>0

Gag = W T T D 1T T T
. agT

ot
+ Z<<Td]—l ,a]TO.G»O N <(T0,deZ,az‘[dS,asrdraN,))O'
Gt
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The left-hand side of (3.28) is symmetric under permutations of (d,, a,),
(dy, a;), and (d,, ), but the right-hand side is not. Therefore we can
infer that

gt
Z((le,alfdz,azfo,a»o’? <(T0,rfd3,a3fd4,a4))0
G,T

(3.29)

ot
:Z<<7d1,alfd4,a4fo,a)>o"7 ({70,274, 0,74, .0, 0"

Q
-

This amounts to the statement that
83F 8°F ox O°F 8°F

(30 1 e mar e = sleron A
15, 014,01 013014 01y, 13,015,015 01,01, 01,

If all d, are set to zero, this reduces to (3.14), so the free energy F is the
promised function whose third derivatives with respect to the 7, , at any
point define a commutative, associative algebra.

Actually, (3.30) is more than was promised. Thus, (3.14) was formu-
lated as an equation for a function defined on the finite-dimensional vector
space H™ (M, R), but in (3.30) we have a function F of infinitely many
variables 7. To reduce to (3.14), in addition to setting d; = 0, we restrict
F to a finite-dimensional subspace characterized to ¢, = ¢, , r > 1 (where
the ¢ are arbitrary constants). Thus, F is really a family of solutions of
(3.14) depending on the ¢ as parameters.

To give a very simple concrete example, let M = CP'. H *(CPX . R) is
two dimensional, generated by a zero-form 1 and a two-form w. If x = zé
and y = t(‘)" , then, from §2.3 of [19], the function F on the small phase
space is F(x,y)=x"y+e’.

Equation (3.27) can be given an interpretation analogous to (2.74). We
introduce the infinite-dimensional affine “phase space™ A™ of the ¢, , and
the “small phase space” characterized by tf =, for r > 1. Thus, the
small phase space is a copy of H (M, R), and has coordinates tg . On
the small phase space, the genus zero two point functions ({7, .7, ﬂ>>0

are functions of the 7, :

(3'31> <(Tn.arm.ﬂ>>0 = Gn.a:m,ﬁ(tg)'
According to (3.23), if we define
(332) Ua - <<TO. lTO.a))O ? L[a = HQﬂUﬁ ’

then we can rewrite this as

(333) ((Tn.afrn.B»O = Gn‘a:m./}(U?)'
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Precisely the argument that led to (2.74) can now be repeated to show that
(3.33) is valid, without modification, on the full phase space, not just the
small phase space.

As in §2, it is possible at this stage to reinterpret the string equation
(3.22). Differentiating (3.22) with respect to ly. o » W get

(3.34) U, = flagly + 30 th (T 570 o))
i=0 B

for all a. Using (3.33), we can rewrite this as

(3.35) U, =naﬂtg+zZtilGi’ﬂ;0’a(U’).
i=0 B

If H'(M,R) is m dimensional, this is a system of m equations for
the m unknowns U_; these equations (insofar as their solution is unique,
which is actually true in an open set in phase space) determine the U, ’s
as functions of the parameters zf .

It is interesting to note that the equations (3.35) can be given an inter-
pretation as the equations for a critical point (with respect to the U’s) of
a certain generalized potential W (U _; i ).4 To see this, note that on the

G i .
small phase space there are some functions G; ,(f;) such that
(3.36) (1, 00 = Gi’a(tg).

(As far as we know, (3.36) does not extend in any nice way on the full
phase space.) Comparing (3.36) and (3.33), we see that

. 8G, (1)
(3.37) G, aio,p(t0) = —25 2.

This identity of course remains valid if the arguments of the functions on
the left and right are U’ instead of #. So (3.35) can be written

— B = g0 G
(3.38) U, =t +§§ti+lm%w )
This is tantamount to the critical point equation
ow
(3.39) EYid 0,

*In the context of matrix chains, of which we will give a very brief sketch in §4d,
Ginsparg, Goulian, Plesser, and Zinn-Justin {33] and Jevicki and Yoneya [38] have shown
that the string equations are the variational equations of an appropriate Lagrangian. The
argument that we are about to give shows that, at least in genus zero, this is true for arbitrary
topological field theories coupled to topological gravity.
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where

o
(3.40) W= U+ U+ > 34,6,

=0 g

Conjectured generalization. What will become of the structure that we

have found here for genus zero when one considers contributions of higher
genus? The analogy with the results of matrix models and the structure
of the generalized KdV equations suggests the following. Use the symbols
UG , UG , etc., to denote derivatives of U_ with respect to té , SO

. 8U ) . 9'U 3
(3.41) U,= B—tgz“ro’lro’”))’ U, = Z’)_(tg)%z“ro’lro’”))’
and so on. Let us consider U, U, U, U, etc., to be of degree 0,
1,2, 3,---. By a differential function of degree k¥ we mean a function

GU,U, U, U,--) whichisof degree k in that sense. (Thus, in partic-
ular, such a function has only a polynomial dependenceon U, U, U, -+,
but its dependence on U need not be polynomial.)

Let us recall now that the free energy Fg has an expansion F =

:;o F,, where F ¢ is the genus g contribution. Similarly, all other gen-
erating functionals that we have considered, such as U_ = ((t, 7, ,)), Or
(T aTm, ﬁ)) , etc., are derivatives of F and in particular have similar ex-
pansions. More generally, we may be interested in products of generating
functionals. Such a product of course also has a genus expansion, which

explicitly is
g
(3.42) ({ANUBN) g = DA g ((B))g_gr-
g'=0

Then the following conjecture is a tempting generalization of (3.33):
Conjecture.  For every g > 0, there are differential functions

G ain.p(Uys Uy U, ) of degree 2g such that
(343) <<Tn,arm,ﬂ)) = Gm,a;n,ﬂ(Ua’ UG’ Uu” )

up to and including terms of genus g.

To explain the rationale for the conjecture, let me point out that for
M = a point, it is a consequence of the main conjecture of §2, since the
KdV hierarchy has the stated property. Indeed, the KdV hierarchy has a
stronger property—G, .. 5 is a differential function of degree at most
2(m + n). This means that for any given correlation function of fixed m

and n, the G, ., p are differential functions of finite degree even for
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g — . To put it more forcefully, this means that in the KdV case, there
are differential functions Gm’a;m 5 of finite degree (depending on m and
n) such that (3.43) is true exactly, not just up to some genus g. But
the conjecture stated above permits the possibility that for general M, in
going to higher and higher genus, one will have to add to the G
terms of higher and higher degree.

The conjecture is an attempt to interpret (3.33), which hold for a very
large class of target manifolds A/, as the genus zero approximation to a
systematic picture that would hold in arbitrary genus g, without proposing
that there is an integrable hierarchy of differential equations associated
with every compact Kéhler manifold M or even every such manifold in
a large class. Apart from the case M = a point, g < 3, the only situation
in which we know the conjecture is true is the following. If the dimension
of H (M, R) is 2, then the conjecture can be verified in genus one (in a
tedious and unilluminating way, which we will not present here) using the
formulas of the next subsection. (In practice, dimH (M, R) = 2 only
for M = CP', but the reasoning applies also to an arbitrary model that
obeys the general properties assumed here and has “two primaries” in a
sense described in a previous footnote.)

To make the conjecture sound a little more plausible, let me point out
the following reinterpretation of the above genus zero equations. We have

G, s,

EE);'UG = <(TO,lrn,aTO,u’)> = 576((%1&'[0,0))

m,on, B

(3.44)
) 8 o ).

=—G =G '
(91‘(1) n,a;O,a( ‘/) al(l)aUU n,a 7

In the last two steps, (3.33) and (3.37) have been used.
Now, (3.44) has the following interpretation. Think of the U_ as func-

tions of x = té , and introduce Poisson brackets, with

7

(3.45) (U (x), U(x"} = nm%é(x—x ).

These Poisson brackets correspond to one of the two symplectic structures
of the KdV equations. Introduce the “Hamiltonians”

(3.46) H, . = /dx G, (U,

Then (3.44) can be regarded as the Hamiltonian equation of motion:

oU,
arc

n

(3.47) ={U,, H, .}
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Thus, the genus zero correlation functions for any M (of an appropriate
type to justify the above considerations) can be described by a family of
commuting Hamiltonian flows! In genus zero, the Hamiltonian densities
G, , are simply functions of the U’s. A somewhat sharpened version of
the above conjecture would assert that in a genus g approximation, the
correlation functions are generated by a system of Hamiltonian flows with
the Hamiltonian densities being differential functions of degree 2g (which
Poisson commute up to terms of degree 2g +2). If the conjecture is true,
then one would expect, upon taking the limit as g — oo in a suitable sense,
to obtain commuting Hamiltonians that would no longer be differential
functions of finite order, so that the commuting Hamiltonian flows would
be governed by integral equations rather than differential equations.

The KdV flows have the much stronger property of being bi-Hamil-
tonian; that is, they preserve two different symplectic structures. This is
closely related to the fact that the differential functions in equation (3.43)
have a degree that is bounded by 2(m + 1), independent of g, and thus,
one really gets commuting differential operators of finite order. (The other
symplectic structure is also related to a kind of Virasoro algebra.) We do
not know of any evidence for a second symplectic structure playing a role
for general M .

Genus one structure. We will now much more briefly discuss how the
genus one equations of §2 generalize in the present situation. The general-
ization of (2.91) to include a target space M can be obtained by reasoning
that should by now be familiar, giving

({Th,alh

(348) = Z<(Tn—-l ,QTO,G>>0"GT<<TO,1)>1 + %((T)I~I,QTO,UTO,T>>O'

It is also possible to obtain an analog of (2.92). To this aim, introduce the
matrix

(3.49) M, = ((To,ﬁo,afo,r))O'

[23

Define a function E(#;) by requiring that the genus one part of the free
energy, on the small phase space, is

(3.50) F, = 5;Indet M + E(1).
Then we claim that the genus one free energy, on the full phase space, is

(3.51) F, = & IndetM + E(U").

24



284 EDWARD WITTEN

Since (3.51) is valid on the small phase space (by definition of E'), it
suffices to prove that the repeated derivatives of (3.51) with respect to the
t, . all vanish. This can be proved inductively using (3.48).°

'As we have already mentioned, with the above equations and some
patience, one can verify the conjecture of the last subsection for genus
one in the case dim H™(M) = 2. We do not know if this restriction is
necessary.

4, Introduction to matrix models

Our goal in this section is to give a relatively self-contained but far from
complete introduction to the matrix model approach to two-dimensional
gravity and some of the remarkable results obtained recently by Brezin
and Kazakov, Douglas and Shenker, and Gross and Migdal [3], [25], [35].
In §4a, we explain the physical problem and the strategy for discretizing
it; §4b is an explanation of how the discretized problem can be interpreted
in terms of matrix integrals, and in §4c, the matrix integrals are described
in terms of (discrete analogs of) the KdV flows. The reader who is willing
to take it on faith that the problem of interest is to compute matrix inte-
grals [(dM)exp(—tr(V(M))) can read §4c without understanding all the
previous details.

4a. The physical problem. Let I be a smooth two-dimensional surface
of genus g (no complex structure given), and let /# be a metricon X. The
curvature scalar of this metric will be denoted as R. The space MET ¢
of metrics is itself an infinite-dimensional Riemannian manifold. Indeed,
let &, be a one-parameter family of metrics. Then dh = (dh,/dt),_, isa
tangent vector to MET g at h=h,_,,and one defines its norm to be

(4.1) 6h|> = | VA, k)= | VRR W’ sh_,6h. .
> > ap b

This determines a metric on MET ¢ and thus, formally, a Riemannian
measure, which we will denote as (Dh). The physical problem is to learn
how to integrate over MET g Naively speaking, one would like to compute

° In models based on matrix chains, there is strong evidence that all general relations
that hold for arbitrary A are valid [19], and therefore, by the reasoning just indicated, one
expects that (3.51) holds with some E . However, in the matrix chains, the “primary flelds”
(the 7, ) have negative dimension, and the virtual dimension of moduli space in genus
one is zero. These facts force E = constant. This explains results that were noted in [19].
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w

the integral

(4.2) F(g)=/MET (Dh) exp< /\/_ A /\/—R>

with arbitrary real numbers A, and 4,. Of course, the term multiplying
4, is a topological invariant, the Euler characteristic x(X) =2 —2g, and
plays a trivial role as long as g is fixed; but we will be interested in the
dependence on g.

Let MET, , be the space of metrics of total area 4 on a genus g sul-
face. It too has an induced Riemannian structure, and therefore it should
have a volume Vol(g, 4). Computing (4.2) is equivalent to knowing
Vol(g, A), since from

Flg, 4) = /MaAv;(Dh)BXp (-AlA—-).z /2 \/Z.zfin)

= Vol(g, 4) - exp(—4,4 — 4, X(Z))
we can recover (4.2) by integrating over 4.

Of course, a priori one does not quite know what integration theory on
these infinite-dimensional spaces is supposed to mean. Usually, in quan-
tum field theory one introduces some sort of “cut-off,” which one might
imagine to be an approximation to MET, of some finite-dimension A,
such that the desired integrals become well defined. Then one tries to “re-
move the cutoff,” that is, one considers a sequence of better and better
approximations to MET with increasing A, and one tries to determine
the limit of the integrals for A — oc. It then will typically occur even in
good cases that such a limit does not exist unless one adjusts (“renormal-
izes”) the “coupling constants” A, and 4, ina suitable fashion. So we
come to the basic problem of renormalization theory:

Problem. Adjust A, and 4, as A — o SO that F(g, A) and F(g)
converge to well-defined functions of g and 4.

Now, notice that if this problem has a solution, the solution cannot quite
be unique. For one could add to 4, a finite constant, that is, a constant
¢ independent of the cutoff, and the F’s would change by

(4.4) F(g, A)— F(g, A)-e™®.

Similarly, there is a potential ambiguity from the ability to add a constant
to 4, , but it turns out that this ambiguity can be canonically removed by
requmng that F(g, A) varies only as a power of 4 (adding a constant
to 4, would introduce an exponential factor).

The problem of renormalization posed above has analogs in many other
quantum field theories; and, usually, it is very difficult to get full control

(4.3)
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over this problem (including possible strong coupling fixed points)—or to
explain the partial results in an introductory lecture. But the particular
problem we are discussing here can be treated in a remarkably effective
way using a discrete cutoff that was proposed in [14], [41], [1]. In this
appreach, one considers not metrics on X, but triangulations of X, or
certain generalizations that we will consider later. Every triangulation of
2 determines a metric; for instance, one can consider the triangles to be
equilateral triangles of area &. Of course, the metrics determined this way,
except in a flat case where all the coordination numbers are six, cannot be
smooth; the curvature consists of delta functions with coefficients that are
integral multiples of 27/6. Nevertheless, one can hope that if a surface is
covered with a very large number of triangles, and one averages over the
local irregularities, then on a large scale one can effectively see a general
metric.

Let V(g, n) be the number of isomorphism classes of triangulations
of a genus g surface with # triangles.6 Now, for small n, V(g, n) is
determined by “accidents.” But for large n, we can hope that the metrics
determined by triangulations approximate any given point in MET < with
equal probability, and that counting triangulations becomes an approxi-
mation to computing integrals on MET_ . In fact, one proves (a rather
precise account is given in [10]) that the large n behavior of ¥ is

(4.5) Vig,n)~e” n’ g (14 0(1/n)).

If we consider every triangle to have area ¢, then the total area is A = ne ,
S0

(4.6) n=Ale.

We regard ¢ as a cutoff, and we regard >, V (g, n), which is the sum over
metrics of arbitrary area, as an approximation to fdAVol(g, A). With
>, ~ [dA/e, we interpret V(g, n)/e as an approximation Vol,(g, 4)
to the volume of MET 4,g+ We want to take ¢ — 0 while keeping 4
fixed. (4.5) means that

1 A 7(2-2g)-1
(4.7) Vol (g, 4) ~ — et (E) b

g

®To get a precise relation to the matrix model formulation later, one should define
V =32+ 1/g(T), where the T ’s are isomorphism classes of triangulations, and ¢(7) is the
order of the automorphism group of the triangulation 7. We may ignore this at present,
since g(7T') is 1 foralmost all T, and the factors of q{T) do not affect the large »n behavior.
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So from (4.3), the corresponding cutoff version of F(g, 4) is
F,(g, 4)=Vol,(g, A)exp(—i A - 1,(2 - 28))

(4.8) 1 cae (A 7(2-28)—1
=—e <€> -bg~exp(—llA—,12(2—2g)).

Now we must “renormalize,” that is, take & — 0 while adjusting 4, and

4, as functions of ¢ so that F,(g, 4) converges to a well-defined function

F(g, A). Obviously, what we need is

(4.9) A =cle, iy =7yIn(4,/e),

where A, is a constant. The limiting or “renormalized” function F(g, 4)
is then

7(2-2g)
(4.10) Flg, A) =~ <_A;) by

4 \ 4,
A, is the arbitrary constant discussed already in (4.4). In the above deriva-
tion, one might feel that it is natural to set 4, = 1. Intuitively, this is in
fact unnatural, because 4, &, and 4, all have dimensions of area, and
there is no natural unit of area. In including the arbitrary 4, in (4.10), we
are simply bringing out into the open the need to choose such an arbitrary
unit. (Shortly we will replace triangles with squares. If one sets A, = 1
using triangles, one gets a different answer from what one would get if one
sets A, = 1 using squares, so neither choice is truly natural.)

Now, apart from the fundamental fact that renormalization works and
the theory exists, the moral of the above discussion is that the dominant
looking term e in (4.5) did not matter and disappeared after renormal-
ization. On the other hand, the subleading power n”"28)7! does matter,
as does bg . However, the b g are well defined only up to

l—-g
(4.11) b, — b, 1'%,

for constant ¢.

The above computation is interesting, but it is not so fundamental if we
are just exploring quirks of triangles. We want to see that we would obtain
the same theory if we make different arbitrary choices of regularization.
For instance, we could construct the theory with squares instead of trian-
gles. Let W(g, n) be the number of ways to cover a genus g surface with
n squares. Then ' one finds that the large n behavior of W(g, n) is just
like the asymptotic formula in (4.5), but with a different value of c, the

! Apart from a delicate factor of two that will be pointed out at the end of §4dc.
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same value of y, and the bg ’s differing only by a transformation of the
type (4.11). Thus, up to the one inevitable ambiguity, the same theory is
obtained if one uses squares instead of triangles. Similarly, one obtains
the same results if one uses the number of ways to cover a surface with
pentagons, hexagons, etc., as the way to regularize MET ,

There is a fascinating variant of this, originally proposed in [40] Instead
of covering a surface with, say, only squares or only hexagons, we could
permit both squares and hexagons. Let W(g; n 4> Ng) be the number of
ways to cover a genus g surface with n, squares and n, hexagons. We
pick a real number x and let
(4.12) W.g,n)= Y Wlg;n,, ngx"™.

n, +n6—-n
For generic x, the large n behavior of W (g, n) is the same as (4.5),
except for the usual modifications—an x dependent value of ¢, and an
x dependent transformation of the sort in (4.4). At a critical value of
x , however, one finds a new theory, with a different value of y and very
different b ¢S

This in turn can be generalized. We can consider coverings of a surface
with s-gons of various s. It turns out that nothing essential is lost if one
considers the s-gons of even s only. So we let W(g;n,, n,, n,, ) be
the number of ways to cover a genus g surface with n, 2-gons, n, 4-gons,
ne 6-gons, and so on. Picking real numbers x,, x,, Xg, oo, welet

(4.13)  Wylg.m)= D W(g;my, ng, - )xy X0 x(
n2+ll4+“'=ll

To avoid analytical questions, we can restrict this to a theory with s, pa-
rameters, for arbitrary s,, by supposing that the x,  are zero for s > 5,
Then, the generic large n behavior of Wi, , for ﬁxed {x}, is that of (4. 5)
(up to the usual irrelevant modlﬁcatlons) On a codimension one subva-
riety, one finds the exceptional behavior that we already mentioned in the
theory with only squares and hexagons. Generically, on this subvariety,
the large n behavior of W{x}(g, n) is independent of the x’s. But on
the codimension two subvariety, one finds again a new theory, with a new
value of y and essentially new b ¢ ’s. This process continues indefinitely;
in every codimension there is a new critical subvariety. The kth theory
arises on a codimension k& — 1 subvariety, for k = 1,2,3,.--. This
nested hierarchy of critical subvarieties is, as we have already noted in §2,
reminiscent of the situation considered in [47].

Now, let us return to the theory in which X is covered by squares
only, but let us enrich the theory by permitting a few impurities. We
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consider as impurities u, 2-gons, u, 4-gons, u, 6-gons, etc. (Since we
are covering by 4-gons anyway, it is necessary to specify that by a
4-gon impurity we mean a marked 4-gon, in a sea of 4-gons which are
generically unmarked.) Let W(g, n; u,, u,, g, --+) be the number of
ways to cover a surface of genus g with n unmarked 4-gons and u,,
2r-gon impurities, for r = 1, 2, --- . We consider the 2r-gon impurities
of each r to be ordered (otherwise, one must simply divide by []; uzi!).8
Then the methods that give (4.5) yield

(4.14)

Wi(g,n,uy, Uy, - g(uz,u4,u6,~-),

with certain constants y, and f (uy, uy, thg, --+). (The y, are “univer-
sal,” that is, they are unchanged if one considers impurities in a sea of
hexagons, etc., instead of squares. The f (u,, uy, ---) similarly are uni-
versal up to a transformation, analogous to (4.11), that can be absorbed in
a rescaling of the variables ¢, that we will introduce in a moment.) The
general methods for computing the fg(uz, Uy, Ug, ) can be found in
[10] (and an introduction is given below).

The dramatic development of the last year is that it has been found
[12], [23], [34], [7] that the generating function defined as
(4.15)

o’} uw
fltg, 1. 1 Z Z H ’"‘f (uy, Uy, g, -+ ) - trivial constants

& {u,}i=1 el

) ~ /(7 2g)— ITZ lla,z,_

obeys the KAV equations as well as the string equation, described in §2. ’
The main conjecture of §2 is equivalent to the statement that the func-
tion F(t, t;, ) defined there coincides, after some slight shifts in the
var1ab1es w1th the function f. That conjecture indeed was an attempt to
propose for f(z;, ¢, -+) 2 geometrical interpretation more direct than
the one by which it is defined.

4b. Random matrices. A powerful tool for obtaining the results just
sketched comes from the interpretation, given long ago by *t Hooft [56], of
Feynman diagrams with matrix-valued fields in terms of triangulations of

8 To make the ideas clear, we will in this and the next paragraph overlook a few important
details including the need to take linear combinations of the u’s corresponding to “scaling
variables.”

° The “trivial constants” arise because of the integral over are needed to go from (4.3) to
(4.2). The f s were defined in terms of the behavior with a fixed large number of squares,
correspondmg to fixed area; but the generating function f that one really wants should be
defined with an integral over the area. This gives some trivial constants, as we will discuss
later.
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Riemann surfaces. *T Hooft’s motivation was to understand the behavior
of quantum gauge theories with gauge group SU(N) in the large N limit.
This problem, which is outstandingly interesting from a physical point of
view, has so far been intractable except in two space time dimensions. A
few years after the original suggestion, it was realized [12] that drastically
simplified models of this program could be understood by methods of
random matrix theory, which had been developed in the 1950s and 1960s
by Wigner, Dyson, Mehta, and others with the aim of understanding the
statistics of nuclear energy levels. A classic reference is Mehta’s book [43].
The paper [10] gives a highly readable account, not assuming any prior
familiarity with Feynman diagrams, of the application of random matrix
methods to count triangulations of surfaces. The reader not acquainted
with these matters is strongly urged to consult §§2 and 3 of that paper, as
we will only offer a few indications here.

Suppose that we wish to compute W(g, n), the number of ways to
cover a genus g surface with » squares. The dual to a covering by
squares is a four-valent graph, as indicated in Figure 7. So we can in-
terpret W (g, n) as the number of connected four-valent graphs that can
be drawn on a surface of genus g.

LN
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FIGURE 7. A PORTION OF A COVERING OF A SURFACE BY
SQUARES AND ITS DUAL FOUR-VALENT GRAPH.

Consider first the slightly easier problem of counting abstract four-valent
graphs with »n vertices (without reference to any Riemann surface). Let
u(n) be the number of graphs which are connected and let y(n) be the
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number of such graphs that are not necessarily connected. 0 The corre-
sponding generating functions are

(4.16) U(=2) =3 (=0)"u(n),  Y(=2) =) (=1)"y(n).
n=0 n=0

It is easy to see that these are simply related,

(4.17) Y =é".
Now, Y has a convenient integral representation

(In other words, the function of A that is well defined for Re4 > 0 by
(4.18) has an asymptotic, not convergent, expansion near A = 0 with
coefficients y(n).) We will explain the origin of (4.18) momentarily, but
first let us note that (4.18) leads to a quick determination of the large »
behavior of y(n) and u(n). By taking the nth derivative of (4.18) we

have
1 © do &, an

‘1o y(n)“df!"n!/_cc T @)

) - ia—s-ex ——2+4nln¢>
T W Var P\ T2 '

The integral in (4.19) can be estimated for large # by noting that the main
contribution comes from the neighborhood of the maxima of the integrand
at ¢ = +£/4n, and this gives y(n) ~ (4n)""e”?" /(4" n!). It is easy to see
that the growth with n of y(n) is so fast that for large » almost every
four-valent graph with »n vertices is connected, and thus asymptotically
u(n) ~ y(n). In particular, u(n) and y(n) grow faster than exponentially
with n, so that the series in (4.16) has zero radius of convergence.
To understand (4.18), we first note the elementary integral

(4.20) / g 62 _
—0 271.’
and as a result
(4.21) / A9 oo =/ dd_—t=17pelin _
o0 27 — 00 27

19 We will consider the vertices to be unordered; otherwise, the numbers u(s) and y(n)
are larger by a factor of 7!, and a factor of 1/n! would be included in the following defini-
tion. The minus signs in the definitions of the generating functions are for later convenience.



292 EDWARD WITTEN
So
® do s 2% g e Ao —g*+is
—p ¢ = T —p
—c V21 dJ* J-so V2m 7=0
(4.22) " =
d 2
_ N
_{dﬂ"e J '
J=0
Now since
d rp . rnp
(423) We = Je s

a derivative d/dJ, when acting on el 2 , “creates” a factor of J. More

generally, when we compute a repeated derivative
d d d rp

E E P .a-je s

each derivative either “creates” a factor of J when it acts on the exponen-
tial, or “annihilates” a factor of J that has been created by a derivative
further to the right. Since in (4.22), we are to set J = 0 at the end, every
factor of J that is “created” by one derivative must be “annihilated” by
another. So, finally, (4.22) is equal to the number of ways to group 2k
objects in pairs.

What we actually want is

) 2 4\ "
(4.25) y(n) = ;Zl-,/_ %e“‘*” 2 (%—)

The factors of ¢ were “born” in groups of four by expanding the expo-
nential in (4.18). So we are counting the possible ways of pairing 4n
objects which come in groups of four. As shown in Figure 8, it is natural
to represent a group of four by a vertex from which four lines emerge,
and a pairing of two objects as a connection between the corresponding
lines. (The factors of 1/4! in (4.25) mean that the four objects in each
group are unordered, and the factor of 1/n! means that the vertices in the
graph are unordered.) In such a way we obtain a four valent graph with
n vertices, and the argument shows that y(n) is indeed the number of
such graphs. The graphs obtained by such perturbative expansions of in-
tegrals are known in quantum field theory as Feynman graphs or Feynman
diagrams.

The faster than exponential growth of y(n) and u(n) should be com-
pared with the prediction (4.5) that the number V(g, n) or W(g, n) of
three-valent or four-valent graphs that can be drawn on a surface of genus

(4.24)
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FIGURE 8. A FOUR-VALENT “FEYNMAN GRAPH" OB-
TAINED BY TAKING CLUSTERS OF FOUR OBJECTS (SUCH A
CLUSTER IS DEPICTED AS A VERTEX FROM WHICH FOUR
LINES EMERGE) AND PAIRING THEM (BY CONNECTING
THE LINES IN PAIRS). IN THIS INSTANCE, THERE ARE
FOUR VERTICES.

g grows only exponentially with the number of vertices. How can one
modify the above graph counting to construct the generating function of
the number of graphs that can be drawn on a surface of fixed genus? The
simple modification that is required goes back to [56]. One simply replaces
¢ by an N x N hermitian matrix M . The space of such matrices is a

Euclidean space rY , on which one introduces a translationally invariant
measure (dM) normalized so that

(4.26) / (dM)exp-Tr M> = 1.
Then, the claim is that the integral
M M

is essentially the generating function that we need. Indeed, F(N, —-1) =
In Z has the expansion

(4.28) F(N,-2) =Y N"%3(-)"W(g,n),
g=0 n=0
where W (g, n) is the number of ways to cover a surface of genus g with
n squares.
Derivation of (4.28). Equation (4.28), which is essentially due to
‘t Hooft [56], is explained in [10] and in [51]. Here is a very brief
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account. To begin with, by completing the square, one proves that

(4.29) / (dM) exp(~Tr(AM* + M) = exp(Tr(J7)/2).
Hence

M i i
/(dM)exp ~Tr - Mj;Mjl--~~Mj:

8 8 M*
= |—— o —— [ (dM)exp | -Tr{ — + MJ
L 1 n J=0
_ | 0 0 T2
= — s — .
8t aJl
L i n J=0

Now, as in the previous case, each derivative §/8 Jl.j either “creates” or
“annihilates” a factor of J;. Since one is to set J = 0 at the end of

the computation, every factor of J Jf that is created must be annihilated,
so that the evaluation of (4.30) involves a sum over pairings. Again, it
is natural to represent such a pairing by a line connecting two vertices.
The difference is now that there are N° distinct “objects” J Jf that may be
propagating in such a line. Following ‘t Hooft, we denote this by a “double
line notation” in which each line is thickened slightly to a band, and the
edges are labeled by i or j, as in Figure 9(a). The two edges of the band
correspond to the two indices of the matrix J ]' , and the N possible labels
of each edge correspond to the N possible values of the corresponding
index.
Now, expanding (4.27) in powers of A, the coefficient of (—4)" is

(4.31) (&)n = / (d M) exp (~%Tr(M2)> (Tr(am™)".

n!

Again, we must integrate a polynomial of order 47 in the matrix elements
of M ; again, this can be done using (4.30), and will lead to a sum over
four-valent graphs of an appropriate type. However, we must pay atten-
tion to just what kind of 4nth order polynomial in matrix elements of
M we have in (4.31). If we bear in mind that TrM* = M]’.M,iM,le.[,
then in the double line notation, the four-valent vertices have the structure
indicated in Figure 9(b), and the diagrams with “double lines” connecting
such vertices are as in Figure 9(c). The key point is now that, though an
abstract graph does not naturally determine a Riemann surface on which it
can be drawn, the “double line” structure has had the effect of thickening
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-9 ),

@) (c)

FIGURE 9. A CONVENIENT NOTATION FOR FEYNMAN
DIAGRAMS OBTAINED BY PERTURBATIVE EXPANSION OF
MATRIX INTEGRALS. EVERY LINE IS THICKENED AS IN (A)
TO A “BAND,” WHOSE TWO EDGES CORRESPOND TO THE
TWO INDICES OF AN N x N MATRIX M j’.; EACH EDGE
CARRIES A LABEL THAT MAY RUNFROM 1, --- , N, COR-
RESPONDING TO THE POSSIBLE VALUES OF THE CORRE-
SPONDING INDEX. IN THIS NOTATION, THE FOUR-VALENT
VERTEX CORRESPONDING TO A FACTOR OF Tr(M4) IN
AN INTEGRAL IS DEPICTED AS IN (8). COMBINING THE
THICKENED LINES OF (A) WITH THE THICKENED VER-
TICES OF (B) ONE OBTAINS GRAPHS (C) IN WHICH THE
EDGES FIT TOGETHER SMOOTHLY INTO “INDEX LOOPS.”
FILLING IN THE INDEX LOOPS WITH DISCS, ONE CANON-
ICALLY CONSTRUCTS A TWO-DIMENSIONAL SURFACE.

YA

the lines slightly, in a way which is compatible with the structure of the
vertices, and this gives the extra information that is needed in order to
reconstruct a Riemann surface. Indeed, with the vertices drawn as indi-
cated, the edges of the double lines join together into circles, and upon
filling in these circles with discs, we obtain a surface X together with a
simplicial decomposition.

Let ny, n,, and n, be the number of 0, 1, and 2 simplices in this
decomposition. Then 7, is the same as the number 7 in equation (4.31),
and it is a fact of life for graphs drawn with four-valent vertices that

(4.32) ny = 2n,.

On the other hand, »n, is the same as the number of circles that were filled
in to reconstruct X.
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These circles are usually called “index loops”. The terminology reflects
the fact that each edge of one of the thickened lines has a labeling or
“index” that takes an arbitrary value in the range 1, --- , N; because of
the structure of the vertices, the labelings are constant in running around
the circles or index loops, and there is no correlation between the labeling
of different loops.

Now, the evaluation of (4.31) proceeds by drawing all the possible four-
valent thickened graphs, and then assigning to each graph a numerical
factor which comes from factors explicitly present in (4.31) and from
summing over the various types of “object” that can be propagating in
each double line, that is, by summing over the labelings of the edges. The
sum over labelings gives a factor of N for each index loop, or altogether
a factor of N™ . In addition, a factor of N~ is explicit in (4.31). The
N dependence is thus

(4.33) N o T NZ(I‘E) ,

where in the first step we use (4.32), and in the second step we use the
fact that ny—n, +n, is the Euler characteristic 2 —2g . The power of N
is the main result that is claimed in (4.28). The other numerical factors
that arise are the trivial factors that appear explicitly in (4.31). The factor
of 1/n! means simply that the vertices are unordered, and the factor of
(1/4)" means that the four objects emanating from a vertex carry only a
cyclic order.

The double scaling limit. Granting (4.28), what must we do to un-
derstand two-dimensional quantum gravity? The problem is that (4.27)
generates, via (4.28), all the numbers W(g, n), but this is far more than
we want. According to the discussion in §4a, we are only interested in the
large n behavior of W (g, n), where one sees an approximation to a ran-
dom metric on a surface of genus g. Therefore, we want to take a limit
of (4.28) in which the extraneous information will be eliminated. This
occurs in the limit in which A approaches a critical value at which the in-
finite sum in (4.28) is ceasing to converge—and exhibits a singularity that
is determined by the asymptotic behavior of the series. The issue has been
analyzed (nonrigorously) as follows in the literature. According to (4.5),
for large n, W(g, n) ~e". n;'(z"zg)'lbg. The genus g contribution to
F(N: '-'/2.) s

o0
(4.34) F (=) =) (-1)"W(g,n)

n=0

thus has a singularity at A =4_= —e . The leading singular behavior of
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Fg is

o) noo Y- -7(2-2g)
435) Y )i n'328 ‘ngI c ‘b, T(2(2-28)).

n=0'"¢ c
Therefore, with

A= |
(4.36) y=N’ el
AC
the sum over g of the leading singular contributions to the F ¢ is
(4.37) Fug=2_¥ %-b, - T((2-2g)).
g=0

(The sum over » in (4.35) corresponds to the integral over area to go
from (4.3) to (4.2), and the resulting I" function is the “trivial constant”
in (4.15). It is the generating functional Fsing with these factors included
that (a) corresponds to an ensemble with a random metric of any area on
a surface of any genus; (b) can be represented as a matrix integral.) Thus,
the prescription that has been followed in the recent literature is to extract
the leading singularity of F in the limit N — oo, A — A_, with y fixed. It
is in this limit, which is known as the double scaling limit, that the matrix
integral (4.27) is governed by the interesting numbers b R and y.

More generally, if, as in (4.13), we wish to consider arbitrary mixtures of
2-gons, 4-gons, 6-gons, etc., one must consider a generalization of (4.27),
namely

Z (%)

4.38 2 4 6
(4.38) :/(DM)exp<——Tr((1~).2)%—A4%—;u65%5_.”>)'

In effect, in order to study coverings of genus g surfaces by n-gons of
various n, we must discuss a general integral

(4.39) Z= / (d M) exp(=Tr V(M)),

for general V. It is in this form that we will discuss the problem in the
next subsection.

4c. Orthogonal polynomials and discrete KdV flows. In this subsec-
tion, we will, finally, explain the origin of some of the key recent results
[13],[25], [35], [7] that are important physically and motivated the conjec-
ture about intersection theory on moduli space presented in §2. Following
some preliminaries that can be found in [10], we will take a point of view
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that for the most part follows the exposition by Douglas [23] (with some
modifications suggested in part by G. Segal).

The first step in analyzing integrals of the form (4.39) is to diagonal-
ize the matrix M, so M = UAU™', where U is a unitary matrix and

A = diag(s,, 55, -~ , 5,). Then as computed in appendix (2) of [10], the
measure can be written
(4.40) (dM) = constant - (dU) - ds,ds,---ds, H(Si - s].)2 ,

i<j

where (dU) denotes Haar measure on the unitary group, and the constant
factor is not important because it does not affect the singularity in the
double scaling limit. The double zero of the measure at s, = s; reflects
the fact that in the space of hermitian matrices, the matrices with two
equal eigenvalues are of codimension three rather than codimension one
since the stabilizer of a hermitian matrix with two equal eigenvalues has
dimension two more than the stabilizer of a generic hermitian matrix.
The integral (4.39) can therefore be replaced by

(4.41) z =f ds,ds, - dsy [[s,— 5 T,
B i<j i

s)

Let du be the measure ds ¢~ ") on the real line. Introduce the monic

orthogonal polynomials P (s), r=0,1,2,--., for this measure, defined
by

(4.42) P(s) = s+ lower order terms

and

(4.43) / duP,(s)P.(s) = b3, .

Let Q be the N x N matrix whose i, j matrix element is s{ ~! Then
detQ is a polynomial of order N(N — 1)/2 which vanishes whenever
$; =5, for any i, j since in that case Q has two equal rows. These facts
fix the relation

N(N-1)/2
(4.44) detQ = ()" ](s; - 5))
i<j
up to a numerical factor which can be verified by, for instance, working
out the coefficient of HL 5; ~!_ On the other hand, consider instead of Q

the matrix Q whose ij element is Pi(sj) . deté = det Q, since, in view



TWO-DIMENSIONAL GRAVITY AND INTERSECTION THEORY 299

of (4.42), é differs from Q by column rearrangements of a triangular
kind. Hence, we may rewrite (4.41) in the form

(4.45) z-= / du(s,) - du(sy)(det §).
If now we explicitly write

(4.46) detQ =3 (=1)" [] Py (5.

!

where 7 ranges over the permutations of N objects, then the integral
becomes

@47 z= [auls) - dulsy) X0 T] Pyys) P (5):

.7
By using the orthogonality relation (4.43), this gives
(4.48) Z=N!"hy-h - Ay_y-

Thus, to solve the problem, it suffices to know the normalization constants
h; of the monic orthogonal polynomials. The constant N! in (4.48) is,
again, irrelevant in the double scaling limit.

At this point, it is convenient to switch to orthonormal polynomials,

(4.49) P = £

N/
Let 77 be the vector space consisting of polynomial functions b,
of arbitrary degree. It is a fixed vector space, given once and for all. Since
we do not want to introduce any Hilbert space structure on % (the only
natural L* structure in the problem is determined by the measure dyu,
which depends on the potential ¥, but we want to consider objects that
are independent of V'), by a basis of Z° we will mean a vector space
basis, that is, a set of vectors g, € 77 such that every element of 7" can
be uniquely written as a finite linear combination of the g, . In particular,
every choice of a potential ¥ determines a canonical basis, namely the
basis consisting of the polynomials }31 , which may be characterized com-
pletely as the orthogonal polynomials for the measure d 4 with positive
leading term.

On 77, there are certain natural operators, such as the operation .%° of
“multiplication by s ”, which maps the polynomial P(s) to the polynomial
sP(s), and the operation .7~ of “differentiation with respect to s,” which
maps P(s) to dP/ds. If one is given a particular basis for %, such as
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the basis of orthogonormal polynomials, then % or J can be written
out as a concrete (oo X oo) matrix,

(4.50) FB =55 ,PB.
k
It is obvious that Sk’, =0 for kK —r > 1, and noting that
(4.51) / du(sP)P, = / duP (sB,),
we see that Sk’, = S, x> 50 Sk,r vanishes for r —k > 1. We have

learned that, in the basis of orthonormal polynomials, & is a “Jacobi
matrix,” that is, a symmetric matrix whose matrix elements Sk’ / vanish
for |k ~1|>1. For |k —1|=1, the S , are determined by the leading
coefficients of the orthonormal polynomials, so concretely

I PR ~ h
(4.52) 7. P= ;1+1P,+1+S,P,+,/h'11>,_1,

with some constants .S, .

Now, for every choice of potential V', we get a canonical basis of or-
thonormal polynomials in which S can be written out as a Jacobi matrix.
Considering explicitly as arbitrary polynomial V',

(4.53) vis)=> ws'
(with all but finitely many w; vanishing), we get a family of Jacobi ma-
trices S(w, , w,, wy, -+-). However, since the matrix S(w,, w,, =) i8

obtained by writing out a fixed operator # on a fixed vector space v
in a basis that depends on the w ’s all that happens to it when the w, are
changed is that it is written out in terms of a new basis. If the derivative
of the basis with respect to the w; 18

8P, -
(4.54) = > (0P
i !
then the derivative of the Jacobi matrix S with respect to the w; is
aS

Since we know a priori that S is well defined as a function of the w,,
the O(i) . which we have not yet determined, must be such that the flows
defined by (4.55) in the space of Jacobi matrices are commuting.

Now, under appropriate conditions, a symmetric Jacobi matrix can be-
have as a discrete approximation to a second-order differential operator in
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one dimension of the form O = d? / dx® + U(x). The usual KdV flows
are commuting flows in the space of such operators, of the form

BQ

n

(4.56) =[M,, 0],
where the M, are certain differential operators of order n. Now, as
explained by Moser [49], the space of Jacobi matrices, like the space
of second-order operators of the indicated type, has a natural symplec-
tic structure, and moreover Moser proposed commuting flows of the type
(4.55) as discrete analogs of the KAV flows. (See also P. van Moerbeke,
Inv. Math. 37 (1976) 45, and references therein.)

Now actually, in the continuum case, that is, the case of differential op-
erators, the M), in (4.56) are almost uniquely determined by requiring that
[M,,Q] isa zeroth order differential operator (which can be interpreted
as BU /81, ). Indeed, according to Gelfand and Dikii [31], a differential
operator with this property is a linear combination of the operators
(4.57) M, =(Q"),,
where Q™ is the n/2 power of Q as a pseudodifferential operator, and
Q" . is the unique differential operator such that o — (0" . isof
negative order. The KdV flows are precisely the flows (4.56) with these
M, . Half of the flows are trivial, since if 7 is even, n/2 is an integer,

and (Q" 2)+ = 0" is a differential operator that commutes with Q.
Let us now consider the discrete analogs of these flows. We will call
a matrix W local, of order p, if the matrix elements W, vanish for
|k — 1} > p. A local matrix is a natural candidate for approximating
a differential operator. Given a Jacobi matrix S, in looking for local
matrices W such that [, S] is a local matrix, the interesting W ’s are
the antisymmetric ones. For given any W, if we write W = W_+ W_,
where W_ is symmetric and W_ is antisymmetric, the condition that
[, S] is a Jacobi matrix means (since Jacobi matrices are symmetric
by definition) that [_, S] is a Jacobi matrix and [W_, S]=0. For a
generic Jacobi matrix S with distinct eigenvalues, the condition on W,
has only the trivial solutions that W,_= }_, al.S' , analogous to the trivial
KdV flows. So we may as well take ¥ antisymmetric. An antisymmetric
local matrix W such that [, S] is a Jacobi matrix is (as shown in the
concluding pages of [49]) a linear combination of certain matrices B,
p=1,2,3,---, with B, being local of degree p. (If SP=A, +A_
where A is upper tr1angu1ar and A4_ is the transpose of A, , then one
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cantake B, =4, —A_.) The flows
das
dt,

are discrete analogs of the KdV flows.

Let us now verify that the matrices Oy defined in (4.54) are a linear
combination of the B,. By differentiating the orthonormality relation, we
get

(4.59) /duP B= /du (dP P jP ~s'P P)

The s’ term comes from differentiating the measure du = dse”V with
respect to w, . This gives

(4.58) =[B,, S]

(4.60) (O 1+ (O = / dus'B B,

Since the ﬁk are polynomials of order k, it follows immediately from
the definition in (4.54) that (Oy), , = 0 for / > k. As multiplication
by s is a Jacobi matrix, it follows from (4.60) that (O, also vanishes
for k-1 > i, and thus O(i) is local, of degree i, as we wished to show.
Notice that (4.60) can be written in the form

st s\7
(4.61) O =5 =~ (0(,.) _ 7) .

Thus, 5( 0(,) S'/2, which obviously generates the same flow as O(i) )
is antisymmetnc and indeed coincides with B, as defined above.

So far, we have determined that S(w,, w,, ---) is an orbit of the dis-
crete KAV flows. It remains to determine which orbit arises, that is, to
determine the initial conditions. To this aim, we will appeal to an elegant
argument by Douglas [24]. In addition to .%° = multiplication by s being
local, it is also true that 7 = d/ds is local in the basis of orthonormal
polynomials, provided the potential ¥ is a polynomial (provided almost
all of the w’s vanish). It is indeed obvious that if we write

k
(4.62) ITP.=> T, P,
r=1

then T, , #0 only for r < k. By considering

3 d, vss, dV 55 , 4B 5 dP,
(4.63) Oa/ds&,——s—(e PkPr)_/du< BB+~ P+Pkd )
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one sees that 7; . = 0 unless k—r <n-1, where n is the degree of
V. Thus 9 is represented in the basis of orthonormal polynomials by a
matrix 7 that is a local of degree n — 1, and so has an expansion

n—1

(4.64) T=3Y(v,0,+p,5),
je=1

e,

for some real numbers v ; and p I In fact, more incisively, it follows from
(4.63) that

(4.65) T =T - V(&)

is antisymmetric, and this expression for an antisymmetric matrix as the
sum of a triangular matrix and a polynomial in S determines .9~ as a
linear combination of the B,’s.

The underlying relation

(4.66) 7, F1=1=9", %]

may then be written out in the form

n-1

(4.67) > vl0,,S1=1.

J=1

The requirement that there exist constants v; such that (4.67) is obeyed
determines a particular orbit for the discretized KdV flows on the space
of Jacobi matrices. In fact, (4.67) is a discrete analog of (2.22) which
served in §2 to determine the initial conditions for the solution of the
KdV equations. To see this, write (2.22) in the form

[=3) 2

(4:68) ((Th =2 trrllz) = 2.

i=0

Differentiating twice with respect to f,, this becomes
o
(4.69) ZJG((TZ‘TOT())) =1,
i=0
where y, =4, o -1t . Alternatively, this can be written
= a
(4.70) gyia—ti(] =1.

According to the main conjecture of §2, dU/d¢; is the ith KdV flow.
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Interpreting S as a discrete approximation to a differential operator Q =
dz/dté + U, and [0, S] as a discrete approximation to the ith KdV
flow, we see that we can indeed identify the initial conditions (4.67) in
the matrix model formulation as a discrete approximation to the initial
conditions defined by the string equation.

We have carried out all of this discussion without considering the double
scaling limit, discussed at the end of §4b, in which it is expected that
two-dimensional gravity can be extracted from the matrix model. It is
argued in the literature that in the double scaling limit, S converges to
a differential operator, and the discrete KdV flows in the space of Jacobi
matrices converge to the ordinary continuum KdV flows in the space of
differential operators. We refer to the original papers [13], [25], [35] for
these arguments.

The role of the odd polynomials. To conclude, we will attempt to ex-
plain a detail that has been left unclear in the previous literature, though
somewhat similar points are raised in [24]. "' This detail is important in
a careful comparison of intersection theory to matrix models.

On the space 77 of polynomials in s, let U be the operator that maps
P(s) to P(~s5). Let S = -USU. It is easy to see that like S, § isa
Jacobi matrix, or more precisely, a family of Jacobi matrices parametrized
by w,, w,, --- . Moreover,

-~

85 . 4
(4.71) 5 = [0, 51,

where 5(r) = U 0(,)U is local of the same degree as O<r>' So like S, S
evolves by the discrete analog of the KdV flows.

Therefore, the question arises of whether S , like S, might in the dou-
ble scaling limit converge to a second order differential operator. Actually,
it is really necessary to specify more precisely that the statement “S (or
3‘) converges to a differential operator in a certain limit” will mean that
in acting on vectors . aiﬁi, where the a; are slowly varying with i, S
(or S ) approximates a differential operator. It is evident that S con-
verges to a differential operator in this sense if and only if in the same
limit S approximates a differential operator when acting on vectors of
the type Zi(-—l)'blﬁi , with slowly varying b,. Thus, the consideration of

o~

convergence of S to a differential operator is equivalent to consideration

' After writing these notes, I received a paper developing the same point more extensively

[6].
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of a generalized possibility for how S might converge to a differential
operator. 12

Now, in general, in the double scaling limit, upon appropriate adjust-
ment of the couplings w;, it is possible for both S and S to converge to
differential operators, of the form Q = d*/dx*+V and Q = dz/dx2+ v,
and there is absolutely no general relation between the two potentials V'
and 7' Both Q and Q evolve separately according to the KdV flows,
so in fact the hermitian matrix model leads to two entirely independent,
commuting copies of the KdV hierarchy! The initial conditions are of the
same structure for each, since the argument that led to (4.67) could just
as well be made for Q

It is dull to study two decoupled copies of the same structure, and what
is usually done in the matrix model literature is to eliminate half the vari-
ables. The usual way to do this is to take the potential ¥ to be even,
V{(s) = V(~s). It is evident that in this case, S =S, so one is seeing, in
effect, the diagonal combination of the two theories. The free energy com-
puted this way, which is the result usually reported in the matrix model
literatlge, receives half its contribution from S and half its contribution
from S, and is precisely twice that of the basic system. In a generic dou-
ble scaling limit with a noneven potential, S or S would converge to a
differential operator, but not both, and the free energy would be precisely
half of the result for an even potential. By careful comparison of intersec-
tion theory on moduli space, discussed in §2, to the matrix model results,
one can see that (at least in genus < 3, where all of the conjectures of §2
have been verified) the free energy defined by intersection theory is equal
to that of the matrix models for a generic, noneven potential, and is half
of the matrix model result as usually quoted.

4d. Matrix chains. In §3, we generalized intersection theory on moduli
space of Riemann surfaces to include maps to a Kéhler manifold M .
One may wonder whether the hermitian matrix model has an analogous
generalization. In fact, it has a very beautiful generalization, which we
will now indicate very briefly.

First of all, the physical problem is to study two-dimensional quantum
gravity coupled to quantum fields. Once one agrees to describe

'2 There are yet more elaborate possibilities for how S might converge to a differential

operator, but they do not arise for generic even potentials, and thus are not relevant to
elucidating the existing literature, which is our goal in the present discussion.

BT explicitly achieve this, take a matrix model potential V' which in the naive large
N limit is even. Add to it odd terms, suppressed by just the right powers of N so as to give
contributions of order 1 in the double scaling limit. In this way, one gets an explicit double

o~

scaling solution with @ and Q completely independent.
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quantum gravity by a sum over triangulations of a surface, it is natural to
describe the quantum fields by lattice statistical mechanics on the trian-
gulated surface. This, again, can be accommodated in the framework of
matrix models——provided that one introduces more than one matrix. The
most general type of example that has so far been tractable is the “matrix
chain”, in which one considers n hermitian matrices M,, i=1,--- , n,
and an integral of the form
(4.72)
n n—~1
Z= /(dMl) - (dM,)exp (——Tr (Z V(M) + ZCiMiMi+l)) .
i=1 i=1

Such an integral has an interpretation as the generating function for cover-
ings of a Riemann surface (of variable genus) by graphs with certain addi-
tional information. The additional information arises because a “vertex”
in the graph may come from expanding the factor of exp(-Tr(V,(M,)))
for any value of i = 1,-.-, n. In addition to summing over all isomor-
phism classes of graphs in evaluating (4.72), one sums over all maps of the
set of vertices in the graph to the finite set {1, 2, 3, --- , n}. The possible
maps (from a given graph) are not weighted equally; they are weighted by
local factors, which one finds by further study of (4.72), and which are
similar to the characteristic Boltzmann weights of statistical mechanics.

The integral in (4.72) can again be analyzed very effectively using or-
thogonal polynomials. One requires certain additional tricks originally
introduced by Mehta and collaborators [44]. (Mehta’s crucial formula for
integrating over angular variables has been explained as an application of
the Duistermaat-Heckman stationary phase formula [53].) The main dif-
ference in the result that eventually emerges is that the matrix analogous to
S is still a local matrix but has degree > 1. As a result, S does not con-
verge to a second-order differential operator, but in general to a differential
operator of higher degree.

Let D =d/dx,andlet S bean (N + 1)th order differential operator
of the form

o N-d
(4.73) S=D"" 4+ v D%
a=0
For n=1,2,3,---, let K, = (S"/(‘VH))+ be the differential operator
part of the pseudodifferential operator SN The flows
a8
(4.74) =[K,, S]

oy

n
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on the space of S’s are the commuting flows of the Nth generalized KdV
hierarchy. Arguments of Douglas [23] indicate that this hierarchy governs
the double scaling limit of the N matrix chain.

In §3, we generalized intersection theory on moduli space to include a
target space M , and we described general properties of the resulting mod-
els that hold for a large class of M ’s. It turns out that the generalized KdV
hierarchies obey all of the same general properties! I refer to the second
half of [19] for an explanation of this, and merely note that the Nth KdV
hierarchy has a behavior similar to that of the models studied in §3 with a
target space M such that the dimension of H™ (M, R) is N (and the sig-
nature of M is 1 or O for odd or even N ). In this correspondence, v,__ ,
a=1,.--, N (or more precisely a certain differential polynomial of the
form v,__+ higher order terms), corresponds to ({79,170, 4/) » Where the
Ty, are the “primary fields” associated to a basis of H (M ,R). The
variables ¢, , correspond to Yu(N+1)+a With this translation, the string
equation of the N matrix chain has precisely the structure (3.22), and
the other key conclusions of §3, such as the equations (3.27) and (3.48)
that determine the genus zero and genus one correlation functions, may
be deduced from standard properties of the generalized KdV hierarchies!

We do not actually believe that there is a mysterious Kédhler manifold
with N-dimensional cohomology that underlies the N matrix chain and
on which the holomorphic curves are governed by the Nth generalized
KdV hierarchy. It seems likely, though, that the model based on the N
matrix chain has a geometrical interpretation in terms of an appropriate
kind of intersection theory on some suitable moduli space.

Note added in proof: Recently K. Li (Topological strings with minimal
matter, Caltech preprint CALT-68-1662) has answered the question raised
in the last paragraph by showing which topological field theory coupled
to topological gravity is equivalent to the N matrix model. This has
been further clarified in R. Dijkgraaf and E. and H. Verlinde (Topological
strings in D < 1, Institute for Advanced Study preprint, October, 1990).
The interpretation of the N matrix model in algebraic geometry turns
out to involve intersection theory on a cover of moduli space obtained by
taking certain fractional roots of the canonical line bundle of a surface, as
will be explained elsewhere (E. Witten, to appear).

Improved derivations of some of the foundational questions related to
§4.3 have been given by H. Neuberger (Regularized string and flow equa-
tions, Rutgers preprint RU-90-50).
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