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Introduction

In this article ! we shall review a recent body of work which is concerned with
the structure of the spaces of algebraic cycles on an algebraic variety. Before
embarking on this survey we should offer some general motivation for such a
study.

The fundamental objects of interest in algebraic geometry are the sets of
solutions of polynomial equations in affine or projective space. Any profound
understanding of such sets must be at least in part geometric. However, if the
field in question is, say finite, in what sense can one speak of geometry ? This
geometry comes from the network of algebraic subsets. An algebraic variety
has not only points, but also a family of “algebraic curves”, algebraic subsets of
dimension 1. As in most geometries the distinguished curves give structure to
the space. Of course here there are also distinguished algebraic surfaces, 3-folds,
etc. It is the interlocking web of these subvarieties which endows an algebraic
variety with a rich geometric structure.

For an affine variety X C CN this picture translates faithfully into algebraic
terms. Irreducible subvarieties of X correspond to prime ideals in the ring O(X)
of polynomials restricted to X. The inclusion of subvarieties corresponds to the
(reverse) inclusion of ideals.

For general X Grothendieck took all this a step further. He taught us to con-
sider the irreducible subvarieties to be “points” of the space. On this enhanced
set of points he introduced a topology and a sheaf of rings — classical stuctures
of geometry.

In this spirit of purely elementary considerations, there is a related con-
struction which also uses subvarieties and in fact predates Grothendieck. Fix a
variety X, and for p > 0 let X (p) denote the set of “p-dimensional points” of
X, i.e., the set of irreducible p-dimensional subvarieties. Then one defines the
Chow monoid of X to be simply the free abelian monoid

Co(X) = Z*-X(p)

generated by this set. The points ¢ € C5(X), which are expressed uniquely as
finite formal sums ¢ = 3 n;V; with n; € Z* and V; € X (p), are called effective
algebraic p cycles on X.

Now the surprizing fact — established by Chow and Van der Waerden in
1937 — is that when X C PY is projective, this monoid itself is an algebraic
variety. Specifically, it can be written as a countable disjoint union

(0.1) GX) = JI CoalX)
a€H2p(X;Z)

1Partially supported by the NSF and I.H.E.S.
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where each Cp (X) canonically carries the structure of a projective algebraic
set. This gives us a constellation of geometric objects naturally associated
to X. They can be thought of as compactifications of the moduli spaces of p-
dimensional algebraic subsets of X, and have considerable independent interest,
particularly when X = P™. (For example, for varieties over C, C, o(X) has
been shown to represent the space of solutions to the Plateau problem in the
homology class a.) These Cp o(X) fit together to form a monoid whose addition
when restricted to the algebraic pieces is a morphism of varieties.

There is of course also the free abelian group
Zp(X) = Z-X(p)

of all algebraic p-cycles on X. It is functorially related to X, but appears at
first to be just a huge, infinitely generated group. However, it carries a very
interesting structure which comes from the Chow monoid

Co(X) C Zp(X)
as follows. Note that Z,(X) can be written as a quotient
(0.2) Zp(X) = Cp(X) x Cp(X)/ ~

where (a,b) ~ (a’,V') <= a+b' =a' +b. By (0.1) Cp(X) can be written as a
monotone union V; C V, C ... of projective algebraic sets. Therefore, Z,(X)
carries an intrinsic filtration

(03) KiCcK;CKzC... CZP(X)

where
Ke= |J vixVv/~.
i+j<e
Each K, is the quotient of an algebraic set by a proper algebraic equivalence
relation.

Note that when X is defined over C, each K, is a compact Hausdorff space.
This induces a topology on Z,(X) in the standard way (by defining C C Z,(X)
to be closed iff C' N K is closed for all £), making Z,(X) a topological abelian
group. Its homotopy groups, as we shall see, constitute an interesting set of
invariants. They characterize Z,(X) up to homotopy equivalence and reflect
the algebraic structure of X.

I have gotten somewhat ahead of myself. Let’s return to elementary con-
siderations. As mentioned above, spaces of cycles have considerable geometric
interest, particularly when X = P". Consider for example the set Cp;(P") of
effective p-cycles of homology degree 1. This is exactly the Grassmannian of
(p + 1)-planes in C"*!, a space of fundamental importance in geometry. One
reason for its importance is that, as n goes to infinity C,—1,(P™) approximates



SPACES OF ALGEBRAIC CYCLES 141

the classifying space BU, for p-dimensional vector bundles; and as both n and
P go to infinity, one obtains the classifying space BU for reduced K-theory.

Despite the beauty and importance of the Grassmannians, until seven years
ago surprizingly little was known about spaces of cycle of higher degree. In fact,
the work surveyed here was motivated by a desire to understand these other
components of

Cp(P™) = [ Coal®™).
d=0

(Here Cp 4(P™) denotes the effective p-cycles of homology degree d.) One could
see straightforwardly that Cp, 4(P") is always connected and simply-connected,
and it seemed plausible to conjecture that m3Cp q(P") = Z. This and much more
turned out to be true.

The first interesting discovery was that as d — oo the sets Cp 4(P™) “stabilize”
to become classifying spaces for integral cohomology in even degrees. This says
much about their structure. It also means that the Chow varieties are in fact
fundamental objects in topology.

This stablization result can be rigorously expressed by the assertion that
there exists a homotopy equivalence

(0.4)  Z,(P") = K(Z,0)x K(Z,2)x K(Z,4) x --- x K(Z,2(n— p))

for all 0 < p < n, where K(Z,2k) denotes the Eilenberg-MacLane space (See
1.3 below). Since Z,(IP") is a group, this is equivalent to the assertion that

Z if i=0,2,4,..,2(n—p)
0 otherwise. '

T 2p(P") = {

Note the simplicity of these homotopy groups. By contrast the homology
groups of Z,(P™) are quite complicated. Note also that

(0.5) Z,(P") = Zppa (P™).

This equivalence is induced by an algebraic suspension mapping which is de-
scribed in Chapter II.

Now from the introduction of cycle groups into topology something new
emerges. The first surprizing fact is that the simple inclusion Cp 1 (P") C Z,(P™)
canonically represents the total Chern class of the tautological (n — p)-plane
bundle over the Grassmannian Cp; (P"). Furthermore, on projective algebraic
cycles there exists an elementary binary operation, called the algebraic join.
It is a direct generalization of the direct sum of linear spaces, which gives a
pairing on Grassmannians and corresponds to addition in K-theory. It turns
out to canonically represent the cup product in cohomology. Using this join
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structure one has been able to answer some old questions in homotopy theory
(cf. Chapter III).

Now the homotopy groups of Z,(P™) turn out to be simple and to play a
central role in certain universal constructions in topology. It seems reasonable to
think therefore that the groups m; Z,(X) might be important for any projective
variety X .2 They are functorial. Furthermore there is an Algebraic Suspension

Theorem:
Zp(X) = Zp11(EX)

generalizing (0.5) above, which gives 7;Z,(X) an unexpected and useful struc-
ture. Consider some basic examples.

Example 1.
m0Zp(X) = Ap(X)

= algebraic p—cycles on X modulo algebraic equivalence,
Example 2. By a classical theorem of Dold and Thom, one has that for all

k>0
e 2o(X) = Hi(X; Z).

This shows that the functor 7. Z.(X) not only contains the integral homology of
X but it also contains the groups 4. (X) which are purely algebraic invariants.
So this functor represents something new which should be of interest to algebraic
geometers.

On the other hand the groups 7. Z.(X) have definite geometric interest since
they tell us about the global structure of the Chow varieties Cp 4(X). (See
Chapter 1.8.)

For these reasons the groups . Z,(X) have been systematically studied over
the past few years. They turn out to have a rich internal structure and to be
related to many of the standard invariants of algebraic geometry. For example
P. Lima-Filho has shown that these groups can be defined for quasi-projective
varieties, and they fit into localization exact sequences. This allows complete
computations in many cases. He has also extended the definition from quasi-
projective to general algebraic varieties. It was Eric Friedlander who laid the
foundations for the study of these invariants. He realized the importance of
Example 1 above and introduced methods of formal group completion into the
theory. He made sense of the groups 7. Z,(X) for varieties defined over any
algebraically closed field and proved the suspension theorem in this context. In
his fundamental paper he introduced the notation

LyH(X) &m0y 2,(X)

21t may seem at first that homotopy groups, which involve continuous mappings of spheres,
are particularly non-algebraic in their construction. However, the homotopy of an abelian
topological group Z has a beautiful realization as the homology of the simplicial group
Sing.(Z).
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where L, indicates that the algebraic level is p, i.e., there are p algebraic pa-
rameters, and where Hy indicates that the homology degree is k. Friedlander
and Mazur have shown that the algebraic join of cycles leads to a natural trans-
formation
§: LpHp(X) — Lp—1 Hp(X)

which in turn induces filtrations on the groups H.(X;Z) and A,(X). These
filtrations have alternative, purely algebraic interpretations and are subordinate
to the filtrations of Grothendieck and of Bloch-Ogus. Grothendieck’s standard
Conjecture B actually implies that the filtrations coincide. The suspension
theorem has been extended by Friedlander and Gabber to a general intersection
product in Z,(X) which gives a graded ring structure to L. H,(X). There exists
a local-to-global spectral sequence with an identifiable E>-term as in Bloch-Ogus
theory. There are relations to algebraic K-theory and to Bloch’s higher Chow
groups. All this is discussed in Chapter IV.

Now the groups L.H.(X) behave like a homology theory on the category
of quasi-projective varieties and proper morphisms, and it is natural to ask
whether there is an associated “cohomology” theory. In [FL; 2] such a theory
was introduced, based on a new concept of an effective algebraic cocycle on a
variety X. Such a cocycle is defined as an algebraic family of affine subvarieties
parameterized by X. The set of all such cocycles in degree-q is roughly speaking
the monoid

CYX; C") = Mor(X, CI(C"))
with a natural topology. Taking homotopy groups of the group completion gives
a contravariant functor L* H*(X) which enjoys a rich structure. There is a “cup
product” induced by taking the pointwise join of cocycles, there is a natural
transformation of rings

LIHY(X) — H*(X;Z),

there are s-maps and filtrations, Chern classes, etc. All this is discussed in
Chapter V.

Although the functors L.H, and L*H* are quite differently defined, they are
surprizingly related. There is for example a Kronecker pairing between them.
However, much more interesting is the recently established fact that on smooth
projective varieties they satisfy Poincaré duality. In fact for any projective
variety X of dimension n there is a naturally defined homomorphism

LIH*(X) 25 Lo_Hon_i(X)

for all ¢,k which under the natural transformation to singular theory becomes
the Poincaré duality map, i.e., there is a commutative diagram

LYH*(X) —2 Lo  Haon_i(X)

! !

HY(X;Z) —2—  Hynk(X;2)
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where D(a) = aN[X]. When X is smooth and projective, the map D is
an isomorphism. This result, discussed in Chapter VI, has a broad range of
consequences.

I would like to express my sincere thanks to Eric Friedlander, Paulo Lima-
Filho and Pawel Gajer for having made a number of suggestions which greatly
improved the original version of this manuscript.

Chapter I - Algebraic Cycles

§1. Algebraic subsets. Let P™ denote complex projective n-space, the space
of all lines through the origin in C**!. Then there is a natural map

m:C"! — {0} - P"
which assigns to v the 1-dimensional subspace it generates.

Definition 1.1. A subset V C P" is said to be algebraic if there exists a finite
collection of homogeneous polynomials py,...,pn € C[20, 21, ..., 2n] such that

T V) U{0} = {z € ™ i py(2) =+ = pw(2) = O}.

An algebraic subset V is said to be irreducible if it cannot be written as a
union V = V; UV of two algebraic subsets where V; ¢ V5 and Vo ¢ V.

Basic results in algebra tell us that every algebraic subset V' C P™ can be
written uniquely as a finite union of irreducible ones, and each irreducible one
has a well defined dimension (cf. [4], [43]).

From a differential geometric point of view, irreducibility is nicely character-
ized as follows. For V C P, let Reg(V) denote the set of manifold points of
V, i.e., the set of points £ € V for which there is an open neighborhood U and
local holomorphic coordinates ((1,-- ,{,) on U such that

VNU={peU:¢(p) == ((p) =0}

From the Weierstrass Preparation Theorem one proves the following. If V is an
algebraic subset, then so is Sing(V) Ly Reg(V). Furthermore,

V is irreducible <= Reg(V') is connected,

and the algebraic dimension of an irreducible V' equals the complex dimension
of Reg(V). For a general algebraic subset V, Reg(V) can be written as a
finite disjoint union Reg(V) = R; I --- II Ry of submanifolds, and the unique
decomposition V =V, U---U Vy is given by V; = R;.

We now introduce some terminology. An irreducible algebraic subset V C P™
is called a projective subvariety. The set theoretic difference V = V; — V, of
two projective subvarieties is called a quasi-projective subvariety. For any
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such V', let R(V') denote the field of rational functions on V (the restrictions
of rational functions on P™ whose polar divisor does not contain V). Then a
morphism between quasi-projective subvarieties is a map f : Vi — V4 such
that f*R (V2) C R (V1). By a projective or quasi-projective variety we
mean an isomorphism class of such subvarieties.

Of fundamental importance to us here is the fact that projective subvarieties
V C P" determine “topological cycles”. This can be seen, for example, from
the following. Let ¥; = V — Reg(V),X2 = ¥; — Reg(Z1), etc. denote the
singular strata of V. Then there exists a semi-algebraic triangulation of V
for which the singular strata are subcomplexes. This triangulation is unique
up to PL homeomorphism (see [85]). If W C V is also a subvariety, then this
triangulation of V' can be chosen so that W is a subcomplex and the induced
triangulation on W is as above. See [44] for an elementary proof. Now fix
V with such a triangulation, and suppose p = dim(V’). Let [V] be the chain
consisting of all 2p-dimensional simplices oriented by the canonical orientation
of Reg(V). Then 9[V] lies in the 2p — 2 skeleton (since it is supported in
V — Reg(V)), and so 9[V] = 0. This is the fundamental cycle of V. It can be
seen to generate Hop(V;Z) = Z.

The cycle [V] also determines a class in Hyp (P™;Z) = Z [PP] where PP is a
p-dimensional linear subspace. The integer d such that [V] is homologous to
d [P?] is called the degree of V. One has that # (V N P"~?) = d for almost all
linear subspaces P"~? of codimension p. Furthermore for almost all P*~?P~! we
have P" P~ NV = §, and the linear projection 7 : P* — P*~P~1 — PP restricts
to a map

w:V — PP

of degree d.

There is another more intrinsic definition of the cycle [V] in terms of deRham-
Federer Theory. Denote by £¥(M) the space of smooth differential k-forms
on a manifold M equipped with the C* topology (uniform convergence of

derivatives on compacta). The topological dual space &(M) ef ¢ k(M) is
called the space of deRham currents of dimension k on M. Taking the
adjoint of exterior differentation gives a complex (£.(M), d) whose homology is
isomorphic to H,(M;R) (cf. [16]).

Let now V C P™ be a projective subvariety of dimension p. Then the Haus-
dorff 2p-measure of V is finite, and so V defines an element [V] € & (P7)
by

(1.1) Vi) = /R ?

for all ¢ € £2P (P"). As a current we have that d[V] =0 i.e,,

def

dV](¥) = [V](dy) = 0
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for all ¢ € £2P~1 (P™). (For proofs of these and of subsequent assertions about
currents, see [42]). Of course we have [V] = d[PP] also in deRham cohomology.

§2. Algebraic cycles. Let X C PV be an n-dimensional projective subvariety
and for each p, 0 < p < n consider the set X (p) of all p-dimensional subvarieties
contained in X. In Grothendieck’s picture these are the p-dimensional points
of X - the p® level of the web of points, curves surfaces etc, which encode the
rigid algebro-geometric structure of X. It is natural to consider the following.

Definition 2.1. The group of p-cycles on X is the free abelian group Z,(X)
generated by X(p). The positive (or effective) p-cycles on X are the
elements of the free abelian monoid C,(X) C Z,(X) generated by X(p). We
will call C,(X) the Chow monoid of X.

In other words Z,(X) consists of all finite formal sums

c= ZmV,-

where V; € X (p) and n; € Z for each i ; and we have ¢ € Cp(X) if each n; > 0.
There is a group homomorphism

deg: Z,(X) > Z

given by deg(c) = Y n; degree(V;).

Letting Cp,4(X) C Zp,4(X) denote the subset of cycles of degree d gives us a
graded group and a graded submonoid :

(2.1) Co(X) = [ Cra(X) C Zo(X) = @ Zpa(X).
d=0

d=—00

Now comes the magic. In 1937 Chow and van der Waerden discovered the
following fundamental result (cf. [14], [70}], [81]).

Theorem 2.2. (Chow [13]) Each of the sets Cpa(X) for d > 0 carries the
structure of a projective algebraic subset.

When X = P" Chow’s construction goes as follows. Let Gn_p—; (P™) &

G denote the Grassmannian of linear subspaces of codimension p + 1 on P™.
Holomorphic line bundles on G are in one-to-one correspondence with Z via
the first Chern class ¢;. Suppose V C P" is a projective variety of dimension
p and degree d. Set Dy = {L € G: LNV # 0}. Then Dy can be seen to be
an algebraic subset of codimension one in G. Any such set is the divisor of a
holomorphic section oy of a holomorphic line bundle £4 of Chern classs d on
G. The section oy is unique up to scalar multiples. Thus V determines a point
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[ov] in P (H° (G; O (£4))). To a general positive cycle ¢ = 3 n;V; we associate
the section o, = 031‘ R ® a"}:. This gives an embedding

Cp.a (P") = P (H (G; 0 (£4))) -

A careful analysis involving resultants shows the image to be an algebraic subset.
Furthermore it is proven that if X C P" is an algebraic subset, then Cp 4(X) C
Cp,q (P™) is also an algebraic subset.

Notice what this gives us. Our monoid C,(X) is now equipped with a topol-
ogy so that each piece Cp ¢(X) is a compact Hausdorff space, in fact an algebraic
set. The addition map Cp(X) X Cp(X) — Cp(X) is easily seen to be an algebraic
map on these components. Hence, C,,(X ) is an algebraic abelian monoid — quite
a nice object !

It is natural to wonder about the uniqueness of this canonical algebraic struc-
ture on C,(X). For this we need the following.

Definition 2.3. A continuous algebraic map is amap ¢ : V — W between
projective algebraic subsets whose graph is an algebraic subset of the product
VxW.

If V is normal (in particular if V' is smooth) every such map is a morphism.
Note however that the inverse of the map C = Y = {(z,w) € C? : 22 = w3}
given by ¢ — (t3,t?), is continuous algebraic but not a morphism. We now have
the following.

Proposition 2.4. The canonical algebraic structure on Cp(X) is uniquely de-
termined up to algebraic homeomorphism by any projective embedding of X .

Proof. (Sketch.) Let j : X < P" be the given embedding and suppose
j' : X < P is another. Using the Veronese embedding (i.e., the tensor
product of homogeneous coordinates) we get an embedding j X j' : X x X —
P x P? C P77 Define A : X < P 7+’ yia the diagonal in X x X.
The Veronese is linear on each factor, so our original embeddings are recaptured
by restriction. Now we see above that if A C B C PV are projective varieties,
then C, 4(A) is an algebraic subset of Cp 4(B) for all d. Thus we have three
algebraic embeddings

Cp(X) =3 Cp(X) X Cp(X) C Cp(X x X)

corresponding to j,j' and A. Since AC,(X) is the graph of the identity map
on Cp(X), and it is also algebraic, we are done. O

Note. In the above proof it is better to use the intrinsic grading of C,(X) given
by the map

(2.2) Co(X) = Hap(X;Z).



148 H. BLAINE LAWSON, JR.

From 2.4 we conclude that the topology on C,(X) is intrinsically defined, i.e.,
it depends only on the isomorphism class of X. This makes it natural to pass
the topology on to the group completion Z,(X). Note that

(2.3) Zp(X) = Cp(X) x Cp(X)/ ~

where (c1,c2) ~ (c},ch) <= c1 + ¢4 = ¢z + ¢|. Therefore, taking equivalence
classes gives a surjective map

(2.4) Cp(X) x Cp(X) = Z,(X).

Now Cp(X) x Cp(X) is a monotone union of compact sets

(2.5) Ki= [] Cpa(X)xCpa(X)

d+d' <i
for i > 0. The equivalence relation is closed and so the quotients
K; = Wf{\i
are compact Hausdorff spaces topologically embedded in one another:
(2.6) Ko CKi CKyCK3C-- C2Zy(X)

with |JK; = Z,(X). Whenever one is in this situation, there is a natural
topology induced on the space, called the topology associated to the family
{K;}. It is defined by declaring subset C to be closed if and only if C N K; is
closed for all i. With this topology Z,(X) is a topological group.

This group is characterized by the universal property that any continuous
homomorphism h : C,(X) — G into an abelian topological group G determines

a continuous homomorphism h : Z,(X) = G so that

Cp(X)

commutes.

Remark 2.5. In a beautiful paper [54] P. Lima-Filho recently established
several equivalent formulations of the topology on Z,(X). One is engendered
by considering flat families of cycles over smooth base spaces and is related to
work of Rojtman. With this definition many properties, such as functoriality,
are clear. Another definition involves “Chow envelopes” and is useful for estab-
lishing the existence of fibration sequences, etc. Lima-Filho shows that these
definitions with all their properties extend to arbitrary algebraic varieties (not
just quasi-projective ones), and that on this general category they coincide.
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At this point it could be useful to examine a number of examples.

§3. Symmetric products. Note that for any projective variety X

Co,a(X) = {Zniz; :z; € X and n; € Z* with En; = d}
=Xx--xX/Sy

def SPY(X) (the d—fold symmetric product)

where Sy is the symmetric group acting by permutation of the factors. Hence,
Co(X) = [ sPU(X)
d>0
is the free abelian topological monoid generated by the space: its components

are evidently varieties. A particularly nice case is that where X = P!,

Lemma 3.1. As projective varieties we have that SP? (P') = P¢. Hence,

Co (P') = [T »

d>0

Proof. Define the map P? & SP? (P!) by assigning to the point with homo-
geneous coordinates [ag : a1 : - - - : aq4] the zeros of the homogeneous polynomial

equation
d
Zakz(’fzf_k =0.
k=0

The inverse to this map is given by expressing the coefficients of a polynomial
as elementary symmetric functions of its roots; namely, if [& : m1], -+, [£4 : D)
are d-points in P!, then [ap : - - - : a4] are the coefficients of the polynomial

d
p(20,21) = H (&z1 — mizo) - O

=1
Note that the additive structure in this monoid is given by the maps
P4 x P4 — pi+d
([a], [6])) = [c]
where ¢ = Z ab; for k=0,---,d+d.
i+j=k
The case where X is a non-singular curve of higher genus is even more in-
teresting. Here we must use more sophisticated geometry. By an elementary

construction (cf. [64] and §4 below) one associates to every positive 0-cycle
Y- n;z; on the curve X, a holomorphic line bundle £ of degree d = S ng,
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and a holomorphic section o of £ such that ) n;z; is the zero divisor of o.
The pair (¢,0) is unique up to scalar multiples of 6. Now holomorphic line
bundles on X correspond to elements in H!(X,0*) where O* is the sheaf
of non-vanishing holomorphic functions on X. It sits in an exact sequence

0—Z— O Z8 0% 5 0 which gives an exact sequence
(3.1) 0 HY(X;0)/H (X;Z) —» HY(X;0*) -5 H*(X;Z) = 0

where ¢, is the degree or first Chern class of the bundle. Resolving O and using
harmonic theory gives an isomorphism H!(X;0) = H!(X,R), and (3.1) is of
the form

0— R?*/2% - HY(X;0%) - Z - 0.

In particular the components of H(X;©*) are all tori of dimension 2g where
g is the genus of X. The map above gives us a monoid homomorphism

(3.2) Co(X) = HY(X;0%)

The preimage of each point £ is the projective space P (H° (X;0(¥))) of all
global holomorphic sections of £. Hence, component by component we get maps

SPY(X) — R?9 /7%,
For d sufficiently large, this is surjective. In fact it is a fibre bundle whose fibre
is P4~9 (a non-obvious result even topologically).

We now observe that for any topological space Y, the symmetric products
SP4(Y) =Y x --- x Y/S; and therefore the topological monoid Co(Y) are well
defined. When Y is compact and Hausdorff we can also define the topological
group Zo(Y) exactly as in §2 above. The spaces SP4(Y) are beautiful and
of fundamental importance in topology. This is due to the following classical
result originally conjectured by Serre. It was proved by Dold and Thom and,
independently and simultaneously, by Ioan James.

Theorem 3.2. (Dold and Thom [17], [18]). LetY be a connected finite complex
with base point yo. Then under the embeddings SP4(Y) < SP+1(Y) given by
¢+ ¢+ Yo, there is an isomorphism

(3.3) lim 7, (SPY(Y)) = H.(Y;2).
d

Furthermore for any finite complez Y, there is an isomorphism

(3.4) T 20(Y) =2 H.(Y;Z).

The first statement can be rephrased by considering the limiting space

SP(Y) = lim SP%(Y)
d
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with topology induced by the family of compact sets K; = SP*(Y) as in (2.6)-
forward. This space, called the infinite symmetric product of Y, has the
property that

(3.5) m.SP(Y) = H,(Y;Z).

One nice consequence of 3.2 is that it gives beautiful models of Eilenberg-
MacLane spaces. Recall that for any finitely generated abelian group I, the
Eilenberg-MacLane space K (I',n) is the space, unique up to homotopy equiva-
lence in the category of countable CW-complexes, such that

' if k=n
0 otherwise.

e K(T,n) = {

(See [80] for this and what follows). These spaces are classifying spaces for the
functor H™(e;T") in the sense that for any finite complex Y, there is a natural
isomorphism

(36) Hn(Y; F) = [Y: K(Fv n)]

where [Y, K(T,n)] = mo Map (Y, K(I',n)) denotes homotopy classes of maps
from Y to K(I',n).

Theorem 3.2 gives homotopy equivalences
(3.7 K(Z,n) = SP(S™) = Z,(S™)
for all n. Hence, from (3.6) we see that for a connected finite complex Y,

HP(¥;2) 1Y, SP (S7)] & lim, [Y, SP4(5")]
(3.8)
= lim | 7o Map (Y,SP2(S™)).

This is interesting since maps from Y to SP¢(S") are simply d-valued maps
from Y to S™. They correspond, under graphing, to topological cycles in the
product Y x S™ which project d-to-1 onto Y. We will return to this point later
when we discuss algebraic cocycles.

Sn

Y
Equation (3.8) generalizes to higher homotopy groups. One has that
(3.9) H"M(Y;Z) = m {Map(Y, SP(S™))}
for all K > 0.
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There is a relative version of Theorem 3.2 which was important in the original
proof.

Theorem 3.3. (Dold and Thom [17], [18]). Let A C Y be a pair of finite
complezes (i.e., A is a subcomplez of Y ). Then there is a natural isomorphism

(3.10) T {20(Y)/Z20(A)} = H. (X, A; Z).
Furthermore, given any integer m > 0, there is a natural isomorphism

(3.11) T {Z0(Y)/mZo(Y)} = Ho(Y; L)

Proving (3.10) involves proving that the homomorphism Zy(X) — Zo(X)/Zo(Y)
is a principal bundle. The long exact sequence for m, then results in the long
exact sequence in homology for the pair.

Note that algebraically we have that
Zo(X)/mZo(X) = Zo(X) ®2 Zm

is just the free Z,,-module generated by the points of X. The topology on this
is interesting to contemplate.

It is an important fact that the results of Dold-Thom completely determine
the homotopy type of these spaces. This is due to the following result.

Theorem 3.4 (John Moore [66]). Let A be a connected topological abelian
monoid or a topological abelian group. Then A is homotopy equivalent to a
product of FEilenberg-MacLane spaces.

In other words the Postnikov k-invariants all vanish, and so Y is completely
determined by its homotopy groups. Thus Theorem 3.2 implies that for any
connected finite complex Y there are homotopy equivalences

(3.12) Z x SP(Y) = Z,(Y) & ﬁ K (Hy(Y;Z),p).
p=0

There are analogous statements for Zy(Y)/2Zo(A) and Zo(Y)/mZ,(Y) corre-
sponding to (3.10) and (3.11).

Now for a projective variety X we see that C,(X) and Z,(X) are natural
generalizations of Co(X) and Zp(X) to the p-dimensional points of the space.
It is certainly intriguing to speculate about the extent to which these gorgeous
results can be generalized.

§4. Divisors. Let us now examine cycles of codimension one. Suppose X
is a non-singular projective variety of dimension n. The fundamental result
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here is that locally every effective cycle of codimension one on X is the divisor
of a holomorphic function, in fact a rational function which is regular in the
neighborhood and is unique up to multiplication by non-vanishing functions.
Thus given ¢ € C,-1(X), there is a family {(Ui,fi)}fil, where {Ui}ﬁl is an
open covering of X, and f; € O (U;) has the property that

Cu, = Div (fi).

The quotients g;; = fi/f; : Ui NU; = C — {0} define transition functions for
a line bundle £, on X for which the f; determine a global holomorphic cross-
section. (See [64] for more details).

When X = P" there is exactly one holomorphic line bundle for each integer d,
which is denoted O(d). The sections of O(d) for d > 0 are in natural one-to-one
correspondence with homogeneous polynomials of degree d in (n + 1)-variables.
This gives the following generalization of Lemma 3.1 above.

Lemma 4.1.

Cn1 (P") = H pCE-1,
d>0

For a general X, the construction above gives a homomorphism
(4.1) Cn-1(X) = H'(X; 0%)

generalizing (3.2). The preimage of £ € H'(X; 0*) under (4.1) is the projective
space PP (H°(X,O(£))) of holomorphic sections of £. One can prove that there
is an exact sequence

0 H'(X;R)/H' (X;Z) » H' (X;0%) - NS(X) - 0

where NS(X) = HV!(X;Z) C H?*(X;Z) is the set of classes whose image in
H?(X;C) is represented by a (1,1)-form. NS(X) is called the Neron-Severi
group of X. Thus H! (X;0X) is a discrete group extended by a torus of
dimension b;(X) = rank (H; (X; R)).

By universality, the homomorphism (4.1) extends to a continuous homomor-
phism

(4.2) Zn1(X) » HY(X;0%).

This extension is explicitly given by extending the construction given at the
beginning of this section to general (non-positive) cycles. Every line bundle
admits a meromorphic (i.e., rational) section, and the quotient of two sections
of the same bundle is a rational function. Hence, (4.2) expands to an exact
sequence

v

(4.3) 0P (K*(X)) & Zn1(X) » H' (X;0%) >0
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where P (K* (X)) is the projective group of the non-zero rational functions on
X under multiplication.

In more classical terms there is a tautologically defined exact sequence of
groups
0= P(K*(X)) & Zp-1(X) > Pic(X) - 0
where Pic(X) is the Picard group of divisors on X modulo rational equiva-
lence. The above remarks constitute a computation of Pic(X) in terms of sheaf
cohomology.

What is of interest here is that with our given topology on Z,_;(X) the
homomorphism (4.2) is continuous, and in fact (4.3) is a fibration. Setting

P = lim P? we have the following result of E. Friedlander.
d

Theorem 4.2 [22] Let X be any non-singular projective variety of dimension
n. Then there is a homotopy equivalence

1 .
20y 2 500 (2SR

From this we see that certain classical invariants occur as homotopy groups
of Z,_1(X) namely

Wozn_l(X) = NS(X)
7712 ._1(X) = HI(X,Z) = Hgn_l(X,Z)

and also m 2,1 (X) = Z.

§5. Curves on a 3-fold. The next interesting case to examine is when p =1
and n = 3. Here life can be quite complicated. Consider for example X = P3.
Every cycle of degree 1 is linear, so

Cii(PP) =6 (C") =g

where G, (C*) denotes the Grassmannian of 2-planes in C*. It is not difficult
to see that
C12 (P?) = SPA(G)uQ

where SP2(G) corresponds to pairs of lines in P3 and Q consists of plane
quadrics, i.e., all quadratic curves lying in hyperplanes in P2. These two subsets
of Cy,2 (P®) are algebraically irreducible and of dimension 8. The set SP?(G)NQ
consists of degenerate plane quadrics, i.e., pairs of lines which meet in P3. It
has dimension 7.

In degree 3 we have the decomposition

Ci3(P?) =SP}(G)U(G+Q)UCUN
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where SP3(G) consists of triples of lines, G + Q = {+q:€€GandqeQ)}
C consists of plane cubics, and N consists of “twisted cubics” and their limits.
Each of these is irreducible and of dimension 12. The elements in N which do
not belong to other components are exactly the images of maps P! — P3 given
by a full basis of homogeneous polynomials of degree 3, the so-called rational
normal curves in P2. One example is the map

[20 : z1] — [zg : \/§z321 : \/§zozf : zf]

(which has constant curvature 1/3 in the standard metric). All others are
obtained from this one by a change of basis in C*, i.e., N is the closure of an
orbit of PGL4(C) acting on Cy 3 (P3).

It is interesting to examine the intersections of the various components of
C1,3 (P3). For example C'N N consists of those plane cubics which are rational.

It has dimension 11 and generically fibres over (P3)".

Clearly as d increases the geometry of C; 4 (1P3) becomes tremendously com-
plicated. Each map
Cl,dl (Pa) X Cl,d” - Cl,d (IP3)
given by addition, where d’' + d" = d, contributes a large number of irreducible

components to C1,q (P?). In addition to this there will always be new ones, for
example plane curves of degree d. For further discussion see [74] for example.

§6. The Euler-Poincaré series of the Chow monoid. Despite their com-
plicated structure, it is possible to compute the Euler characteristics of the
Chow sets Cp 4 (P?). An intriguing consequence of the calculation is that the
generating function associated to these numbers is rational. For fixed p < n
consider the formal power series in one variable

(6.1) Upn(t) =Y X (Cpa(P)t?
d=0

where x(Y) denotes the Euler characteristic of Y. Then in collaboration with
Steven Yau the following was proved.

Theorem 6.1. ([60]) For all0<p<n

G
1 p+1

When p =n — 1, i.e., in the case of divisors, this is a classical Hilbert poly-
nomial calculation. When p = 0, it is a special case of the general MacDonald
formula [61]

00 x(Y)
> x (SPYY)) ¢t = (%)

d=0
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which holds for any connected finite complex Y. Nevertheless, the rationality
of ¥, »(t) for general p is somewhat surprising. Note that the exponent in (6.2)
is just the Euler characteristic of the Grassmannian C, 1 (P") of p-planes in P".

The result above has been generalized by J. Elizondo to general toric varieties.
Note that for any projective variety X and any p < dim(X) we can define

v, = Z X(Cp,a(X))a

a€ls,

where T'yp = Hap(X; Z)mod torsion, by convention x(@) = 0. Given a basis
e1, - ,en of I'zp we let t1,--- ,tn denote the linear coordinates on H2?P(X;R)
with respect to the dual basis. We then “rewrite” ¥, as a formal sum

(6.3) = ) x(Cpa(X))t™.

n€zZN

Theorem 6.2. (J. Elizondo [19], [20]). If X is a non-singular toric variety,
then ¥, is an intrinsically defined rational function on H?*?(X;R) which can be
ezplicitly and canonically computed from the combinatorial data (the “fan”) of
the variety.

This result has an elegant formulation in terms of equivariant cohomology
suggested by E. Bifet (See [19], [20]).

§7. Functoriality. Despite their complicated nature, the Chow monoid and
its group completion do behave nicely under algebraic maps. Let
f: XY

be a morphism of projective varieties and suppose V C X is a irreducible
subvariety of codimension p. Then f(V) C Y is a subvariety of Y, and we

define
LV = 0 if dim(f(V)) <p
i kf(V) if dim(f(V)) =p

where k is the degree of the map f : V — f(V). This determines group
homomorphisms

(7.1) a1 Cp(X) = Cp(Y)
and
(7.2) fu 1 Z5(X) = Z,(Y).

Proposition 7.1. (Friedlander [22]) The homomorphisms (7.1) and (7.2) are
continuous.
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These homomorphisms clearly have the property that

(gofle =gso fu
for morphisms f: X Y andg:Y — Z.

For nice morphisms there are maps in the opposite direction.

Proposition 7.2. (cf. [34], [22]) Suppose f : X — Y is a flat morphism
of projective varieties with fibre dimension k. Then the flat pull-back of cycles
gives continuous homomorphisms

1 £ Col¥) > Cpra(X)
[T 2p(Y) = Zppi(X).

Examples of flat morphisms are proper submersions and branched coverings.
For a rigorous definition of flatness see [43]

§8. The homotopy relationship between C,(X) and Z,(X). In our dis-
cussion there are two objects of interest. The first is the Chow monoid C,(X),
a geometric object. The components of C,(X) are algebraic spaces whose struc-
ture we would like to understand and relate to X.

The second object is Z,(X), the topological group of all p-cycles on X. This
is a fundamental algebraic object attached to X. It would also be nice to
understand the topological structure of Z,(X). In fact by Theorem 3.4 above
we know that the homotopy type of Z,(X) is completely determined by the
homotopy groups 7, Z,(X). Each group m.Z,(e) is an interesting functor on
the category of projective varieties.

Now Z,(X) is simply the naive topological group completion of C,(X) and
one might hope that the homotopy of Z,(X) is somehow a “completion” of that
of Cp(X). In fact we can be quite specific. Let M be an abelian topological
monoid, and set I' = 7o M. Let

M= ][ Ma

a€l
denote the decomposition into connected components, and choose an element
T, € M, for each a. Then we can define continuous maps

fa: MXT 5> MxT

by setting fo(z,8) = (z + 24,8 + a). The homotopy class of f, depends
only on a € I'. Now I is a directed system (where 8 > a <= 3 = a + v for
v €T), and f,+p is homotopic to f, + fs for all a, 3. Hence, for any covariant
homotopy functor A we can define the direct limit

lim A(M x {a}).

a€cl
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Suppose now that M= MxM / ~ is the naive topological group completion,
where (z,y) ~ (z',y') < 3z € M with z +y' + z = =’ + y + 2z, and where

one takes on M the quotient topology in the compactly generated category (cf.
[80]). Then one might naively hope that

(8.1) h(M) = lim h(M x {a}),

a€l

and in particular that

(8.2) (M) = lim m (Ma)
a€l

for k > 0. In fact for general M this is almost certainly not true. There are
nice cases, such as

M=Co(X) and M =Zy(X)

where it does hold (cf. Theorem 3.2). However the standard proofs are difficult
and quite indirect.

In general homotopy theorists ignore this question because there exists a sub-
stitute for M which has the good property (8.1). It is the homotopy-theoretic
group completion

(8.3) M+ € aBMm

where BM is the classifying space of the monoid obtained from the standard
bar construction, and QY denotes the loop space of Y. (See [22] for a detailed
discussion.) There is a canonical homotopy class of maps M — M™ which is
an equivalence when M is a group, and there is a model [52] for M* which
admits a map

(8.4) M+ E M
so that
M+
a
M Ly
N
M

commutes. The desired relationship (8.1) (and (8.2)) will hold if ¢ is a homotopy
equivalence.

The author conjectured several years ago that this should be true when
M = Cp(X) for a projective variety X. The conjecture proved to be useful
but quite hard. Friedlander made important progress on it. The first complete
proof was given by P. Lima-Filho in a beautiful paper [52] in which several
other basic results are established. Following this a somewhat stronger result
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was proved by E. Friedlander and O. Gabber [28]. (This stronger result can
also be obtained from methods in [52].)

Theorem 8.1. (Lima-Filho [52], Friedlander, Gabber [28]) Let M = Cp(X)
be the Chow monoid in dimension p of a projective variety X. Then the map
(8.4) between the homotopy-theoretic and naive group completions of M is a
homotopy equivalence.

Corollary 8.2. Let C,(X) be as above. Set T’ = m Cp(X) and let

Co(X) = [T CoalX)

a€el

be the decomposition into connected components. Then
m0Zp(X) =T
(the algebraic group completion of the monoid T'), and

e Zp(X) 2 lim 7 Cpa(X)

for all k > 0. Furthermore,

H.Z,(X) = H, (Cp(X)) ®zyr) Z[T].

The Friedlander-Gabber proof uses the fact that Z, can built out of quotients
of varieties by algebraic equivalence relations. (They work in a nice category
which contains varieties and is closed under push-out’s). Lima-Filho’s argu-
ments are couched in more topological terms, and give also the Dold-Thom
result that Zo(X) = Z x SP(X) for any connected finite complex X .

The result above shows that the functors 7. Z.(X) and H,Z,(X) are related
to the homotopy and homology of the Chow varieties of X.

In the absence of this theorem one could replace Z,(X) by QBC,(X) (or
equivalently just BCp(X)) and obtain interesting functors. In fact this is im-
portant for extending the theory to varieties defined in characteristic p > 0 (See
IV. 13.). However, in doing this one loses direct contact with the variety and
such theorems as localization, discussed in Chapter IV, are difficult to establish.

§89. Cycles and the Plateau problem. For varieties defined over C
the components of C,(X) have a beautiful geometric interpretation. Fix v €
H,(X; Z) and let Cp(X) denote the set of all ¢ € C,(X) whose homology
class is . This is a finite union of connected components of C,(X) and is very
possibly empty. However, whenever there exists a cycle ¢ € C, (X)), H. Federer
[26] proved the following. For any Kdhler metric on X, c is a current of least
mass (i.e., weighted volume) in its homology class y. That is,

(9.1) Mass(c) < Mass(c')
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for all rectifiable cycles ¢’ on X which represent v (cf. [27]). Furthermore,
equality occurs in (9.1) if and only if ¢ € Cp4(X). (Note: When X is not
smooth, a “Kéhler metric on X” means a Kdhler metric defined on some neigh-
borhood of X in PV.) Hence whenever it is non-empty, C, (X) is precisely the
moduli space of all solutions to the Plateau problem for the homology class v
on X.

This says that when it is not empty, Cp ,(X) embeds into the space 325 ,(X)
of rectifiable 2p-cycles on X with homology class v, as the set of minimum
points of the continuous function

Mass : 325 ,(X) — RY.

One may wonder whether Cp, (X) is connected. This turns out not to hold in
general. However, for certain basic spaces, such as projective spaces, Grass-
mannians, general flag manifolds, etc, this and much more are true. For such
spaces the inclusion

Cpy(X) = 32p,4(X)

becomes a homotopy equivalence as v tends to infinity in the partially or-
dered monoid meCp(X). These results are discussed in Chapter IV.

In recent years there have been examples of geometric variational problems
where “as the degree goes to infinity” the set of absolute minima gives a homo-
topy approximation to the space. This was seen in the work of G. Segal and
others [72], [12], [65] where the space of rational maps of P! into a good variety
(as above) approximates the space of all continuous maps. It also appears in the
theory of SU; gauge fields over S* where as the degree of the bundle increases,
the finite-dimensional space of self-dual connections approximates the space of
all connections modulo gauge equivalence (cf. [3], [77], [11]). Algebraic cycles
provide another example of this phenomenon.

Chapter II - Suspension and Join

In this section we introduce two elementary constructions on projective sub-
varieties and discuss the Algebraic Suspension Theorem which is the key to
much of the subsequent material.

§1. Algebraic suspension. Fix a hyperplane P* C P**! and a point P° €
prtl — P,

Definition 1.1. Let V C P™ be a closed set. By the algebraic suspension
of V (or complex cone on V) with vertex P® we mean the set

XV = U{E : £ is a projective line through P° which meets V'}.
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The projection P**1 —P°% — P" is a holomorphic line bundle. It is the normal
bundle to P" and is equivalent to O(1). Its fibres are the lines through P° (with
P? removed). Thus ¥V is homeomorphic to the Thom space of O(1)|,,.

The construction ¥V is particularly simple in terms of homogeneous coor-
dinates. Suppose C**? is a choice of homogeneous coordinates for P**! with
projection

7 :C2 — {0} —» P

Given any subset S C P™*! let

(1.1) c(8) € x71(s) u {0},

and suppose the coordinates are chosen so that C(P") = C**! x {0} and
C(P%) = {0} x C. Then for any closed set V C P",

(1.2) C(ZV)=C(V)xC(P°) =C(V) x C.
From this we see that if PP C P™ is a linear subspace, then
(1.3) ¥PP = prt!

is also a linear subspace. Furthermore, we see that if V' is a projective subvariety
of P, then ¥V is a projective subvariety of P**!. In fact if V is defined by
homogeneous polynomial equations p;(zo,-..,2n) = -+ = DN(20,... ,2n) =
0, then ¥V is defined by exactly the same polynomials, now considered to
be functions of an additional “hidden” variable z,4+1. Hence by linearity the
algebraic suspension gives a homomorphism

(1.4) ¥ : Cp(P") — Cpi1 (P™H)

which is easily seen to be continuous. Consequently, we have
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Proposition 1.2. For any algebraic subset X C P", the algebraic suspension
gwes a continuous monoid homomorphism

(1.5) ¥ :Cp(X) — Cpi1(XX)
which extends to a continuous group homomorphism
(1.6) ¥ Zp(X) — Zp41(XX)

for all p, 0 < p < dim(X).

§2. Algebraic join. Fix disjoint linear subspaces P™ II P™ C Pntm+1,

Definition 2.1. Let V C P and W C P™ be closed subsets. By the algebraic
join of V and W we mean the set

V#W = U {€: ¢ is a projective line which meets both V and W}.

y
<)

=7

- "o

]P/;/ ]Pm

Suppose C**™m+2 = Cntl x C™*! is a choice of homogeneous coordinates
such that C(P™) = C"*1 x {0} and C(P™) = {0} x C™*!. Then we have that

(2.1) C(V#W) =C(V) x C(W).
From this it is clear that the join takes linear subspaces to linear subspaces, i.e.,
(2:2) PP#P? = PPtot!

for 0 < p < n and 0 < ¢ < m. Furthermore, one has
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(2.3) ¥V = V#P° and

g™y cgf?(z(...(zv) . )) = V#P™.

m+1—times

Of course, one has symmetrically that P"#W = E"HW, and this gives the
basic relation

(2.4) V#Ww = 3"V n @ w)

that the join pairing is obtained by suspending and then intersecting. Note
that this suspension always puts cycles in good position, i.e., so they intersect
properly. Note from (2.1) that if V and W are projective subvarieties then so
is V#W. In fact if V is defined by homogeneous polynomials p;(z) = --- =
pn(z) =0 and W is defined by ¢1(¢) = - -+ = qa(¢) = 0, then V#W is defined
by the vanishing of all p;’s and g;’s simultaneously. The join extends to algebraic
cycles by bilinearity. Suspension is continuous, and the proper intersection of
cycles in P* is continuous on the subset of pairs which meet properly. (See
Fulton [34] or Barlet [6].) Hence, we have the following.

Proposition 2.2. Let X C P" and Y C P™ be algebraic subsets. Then the
algebraic join defines a continuous biadditive pairing

(2.5) Co(X) X Cr(Y) 5 Cpprn (X#Y)
which extends to a continuous biadditive pairing
(2.6) Z)(X) x Z:(Y) 2+ 2, pa (X$Y)

for all 0 < p < dim(X) and 0 < r < dim(Y).
In particular, if we choose the notation

(2.7) CU(X) = Cog(X) and Z9(X) ¥ Z, (X)
where n = dim(X), then (2.5) and (2.6) give basic pairings:

(2.8) CI(P™) x C¥ (P™') —» CITY (Pntn'+1),

(2.9) ZI(P") x 29 (P") — 2917 (Prn'+1y,

§3. The Algebraic Suspension Theorem. The importance of algebraic
suspension comes from the following result.
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Theorem 3.1. ([47]) For any algebraic subset X C P and any p, 0 < p <
dim(X), the algebraic suspension homomorphism

2 : Zp(X) - zp+1(EX)

is a homotopy equivalence.

Idea of Proof. Suppose X = P™. (The general case will follow by restricting
to cycles in X.) For simplicity set Cpy1 = Cpy1(P™1) and Zpi1 = Zpiq (PF).
Consider the subset

Tpt1 E {EnVi € Cpya : dim(Vi N P?) = p V4 }

of cycles which meet the hyperplane P in proper dimension. Let j,,.H C Zpt1
be the subgroup generated by Jp+1. The proof breaks into two steps.

Assertion 1. The subset ¥ (Z,(P")) C Jp+1 is a deformation retract.

Assertion 2. The inclusion jp+1 C Zp41 is a homotopy equivalence.

For the first step we recall that P»*! — P® — P" is a line bundle. Scalar
multiplication by ¢t > 0 in this bundle defines a one-parameter family of auto-
morphisms ¢; : P*t1 — P*! which fixes P* II PO. It induces a 1-parameter
family of automorphisms '

Qt : Cp+1 — Cp+1

which leaves invariant the submonoid Jp4+1 and fixes the submonoid ¥ (C,(P™)).
The main point here is that on the subset Jp+1 the map ®; extends continuously
to t = oo where

(poo . jp+1 —p )Z(Cp(ﬂ”"))
is the retraction defined by
Boo(c) = ¥(c- P™)

c¢ - P™ denoting the intersection of ¢ € Jp41 with the hyperplane P". The
continuity of this process, called “pulling to the normal cone” is established in
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the book of Fulton [34].

Pn

g

Extending ®;, 0 < t < oo, to the group completions proves Assertion I.

To prove Assertion 2 it suffices to prove that the homemorphism
(3.1) 1k (Tpt1) — T (Zpt1)

induced by the inclusion jp+1 C Zp4+1 is an isomorphism for all ¥ > 0. Note
that the inclusion map on positive cycles Jp+1 C Cpt1 is very far from being a
homotopy equivalence. It does induce a bijection of connected components, but
the corresponding components have very different dimensions in general. It is
in this step that we must use the group completion strongly.

For this we erect a superstructure. Fix a linear embedding P*t! c P**2 and
two points zo,z; € P*"*2 — P+, The projections

(3.2) mp : PPY2 — (g} — Pk =0,1

give each set P"*2 — {z;} the structure of a holomorphic line bundle over P"+!.

Consider now a positive divisor D on P"*2 of degree d with zo ¢ D and
z1 ¢ D. One can think of D as a d-valued section of the bundle mp : P"+2 —
{zo} = P™*1. The key observation is that any positive cycle ¢ € Cpy1(P™*?)
can be “lifted” to a cycle with support in D. This lifting is defined to be the
intersection

Up(c) = Ygolc) - D

of the divisor D with the suspension of ¢ to the point zo. This gives us a
continuous map

Up : Cpp1 (P") — Cpp1 (P™*? ~ {20, 21}) -
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X0
Xy
D
%
]Pn Pﬂ+1

Note that (m9)« © ¥p = d (multiplication by the integer d in the monoid).
However, the composition (71). o ¥p is very interesting. It gives us a transfor-
mation of cycles in P**t! which makes most of them “transversal” to P", i.e.,
which moves most of them into Jp41.

Consider now the family of divisors tD, 0 <t < 1, given by scalar multipli-
cation by t in the bundle mg : P"*2 — {4} — P"*!. We assume z; ¢ tD for all
such t. (This will be true for all divisors in a neighborhood of d - P**1.) The
above construction then gives us a family of transformations

Fpt % (m)a 0 Uyp : Cpy1 (P™Y) — Cppy (P™HY)

for 0 <t < 1 such that Fy = d (multiplication by d).

Fix ¢ € Cp+1(P™*!) and ask which divisors D of degree d have the property
that

Fpi(c) € Tp11

n424d
d

for all t > 0. Let B, C Cpy1,qa(P"2) = PP )=1 be the subset of divisors for
which this fails, i.e., for which there is some t > 0 such that Fp(c) ¢ Jp+1-
Then the main algebro-geometric calculation is that

(3.3) codimeB, > (p + Z + 1) ~1

We can now apply these transformations with d = 1 to prove that Jp4+1 < Cpt1
induces a bijection on connected components. Hence, (3.1) is an isomorphism
for £ = 0.

Suppose now that f : S¥ — Cp4; is a continuous map for k > 0. We may
assume f to be PL up to homotopy. Then for all d sufficiently large, we see
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that the map d- f is homotopic to a map S* — Jp+1. Indeed just consider the
family
Ft,D (o} f : Sk — Cp+1

0 <t <1, where D lies outside the union

U Brw

zeSk

which is a set of real codimension > 2(**4*1) — (k + 2).

Similarly, suppose we are given a map of pairs f : (D¥*1,5™) = (Cpi1, Tpt1)-
Then for all sufficiently large integers d, the map d- f can be deformed through
a map of pairs to one with image in Jp41.

From this we deduce that the map

2* ll_“; Wk(cp,a) — 11_111 Wk(cp+1,a)

is an isomorphism for all £ > 0. Hence the induced map on homotopy group
completions is a homotopy equivalence. One then applies Theorem 1.8.2 for the
statement concerning naive group completions. a

Note 3.2. With a little more care the arguments above can be applied to prove
directly that ¥ : Z, — Z,41 is a homotopy equivalence (without using Theorem
1.8.1). See [48] for example.

The Algebraic Suspension Theorem can be thought of as a “stability result”.
If we choose notation

(3.4) 2Z9(X) = Zp—o(X)
where n = dim(X), then Theorem 3.1 can be restated by saying that
(3.5) ¥ Z9(X) = 29(¥X)

is a homotopy equivalence for all ¢ < dim(X).
§4. Some immediate applications. For cycles in projective space one can
make a construction which strictly generalizes the Dold-Thom construction of

SP to the “p-dimensional points”. Fix a linear subspace £y of dimension p in
P™, and consider the sequence of embeddings

Cpa-1(P") = Cpa(P") = Cp a1 (P") = - -
given by ¢ — ¢ + £y. Define
Cp(P™) = lim Cp,a(P™)
d
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to be the limiting space with topology generated by this family of compact
sets. (A set C is closed iff its intersection with each Cp 4 is closed.) Note that
Co(P™) = SP(P™). As in (3.4) we write C9(P™) = En_q(lP’") as the connected
monoid of codimension-¢q cycles.

Theorem 4.1. ([47]) There are homotopy equivalences

(4.1) CU(P") =~ K(Z,2)x K(Z,4) x --- x K(Z,2q)

(4.2) ZYP") = K(Z,0)x K(Z,2)x K(Z,4) x --- x K(Z,2q)
foralln > ¢ > 0.

Proof. Apply Theorem 3.1 to see that Z9(P") = Z9(P9) = Z,(P9) and then
apply the Dold-Thom Theorem (cf. (I1.3.12)). The space C? similarly reduces
down to Co(P?) = SP(P9). a

Theorem 4.2. ([47]) Let P"~! C P™ be a hyperplane, then there are homotopy
equivalences

(4.3) ZI(P™)/27H (P = K(Z,29)
for alln > q > 0.

Theorem 4.3 ([47]). Let m > 0 be any positive integer, and let Z9(P™) ®
Zpy = Z9(P")/mZI(P") be the topological group of codimension-q cycles with
coefficients in L, = Z /mZ. Then there are homotopy equivalences

(4.4) ZIP"Y®Zym = K(Zm,0) X K(Zm,2) X ... x K(Zm,2q)
and

(4.5) ZI(PYRZm/ZT ' (P ) ®Zm = K(Zm,29q)

for alln > q > 0.

Theorem 4.1 can be applied to give results about the structure of the Chow
sets Cp,q(P™). We say that a map f : A - B between spaces has a right
homotopy inverse through dimension k, if there is a finite complex C and
amap i : C = A so that the composition f o1 is k-connected.

Theorem 4.4 ([47]). The inclusion
Cp.a(B™) = Cp(P™)

has a right homotopy inverse through dimension 2d. In particular the induced
maps

Hy (Cpa(P™); A) — Hi (Cp(P™); A)
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are surjective, and the maps
H*(Cp(P™); A) —s H*(Cpa(P™); A)
are injective for k < 2d and for any coefficient ring A.

This establishes the existence of a lot of “stable” cohomology in the classical
Chow varieties. If A = Z, we pick up much of the Steenrod algebra as d,n —
0o0.

Note. In this context it is natural to ask how much of the “stable” homology
of Cp 4 is represented by algebraic cycles. Recently Michelsohn has found such
representatives for essentially all possible classes [94].

§5. The relation to topological cycles. Let X be a projective variety of
dimension n. Fix a triangulation of X compatible with the smooth stratification
and let X < RV be a linear embedding of this simplicial complex. Then for
any k < 2n, the Lipschitz singular k-chains in X can be completed to a group
of rectifiable k-currents

Rk(X) C Sk(X)'

using the Federer mass norm. (See [26] and [27].) These currents retain certain
manifold-like properties, and the spaces have nice compactness properties. The
restriction of the de Rham differential d makes (R.(X),d) a complex whose
homology is H.(X;Z) ([27]). In particular in each dimension k < 2n we have
the topological group

3k(X) = {T € Ri(X) : dT =0}

of rectifiable k-cycles on X. The group depends only on the P L-structure of
X. The topology is the restriction of the standard weak topology of the space
of de Rham currents on RV with support in X.

Now there is a beautiful theorem of Fred Almgren which generalizes the
Dold-Thom result.

Theorem 5.1 (Almgren [1]). For each pair of non-negative integers k, £, there
is an isomorphism
Mok (X) >~ Ho k(X Z).
There is a natural continuous homomorphism
(5.1) Zp(X) = 32p(X)

for each p, 0 < p < n. Theorem 5.1 above can be restated in the following way.

Theorem 5.2. When X = P", the inclusion (5.1) is a homotopy equivalence
for all p.
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Thus in projective space the algebraic p-cycles carry the full homotopy-type
of the space of all rectifiable 2p-cycles. This strongly generalizes the basic fact
that every homology class is represented by an algebraic cycle. We will see that
Theorem 5.2 remains true for a large family of varieties including Grassmannians
and in fact all generalized flag manifolds. However, such a result is necessarily
false (even at the level of connected components) for any variety X for which
Hep(X;Q) ¢ Hpp(X). In this case the bigrading of 7,2,(X) ; £,p > 0 becomes
more interesting than it is in the topological case.

§6. The ring 7,Z(P°). Let X C PV be a projective subvariety. Then the
algebraic join gives pairings

Z9(X) x 29 (P") — 2944 (3" X)
which, since 0#C = 0 and C'#0 = 0, descend to the smash product
(6.1) ZY(X) A 29 (P") — 2977 (3" X).

Now the Suspension Theorem 3.1 gives a canonical homotopy equivalence
Zotd(X) = zotd (2"+1X), provided that ¢ + ¢’ < dimX. Hence taking
homotopy groups in (6.1) gives a pairing

(6.2) TZ9(X) ® mp 29 (P™) — mppp 2917 (X)

introduced by E. Friedlander and B. Mazur [29]. This pairing can be extended
somewhat as follows. For any ¢ > 0 we have canonical homotopy equivalences
Z9(skX) = 29(3""'X) = ... for all n such that n + dim(X) > ¢. Let us
define

6.3) Z9(X) = lim Z%(%"X)

to be this well-defined homotopy type. For example

Z7(P°) = Z9(P")
for any n > ¢. The pairing (5.2) now extends to a pairing
(6.4) m Z9(X) @ mp Z9 (P°) — mpqnr Z9TY (X)
defined for all k,k',q,q' > 0.

Theorem 6.1. (Friedlander and Mazur [29]). When X = PO, the pairing (6.4)

gives FM def 7. Z*(P°) the structure of a commutative bigraded ring. In fact
this ring is isomorphic to a polynomial ring Z[s,h] on two generators where

s € mZ"(P°) and h € m, Z'(PP).
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For any projective subvariety X C PN, the pairing (6.4) gives W*Z*(X ) the
structure of a bigraded F M-module.

The operation h is related to the Lefschetz map in homology coming from
intersection with a hyperplane. The operation s is more subtle and interesting.
We will return to this in Chapter IV.

§7. Suspension and symmetry. In all of the discussion above it is natural
to ask what happens in the presence of symmetries. Consider, for example, a.
projective variety X and a finite group G C Aut(X) of automorphisms. There
is a naturally induced action of G on Z,(X) for each p, and in analogy with §3
above, one can consider the topological groups

ZG,p(X) &

Z,,(X)G/G ’ Zp(X)

introduced in [58], where Z,(X)¢ = {c € Z,(X) : g.c = ¢ Yg € G} denotes
the fixed-point set and GZ,(X) = {3 ,cg 9+ : ¢ € Z,(X)} is the subgroup
of averaged cycles. These are functors on the category of G-varieties and G-
equivariant morphisms, and therefore are the homotopy groups nx Zg,p(X). If
we are given a representation G - GLy+1(C) and a G-equivariant embedding,
then algebraic suspension defines homomorphisms

(7.1) ¥:Z(X)¢ = Z,11(¥X)Y and ¥:GZ,(X) = GZp1(¥X).

Together with M.-L. Michelsohn it was proved that these maps are homotopy
equivalences if one localizes away from the order of the group. In particular we
have

Theorem 7.1. ([58]) The suspension homomorphisms (7.1) and the induced
homomorphism

(7.2) ¥:Z6(X) = Zgpr1(IX)

induce isomorphisms on the homotopy group wi(e) ® A for all k > 0 and any
ring A in which the order of the group G is invertible.

By “ring” we mean a commutative ring with unit. Examples of such rings
are A = Z(g) (the integers localized at the prime ¢) and A = Z/qZ where q is
any prime which does not divide the integer |G]|.

This condition that |G| be invertible is strictly necessary. It is shown by
example in [58] that the suspension homomorphism fails to be a homotopy
equivalence at primes dividing the order of the group. However, with Lima-
Filho and Michelsohn it has been proved that the m-fold suspension map is a
G-homotopy equivalence, when m ezceeds the codimension of the cycles. One
can also suspend to a general representation. Here one obtains the delicate



172 H. BLAINE LAWSON, JR.

result that suspension to the regular representation of G is stably a G-homotopy
equivalence [93].

Chapter III - Cycles on P" and Classifying Spaces

It is an interesting fact that the algebraic cycles in projective space can be
used to construct models of certain universal spaces in topology — spaces that
represent such everyday functors as K-theory and cohomology. Elementary
constructions with cycles lead to Chern classes, Stiefel-Whitney classes and the
cup product at the universal level. Families of cycles correspond to Steenrod
operations.

§1. The total Chern class. It is a basic fact presented in most books on
characteristic classes and K-theory that the space of linear cycles

(1.1) Cng (P™) €67 (P

i.e., the Grassmannian of linear subspaces of codimension-q in P™ is a classifying
space for vector bundles. Specifically, for any finite complex Y of dimension
< 2(n — q), there is an equivalence of functors

(1.2) Vect!(Y) = [Y,G? (P™)]

where Vect?(Y) denotes the set of equivalence classes of rank-g complex vector
bundles on Y. The equivalence is given by associating to f : Y — G? (P"), the
pull-back f*§, of the tautological g-plane bundle ¢, over G? (P").

Analogously we see from II1.4.1 and (I1.3.6) that the space Z9 (P") has the
property that for any finite complex Y there is an equivalence of functors

(1.3) éH%(Y;Z) ~[Y, 29 (P)].

k=0

Observe now that we have a very natural map
(1.4) G (P™) — Z9(P")

given by considering linear subspaces as cycles of degree 1. By (1.3) this corre-
sponds to a cohomology class ¢ on G? (P"). In collaboration with M.-L. Michel-
sohn the following was proved.

Theorem 1.1 ([57]). The cohomology class ¢ = 1+ ¢; + -+ + ¢, determined

by the cycle inclusion (1.4) is the total Chern class of the tautological bundle &,
over G (P™)
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Under algebraic suspension the maps (1.4) sit in a grid of inclusions :

¥ n no¥
ge(P7) c z29(P")

(1.5) ¥ n n ¥
g1 (Pn+1) c 29 (PrH)

¥y n n ¥

where the vertical maps on the right are all homotopy equivalences. Hence we
may pass to the limit

(1.6) BU, €'lim g7 (P").

This space has the classifying property (1.2) for all finite complexes.

Corollary 1.2 ([57]) Passing to the limit in (1.5) gives a map
(1.7 BU, — 27 (P*°) = K(Z,0) x K(Z,2) x --- x K(Z,2q)
which represents the total Chern class of the universal g-plane bundle over BU,.
Taking the limit as ¢ — oo in (1.7) gives us map
(1.8) c¢: BU — K(Z,2x)
where BU and K (Z, 2%) have the property that
K(Y)=[Y,BU] and H®*™Y;Z)=[Y,K(Z,2)]

for all finite complexes Y. That is BU and K (Z, 2«) are the classifying spaces for
reduced K-theory and even cohomology respectively. From 1.2 we immediately
have

Corollary 1.3. The map (1.8) represents the universal total Chern class from
K -theory to cohomology.

Note that by Bott Periodicity the homotopy groups of BU and K (Z, 2«) are
the same in positive dimensions. In fact Bott’s fundamental results show that
the homomorphism

wor BU Ly mor K (Z, 2%)

1l i
zZ Z
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is multiplication by (k — 1)! (See [57]).
These results lead to some interesting questions. One can consider the spaces

(1.9) D(d) = lim Cp.a (P)

n—o0o

(with the compactly generated topology) for all d = 1,2,--- ,00. There is a
natural sequence of inclusion mappings

(1.10) BU =D(1) C D(2) C--- C D(o0) = K(Z, 2%).

Note that D(d) is the space of all positive projective cycles of degree d. There
are a number of interesting questions concerning this filtration. A simple one is
whether the maps 7, D(d) — 7.D(00) are injective, and if so, at which levels d do
the factors in the homomorphism 72 D(1) — 7, D(00), which is multiplication
by (k — 1)!, appear ?

§2. Algebraic join and the cup product. From II.2 we know that the
algebraic join induces a continuous biadditive pairing

(2.1) Z9(P") x 29 (P"') #, go+d (PP+"'+1) .

From Theorem I1.4.1. and its proof we obtain a canonical homotopy equivalence

(2.2) Z9(P") — f[d—_’lf - K(Z,2k)
k=0

for all n > ¢. It is natural to ask what the join map becomes when interpreted
as a map of Eilenberg-MacLane spaces. Certainly the most basic pairing of such
spaces comes from the cup-product in cohomology. This product

HY(Y;Z)® H*(Y;Z) — H*tY(Y;Z)
on spaces Y can be represented universally, via (I.3.6), by a map
(2.3) K(Z,a) x K(Z,b) 2 K(Z,a+b),

which is determined up to homotopy by the fact that it classifies the cup product
ta ® tp Of the fundamental cohomology classes, where 1, € H¥(K(Z,k);Z) = Z
is the generator. The map (2.3) can be constructed explicitly by extending the
smash product map 5% x S® — S2AS® = S+ bilinearly to 2, (52) x Zo (Sb) —
2 (S°*?) and using (1.3.7).

These basic cup product maps (2.3) assemble naturally to give a mapping

(2.4) =<1l =
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which classifies the cup-product mapping in even-cohomology

q q q+q’
(@ H*(Y; Z)) o |PHE*Y;2)] — | P HEH*(Y;2)
k=0 k=0 k=0

In collaboration with M.-L. Michelsohn the following was proved.

Theorem 2.1. ([57]) Under the canonical homotopy equivalence (2.2) the al-
gebraic join pairing # is (homotopic to ) the cup product mapping (2.4)

Observe now that the inclusion of degree-1 cycles into Z7 (P™) gives a com-
mutative diagram

G9 (P") x g7 (IP’n'> _® , gotd (]pn+n’+1)

(2.5) 1 l

29 (P") x 27 (]pn') _* , zatd (]Pm+n'+1)‘

The restriction of the join to linear subspaces corresponds to taking the direct
sum (cf. (I1.2.1)). Passing to the limit as g,q' = oo and applying Theorem 2.1
gives a commutative diagram

BUq x BUy —2— BU,,,

2.6 exe | le

’

q q a+q

=1 — I

where the map @ classifies the Whitney sum of vector bundles. The com-
mutativity of this diagram corresponds to the Fundmanental Whitney Duality
Formula

c(E®E') = c¢(E)c(E")

for the total Chern class of complex vector bundles E, E' over a space Y.

The importance of (2.5) was realized early by E. Friedlander. He pointed
out that in conjunction with Theorem 1.1, it can be used to prove Theorem 2.1
over the rationals.

§3. Real cycles and the total Stiefel-Whitney class. It was suggested by
Deligne that if one worked with cycles modulo 2, some of the results above might
carry over to real algebraic geometry. Indeed, with the correct formulation of
“reality” this turns out to be true, and the results are surprisingly nice. Both
the formulation of the theory and the proofs of the results are due to T.-K.
Lam.
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Following Atiyah [2] we define a Real projective variety to be a pair
(X,C) where X is a projective variety and C : X — X is an antiholomorphic
map with C? = Id. A basic example is that of projective space (P?, C') where C
is defined by complex conjugation in homogeneous coordinates. The fixed-point
set of C is real projective n-space

P*(R) c P*(C) = P"™.
The choice of this real form corresponds to the choice of Real structure on P".

Observe that if V' C X is an algebraic subvariety of a Real variety X, then
its conjugate C(V) is also a subvariety. Thus C induces an involution C, on
the set of subvarieties of X which extends by linearity to cycles.

Definition 3.1. Let (X, C) be a Real projective variety. An algebraic p-cycle
on X is said to be Real if it is fixed by C,. Let

ZX(X) ={c€ Z,(X) : Cu(c) = c}

denote the topological group of all Real p-cycles on X.

Note that any Real cycle can be uniquely written as }_ V;+3_ m; (W; + C.W;)
where the V;’s are C,-invariant subvarieties. It is enticing (and naturally sug-
gested by Galois theory) to divide by the subgroup

(14 C.) Zp(X) = {c+ Ci(c) : c € Zp(X)}

of “averaged” cycles. Therefore following [48] we introduce the topological
quotient group

(3.1) RZ,(X) ¥ ZR(X)/ (1 + C.) Z,(X)

of reduced Real p-cycles on X.

Algebraically RZ,(X) is just the Zy-vector space generated by the Real (irre-
ducible) subvarieties of X. However, this group is also furnished with a natural
topology, and T.-K. Lam proves the following theorems.

Theorem 3.2 ([48]). Let (X,C) C (P*,C) be a Real algebraic subvariety.
Then C-equivariant algebraic suspension gives a homotopy equivalence

¥ : RZ,(X) = RZp41(¥X)
for all p, 0 < p < dim(X).
As above we set RZ9(X) = RZ,_4(X) where n = dim(X).
Theorem 3.3 ([48]). There are homotopy equivalences
(3.2) RZ(P") = K (Z5,0) x K (Z2,1) x K (Z3,2) X --- x K (Z3,q)
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for all g < n.

A given Real structure C on P" induces a real structure on GY (P™) whose
fixed-point set is the real Grassmannian

G (P*(R)) =~ On41/O¢ X Ony1-g
of R-linear subspaces of codimension-q in R*+1,
Theorem 3.4 ([48]). The natural inclusion
(3.3) G? (P"(R)) <= RZ9(P") = K (Z3,0) X - - - X K (Z2,q)
represents the total Stiefel Whitney class of the tautological q-plane bundle over

G? (P™(R)). Therefore passing the limit as ¢ — co in (3.3) gives a map

g
(3.4) BO, = [[ K (Z2,k)
k=0
which represents the total Stiefel-Whitney class of the universal g-plane bundle
over BO, _rr; g7 (P*(R)).

Taking the limit as ¢ — oo in (3.4) gives a map

BO — K (Zs,%) d—efHK (Zs, k)

Theorem 3.5. ([48]) The algebraic join

RZ(P") x RZ¥ (P¥) — RZPH (prin'+1)
correspond via (3.2) to the map which classifies the cup-product in Z-cohomology.

From 3.4 and 3.5 one retrives the classical Whitney Duality Formula
w(EQ® E") = w(E)w(E")

for the total Stiefel-Whitney class.
§4. A conjecture of G. Segal. We have seen that the elementary inclusions
(1.4) and (3.3) determine maps
(4.1) BU - K(Z,2¥) and BO -2 K(Zs,*)

which correspond to the universal total Chern and Stiefel-Whitney classes re-
spectively. The question naturally arises whether these maps extend to trans-
formations of generalized (connective) cohomology theories. In other words,
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can we extend these to maps of spectra where the mappings (4.1) occur at the
0*-level ? Finding such an extension amounts to finding infinite loop space
structures on these spaces such that ¢ and w are infinite loop maps.

Now the spaces BU and BO have natural infinite loop space structures com-
ing from Bott periodicity (e.g., BU = Q?BU). Each K(G,n) is also an infinite
loop space since it is an abelian topological group. However these structures
are not even compatible at the 1-loop level. If they were, then ¢ and w would
preserve the loop-product (Y x QY — QY). However loop product in BU
(and BO) is equivalent to Whitney sum, and in K(G,n) it is equivalent to
addition. The Whitney Duality Formulas show that ¢ and w are not additive
homomorphisms.

In fact if we fix Bott’s loop space structures on BU, then a compatible loop
structure on K (Z, 2+) will yield a quite different “addition” on even cohomology.
This different additive structure + was pointed out and used by Grothendieck in
1958 [37]. It is given on H**(Y;Z) = H°(Y;Z) ® H>°(Y;Z) by setting
(agp,a') F (bo,b'") = (co,c') where

co=ap+b and (1+c)=0Q+a)u(l+d).

This is precisely the addition given by the cup product pairing on K(Z,2%)
discussed in §2.

In 1975 G. Segal [71] asked the following question :

Do the cup product pairings on K(Z,2%) and K(Z,,*) enhance
(4.2) to infinite loop space structures such that ¢ and w become infinite
loop maps ?

Several such structures were proposed and shown not to work (cf.[73], [75],
[82]-[84], [86]. See [7] for a history).

Question (4.2) is very complicated in nature. For any proposed structure
one must check compatibility on an infinite pyramid of higher associativity
relations. Fortunately topologists have found simpler sets of compatibility hy-
potheses which yield infinite loop space structures and infinite loop maps.- One
such machine, due to Peter May, uses the linear isometries operator £. I will
spare you the definition and say only that any £-space (a topological space with
an action of £) is canonically an infinite loop space, and any L£-map between
L-spaces is an infinite loop map.

Happily for us there is an elementary method for constructing £-spaces and
L-maps. It involves the category Z, whose objects are finite dimensional inner
product spaces and whose morphisms are linear isometric embeddings. Let 7
denote the category of compactly generated, Hausdorff topological spaces with
base point. The sets of morphisms in 7 are given the compact-open topology.

Definition 4.1. An Z,.-functor (T, w) is a continuous functor T : Z, — T to-
gether with a commutative, associative, and continuous natural transformation
w:T xT — T o such that
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a) If X € TV, and 1 € T{0} is the basepoint, then
w(r,l)=zeT(Va{0})=TV.
b) IfV = V'® V", then the map TV' — TV given by z — w(z,1) is a

homeomorphism onto a closed subset.

Theorem 4.2. ([63]) If T is an I.-functor, then
T(C®) = Vl(l:%loo V)

where the limit is taken over finite dimensional subspaces of C*, is an L-space.
Any natural transformation ® : T — T' of I.-functors induces a mapping
®:T(C®) = T'(C>®) of L-spaces.

An illuminating example is given by the “Bott functor” Tp which associates
to each Hermitian V' of dimension n the Grassmannian

Tp(V)=G"(VeV)

of n-planes in V @V, with distinguished point 1 = V & {0}. Given an isometry
f:V — W define Tg(f) : Tg(V) - Tg(W) on a plane U by (Tsf) (U) =
(FfV)t @ {0}) ® (f ® f)(U). The natural transformation wp is given by

we(U,U") = (U @ U')

where 7: VaVaV' oV - VOV ®V & V'is the obvious shuffle. This is
an Z,-functor, and clearly
Tg (C*) = BU.

It is shown in [63, p.16] that the induced infinite loop structure is the standard
one of Bott.

Now in parallel fashion one may define the Chow monoid functor 7¢ by
setting
Te(V)=C*(P(VeV)) where n=dim(V)

with distinguished point 1 = P(V @ {0}). In dimension 0 we set {0} = N with
distinguished element 1. For an isometric embedding f : V — W, we define
Te(f) : Te(V) = Te(W) on a cycle ¢ by

Te(fle=P (f(V)*" @ {0}) #(f @ )« (0).
The natural transformation wc is given on cycles ¢,c’ by
we(e, ') = Tu(cftcd)

with 7 as above. One sees that

Te(C®)=D%¥ ﬁ D(d)
d=0
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where D(d) is the space of all degree d cycles (See (1.9)).

One verifies that T¢ is an Z,-functor and concludes the following (due to
Boyer, Mann, Lima-Filho, Michelsohn and the author).

Theorem 4.3. ([7]). The stabilized cycle space D is an L-space where the
structure maps are defined via the algebraic join pairing # : D(d) x D(d') —
D(dd'). Furthermore, the infinite loop space structure induced on D(1) = BU
agrees with the standard one of Bott.

Of course T¢ has values in abelian topological monoids. From this one can
deduce that D is an E-ring space in the sense of P. May [63]. Associated to
D is an Eys-ring spectrum. This quickly leads to a positive answer to (4.2).
However in the spirit of the exposition here one can proceed as follows.

Again in parallel with the above, we define an Z,-functor T’z by setting
Tz(v)=Z"(P(VeaV))

where n = dim(V'), and continuing as in the definition of T¢. (Here T¢{0} = Z
with distinguished element 1). Note that T'z(V) is the naive group completion
of T¢(V) and the limit

Tz(C®)=2= [] 2@

d=—o00

is the additive group completion of D.

Theorem 4.4. ([7]). The natural map D — Z of D into its additive group com-
pletion is a map of L-spaces. In particular, the infinite loop structure induced by
the complez join on Z(1) is such that the total Chern class map D(1) < Z(1)
is an infinite loop map.

This also carries through for Real cycles and we have the following,.

Theorem 4.5. ([7]). The multiplication on K(Z,2x) and K (Zs, *) induced by
the algebraic join enhances to an infinite loop structure with respect to which
the maps (4.1) are infinite loop maps.

Let M°(e) and MOO(e) denote the functors H2*(e;Z) and H*(e;Z;) with
the Grothendieck addition defined above.

Corollary 4.6. ([7]). The functors M° and MO° enhance to generalized
cohomology theories M* and MO* such that the maps (4.1) extend to natural
transformations

c: k* > M* and w: ko* - MO*.
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This implies for example the existence of transfer maps in cohomology which
commute with ¢ and w.

It has been shown by Totaro [79] that the maps ¢ and w cannot extend to
natural transformations of multiplicative theories.

§5. Equivariant Theories. It is natural to ask what happens in the construc-
tions above if one introduces the action of a finite group. The very pleasant
answer is that one finds a new equivariant cohomology theory with some very
nice properties.

To be more specific let G be a finite group, and to each finite-dimensional
complex representation space V of G associate the cycle group

Te(V)=Z"((P(VQV)) where n=dim(V)

as in section 4 above. This space has a natural action of G which respects the
algebraic join pairing. It thereby gives us a “G-equivariant Z,-functor”. Now
the theory of May has been carried through in this case [59], and we find the
following. Let U = Vo @ Vp @ - - - be the direct sum of infinitely many copies of
the regular representation V; of G, and consider the limiting G-space

(5.1) 2o ® lim ZMPV 0 V)).
vcu

Theorem 5.1. ([55], [56]). The cycle space Zg is a G-equivariant Ey-ring
space (in the sense of [59]) and gives rise to an Ey-ring G-spectrum. In
particular it determines an equivariant cohomology theory Hf,(e) which is ring-
valued (and indezed by R(G)). This theory admits a natural transformation to
a canonically associated theory of Borel type

(52) H&(‘) — H&(.)Borel

where

7'toc,'(.)Borel — H Héi(.; Z)
120

and where Héi denotes the usual Borel equivariant cohomology.

The component Z¢ (1), which is closed under the join #, determines a related
equivariant cohomology theory Mg, (e) which is only group-valued. It admits a
natural transformation to its canonically associated “Borel counterpart”

(53) M&(') d M&(.)Borel

where
M (®)Boret = 1+ [ HE (2;2)

i>1
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is the group of units in H2 () Borel-

Remark 5.2. Given a G-spectrum S, we define the associated Borel G-
spectrum to be Spores = F(EG4,S), where F(X,Y) denotes the space of
pointed G-maps from X to Y. This gives the “associated Borel theories” re-
ferred to in 5.1.

We may now restrict our attention to the subspaces
(5.4) GMP(VeV)CZMP(VeV)),  wheren=dim(V),

of linear cycles, (i.e., the Grassmannians, which are contained in the degree-one
component), together with the pairing given by the join which is simply the
direct sum of subspaces. This is also a G-equivariant Z,-functor. Hence the
limiting space

(5.5) BUg = lim G"(P(V &V))
vcu

is the 0t" space of a canonically determined G-spectrum. This spectrum classi-
fies reduced equivariant K-theory K¢ (e).

The following theorem establishes, among other things, a solution of the
equivariant Segal Problem (cf. (4.2)) for Borel cohomology.

Theorem 5.3. ([55], [56]). The inclusion (5.4) determines a natural transfor-
mation of equivariant cohomology theories

K (o) = Mg (o).

Composing with (5.3) gives a natural transformation to the associated Borel
theory, which on the 0t*-level is the usual total Chern class map

Ko(X) 1+ [[ HE (X;2)

i>1
into Borel cohomology.

This analogue of the results in §4 should have applications, for example, to
the computation of Chern classes of induced representations.

The ring functor H,(e) is a new equivariant cohomology theory which arises
quite naturally and may have some interesting uses. The coefficients of the
theory have been computed in basic cases using techniques of degeneration via
C?-actions. (cf. [55], [56]).

For example if G is abelian, then HZ( pt) = H* (G)s where H*(G) is a ring
functor on finite abelian groups such that

(i) H°(G)=Z and H'(G) =G

(i) H*(G1 & G2) = H*(G1) @ H* (G2).

(iii) If G is cyclic, then H* (G) = H?*(G;Z).
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and where S is the multiplicative system generated by the total Chern classes
of the irreducible representations of G.

Note. The discussion above provokes the interesting question of what func-
tor is defined by taking the equivariant homotopy groups of Zo(X) for a G-
space X. Is there an equivariant Dold-Thom Theorem? The very nice answer,
due to P.Lima-Filho, is that for G-spaces one gets Bredon cohomology with
Z-coefficients, and for G-spectra one gets the ROg-graded homology with coef-
ficients in the Burnside ring Mackey functor [92].

Chapter IV - The Functor L,H,

The groups 7. 2. (X) constitute a set of interesting invariants attached to any
projective variety X. Some work has been done recently in trying to system-
atically understand these invariants. At least part of this is presented below.

Before embarking let me offer some general motivation. As we have seen, for
any projective variety X, the p-dimensional subvarieties generate an interesting
topological group Z,(X). This group is functorially related to X. Its geometry
is a limit of the Chow sets of X. Specifically, we know from 1.8.2 that

ﬂkzp(X) = _lin) wka,a(X) and szp(—X_) = ll_rr; chp,a(X)

for all £ > 0. In fact all “stable” topological invariants of the Chow sets of X
are carried in this fashion by Z,(X).

Now the homotopy type of Z,(X) is completely determined by the groups
7k Zp(X). Such a statement is false for general spaces. However for an abelian
topological group Z, the invariants m.Z are special. For example 7. Z appears
as primitive elements in the Hopf algebra H,(Z;Z). It can also be computed as
the homology of the simplicial group Sing.(Z). So the groups m,.Z are simpler
than other invariants, like H,.(Z), but nevertheless they determine Z up to
homotopy equivalence. This makes 7, Z,(X) natural to consider in studying
Z5(X).

It is useful to think of Z,(X) as a generalized torus associated to X, much
like the intermediate Jacobians. In fact there is a homotopy equivalence

2,2 A, x (S1)™ x (BSY)"™ x (B2S')* x --- x Tor,

where A, is the group of p-cycles on X modulo algebraic equivalence, by =
rank (mxZp), and Tor, is a connected space with 7T or, finite for all k. The
various tori which are delooped in this picture can in fact be directly related to
intermediate jacobians and their generalizations.

From another perspective m, Z, is the direct analogue of 7.3, where 3,(X)
denotes the rectifiable cycles on X, (cf. I1.5). Now by Almgren’s theorem II.5.1
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there is an equivalence:
T234(0) = Hupu (03 2).

This indicates that the functor 7.2, might behave like a homology theory on
the category of projective varieties. In fact the map 7,2, — 7,32, constitutes a
natural transformation to standard integral homology. Thinking of . Z, in this
way gives a systematic approach to the study of these invariants. Note however
that 7,2, is far from being a simple topological theory. For example, 792,
is the group of algebraic p-cycles modulo algebraic equivalence. This already
shows these groups to be non-trivially related to the algebraic structure of X.
We shall see below that the theory in fact emcompasses many new algebraic
invariants.

§1. Definitions and basic properties. With the motivation above E. Fried-
lander introduced in [22] the groups

(1.1) LyHi(X) = 12y Zp(X)

for k > 2p > 0. Here k denotes the homology dimension, and p the algebraic
level (the number of algebraic parameters). From the Algebraic Suspension
Theorem I1.3.1 we have canonical isomorphisms

(1.2) LpHi(X) = Lpt1 He42(EX)

for all k > 2p > 0.

From 1.7.1 we see that L. H, is a functor on the category of projective vari-
eties, i.e., if f: X —» Y is a morphism, then there are induced homomorphisms

(1.3) fu 1 LyHp(X) = LpHi(Y)
forallk >2p>0,and if g: Y — Z is another morphism, then

(1-4) (gof)*=g*°ft'

From 1.7.2 we have Gysin maps. If f : X = Y is a flat morphism, then there
are induced homomorphisms

(1.6) f* i LyHe(Y) = Lpyr Hgqr (X)
where r =dim X —dimY. If g: Y — Z is also flat, then

(1.7) (gof)*=f"og".

Note. For those who are simplicially minded we note that the definition in
(1.1) could be replaced by Hi_2,Z,(X) where Z,(X) = NSing. (Z2,(X)) is the
normalized chain complex of the simplicial group Sing. (Z,(X)).
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§2. The natural transformation to H,(e;Z). The continuous homomor-
phism
(2.1) Z(X) 9 39.(X)
defined in IL.5 induces a map on homotopy groups which is independent of the

choice of smooth triangulation. Applying Almgren’s theorem II.5.1 gives the
following.

Theorem 2.1. There is a natural transformation of functors
(2.2) ®: L,Hy(X) - Hi(X;Z)

forall 0 < 2p <k.

Note that it is integral (not rational or real) homology that appears here.

§83. Coefficients in Z,, In the preceeding two sections, one could replace
3.(X) with the quotient group 3,(X)/m3.(X) for a fixed integer m > 0. This
yields a functor

(3.1) LpyHp(X;Zm) = mp—2p {Zp(X)/mZ,(X)}

with a natural transformation

(3.2) ®: LyHp(X;Zm) = Hi(X; Z).

Most results discussed below will carry through in this case.

§4. Relative groups. Let Y C X be an algebraic subset of a projective variety

X. For each p, Z,(Y) is a closed subgroup of Z,(X) and we can consider the
quotient group Z,(X)/2Z,(Y) with the quotient topology. We set

(4.1) LyHp(X,Y) &m0y 2,(X)/ Z,(Y)
for k > 2p > 0. Then we have the following.
Theorem 4.1 ([47], [50], [51]). There is a long ezact sequence
oo = LyH(Y) = LpHp(X) = LyHp(X,Y) = LpyHp_1(Y) = -+
which is functorial for morphisms of pairs. This sequence terminates with
cov = LyHopi1(X,Y) = Ap(Y) = Ap(X) = Ap(X)/A(Y) = 0

where A, denotes the group of p-cycles modulo algebraic equivalence.
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§5. Localization. Fundamental results in the theory are the localization
theorems of P. Lima-Filho.

Theorem 5.1 (Lima-Filho [50], [51]). Let X, X' be projective varieties with
algebraic subsets Y C X and Y' C X', and suppose

fiX-YSX-Y

is an isomorphism of quasi-projective varieties. Then there is a naturally in-
duced isomorphism of groups

fot Zo(X) [ 25(Y) = Z5(X")/ Zp(Y")

which is a homeomorphism. In particular there is a naturally induced isomor-
phism
fo: L.H.(X,Y) = L.H.(X',Y")

This theorem enables us to extend the theory to quasi-projective varieties.

Definition 5.2. Let U C PV be a quasi-projective variety with closure U.
Then we define the topological group of p-cycles on U to be the quotient

Z,(U) ¥ 2,(0)/2,(T - U),

and we set def
LyH(U) = 77k—2pzp(U)

forallk >2p>0.

By 5.1, Z,(U) and L,H(U) are independent of the projective embedding of
U. They are, in fact, functors on the category of quasi-projective varieties and
proper morphisms. Furthermore, the following holds.

Theorem 5.3. (Lima-Filho [50], [51]). Let V C U be a Zariski open subset of
a quasi-projective variety U. Then there is a long exact “localization” sequence:

«o = LyHy(U -V) = LyHy(U) =& LyHg(V) = LyHg1(U-V) - ---

From this one can inductively build a Zariski open covering and do compu-
tations.

The proof of Theorem 5.1 uses strongly that one can work with the naive
group completion. The idea is as follows. Suppose p: X —Y — X' —Y' is an
isomorphism. By replacing X with the closure of the graph of ¢ in X x X' we
can assume ¢ extends to a morphism on X. One then has a well-defined map
0u 1 Zp(X) ) 2,(Y) = Zp(X")/Z,(Y"), which a direct technical argument shows
to be a homeomorphism.
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The proof of Theorem 5.3 amounts to proving that a short exact sequence of
groups is a principal fibration.

Theorem 5.3 is quite useful. One can inductively build a space from a suitable
open covering and apply the localization sequence step by step. In this way for
example one can “untwist” the Suspension Theorem to get the following pretty
result.

Theorem 5.4. (Friedlander-Gabber [28]). Let U be a quasi-projective variety.
Then algebraic suspension induces isomorphisms

(5.1) LyHy(U) = Lpp1Hit2(U x ©)

for all p > 2p > 0. More generally if 7 : E — U is an algebraic vector bundle
of rank r over U, then the flat pull-back of cycles induces isomorphisms

(5.2) 7* : LyHi(U) =5 LpyrHiror(E)
for all k > 2p > 0.

There is a related “projective bundle theorem” which we will discuss soon.

§6. Computations. With the results discussed thus far one can compute the
groups L, H,(X) in a number of interesting cases. We begin with the following.

A projective variety X is said to admit a cell-decomposition if there exists
a nested family
XoCXiC---CXny=X

of algebraic subsets with the property that X; — Xy_; is isomorphic to C**
for all k£ (where 0 = ngp < n; < ng < --- ). Spaces of this type include :
Grassmannians and in fact all generalized flag manifolds, hermitian symmetric
spaces, and varieties on which a reductive group acts with isolated fixed points.

Theorem 6.1. (Lima-Filho [50], [53]). Let X be a projective variety which
admits a cell decomposition. Then the inclusion

Z.(X) = 32.(X)
is a homotopy equivalence and the natural transformation
®: LHi(X) = He(X;Z)
is an isomorphism for allp > 2p > 0.
This represents a vast generalization of the fact that on such spaces ev-

ery homology class is represented by an algebraic cycle unique up to algebraic
equivalence. (This fact corresponds to the isomorphism o Z,(X) = 7 32.(X)).-
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Of course such a result does not hold for general projective manifolds. It is
precisely for this reason that the groups L. H, are interesting. A good example
where it fails is a product of elliptic curves, or more generally any abelian
variety. This follows directly from Hodge theory, since the homology class of
an algebraic cycle is always of type (p,p). Other examples can be constructed
from the following result (cf. (1.4.2)).

Theorem 6.2 (Friedlander [22], [28]). Let X be a non-singular projective
variety of dimension n. Then there are isomorphisms

Ln—1H2n(X) = Z,
Lp_1Hap 1(X) = Hapn1(X;2),
Ln_lHQn_g(X) = Hn—l,n—l(X; Z) = NS(X)

and L,_1Hi(X) =0 for k > 2n.
This computes the groups completely for smooth algebraic surfaces.

In [28] Friedlander and Gabber extend the Algebraic Suspension Theorem
to a refined intersection theorem with divisors (cf. §8). This enabled them to
prove the following “projective bundle theorem”.

Theorem 6.3 (Friedlander-Gabber [28]). Let E be an algebraic vector bundle
of rank r over a quasi- projective variety U. Then for each p > r — 1 there is a

homotopy equivalence
r—1

Z,(P(E))) = [] Zp-«(U)

k=0

_ where P(E) denotes the projectivization of the bundle E.
A direct consequence of localization and Theorem 6.2 is the following :

Theorem 6.4. Let X be a smooth projective 3-fold. Then each of the groups
L1Hy(X) for k > 6 is a birational invariant of X.

It is not unreasonable to conjecture that L,H(X) = 0 for all p > 2dim¢(X).
This would be interesting if true. If false, then in the first dimension for which
it fails one finds non-trivial birational invariants.

§7. A local-to-global spectral sequence. By using the Localization
Theorem of Lima-Filho (Theorem 5.3), Friedlander and Gabber are able to
construct an analogue of Quillen’s local-to-global spectral sequence in algebraic
K-Theory [69]. Fix a quasi-projective variety X and, as before, let X (p) denote
the set of p-dimensional subvarieties of X. For each z € X (p), set

L He(z) € limy e, L Hy(U)
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where the limit is taken over all Zariski open subsets U of z. From the localiza-
tion exact sequence one constructs an exact couple which yields the following.

Propostion 7.1 ([28]). Let X be a quasi-projective variety and r > 0 an
integer. Then there is a spectral sequence of homological type of the form :

EIIMI= @ LTHP+Q('T) = Ler+q(X)-
z€X(p)

Following ideas of Quillen [69] and Bloch-Ogus [8], one can compute the
E2-term of this spectral sequence. Let £,H; denote the Zariski sheaf on X
associated to the presheaf

U L.H k(U )

Theorem 7.2 ([28]). Let X be a quasi-projective variety of dimension n, and
fix 0 < 2r < k. Then there is an ezact sequence of sheaves on X :

0 LHe = Dyex(m e (LrHi(a)) -
@zGX(n—l) iz (LTHk—l(x)) -

@zEX(n—k+2r) il‘ (LTH?T(‘T)) -0

where i, (fr\H/J(z‘)) denotes the constant sheaf L/;\I:I:(x) on z extended by zero

to all of X, and the spectral sequence of 7.1 has the form
E?MI = Hn—p (X’ £7‘7'Ln,-+—ll) = LTHp+q(X)-

§8. Intersection Theory. In [28] E. Friedlander and O. Gabber succeed in
extending the Algebraic Suspension Theorem to a beautiful intersection pair-
ing defined at the level of the groups Z,.. (Recall that intersection theory is
conventionally defined in the quotient A, = Z./ ~ of cycles modulo rational
equivalence (cf. [34])). This pairing enables us to define a graded commutative
ring structure on L. H,(X) for X smooth.

To begin suppose Ep - X is a line bundle associated to a divisor D on X.
Let ¢ : X — Ep be the inclusion as the zero-section. Then composing with the
homotopy inverse in (5.2) gives a map

(8.1) Z,(X) 2 2, (Ep) = Z,-1(X).

This represents “intersection with D”. In fact if one lets C,(X, D) denote the
effective p-cycles which meet D in dimension < p — 1, then the restriction of
(8.1) to the naive group completion of C,(X, D) is homotopic to the intersection
product

(8.2) c—c-D
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which is continuously defined as in [34].

It would be a sharper and more useful result to know that the image of the
composition (8.1) consisted of cycles in the support |D| of D. In [28] this and
much more are accomplished.

We recall that an effective Cartier divisor on X is one which is defined
by the vanishing of a regular section of a line bundle on X.

Theorem 8.1 (Friedlander-Gabber [28]). Let D be an effective Cartier divisor
on a quasi-projective variety X. Then for each p > 1 there is a canonical
homotopy class of maps

z'!D  Zp(X) — Zp-1(|D))

which on the subgroup generated by Cp(X, D) is induced by the intersection map
(8.2). The composition

a() ¥ (ip), oilp : Zy(X) — Zp-1(ID]) — Zp-1(X)

( where ip : |D| — X denotes the inclusion) depends only on the isomorphism
class of the line bundle L = O(D).

If D, D' are two such divisors then
ip +ip =ipip : Zp(X) — Z,_1(|D|U|D'|)

and
ipoip =ip oilp : Z,(X) — Z,-1(|D| N |D)).

Note 8.2. In [28] the authors work in the category of chain complexes lo-
calized with respect to quasi isomorphisms (maps of chain complexes inducing
isomorphisms in homology). This makes the statements slightly neater and
stronger.

Note 8.3. Let p: P(E) — U be the projectivization of a bundle of rank r, and
let Lg denote the standard line bundle on P(E). Then the equivalence in the
Projective Bundle Theorem 6.3 is given by

S e @e) op : [] ZoesU) = Z,(B(E)).
k=0 k=0

Note 8.4. The intersection pairing above leads to a general pairing Z,(X) A

Div(X)* — Z,_,(X) where, in the case that X is smooth, Div(X)t = Z;(X).
The induced pairing on homotopy groups yields the operators ¢; (L) above (cor-
responding to elements L € mo Div(X)* = NS(X)), and also yields the opera-
tor s of Theorem I1.6.1 (corresponding to the generator of m, Div(X)t = Z).
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Theorem 8.1 can be generalized from divisors to subvarieties of general codi-
mension.

Theorem 8.5. (Friedlander-Gabber [28]). Let X be a quasi-projective variety
and iy : V < X a regular (closed) embedding of codimension-q. Then for all
p > q there is a naturally defined homotopy class of mapping

iy Zp(X) = Zp_g(V).

This map has the property that on the subgroup generated by the effective cycles
which meet V in proper dimension, it is homotopic to the intersection-theoretic
mapping c — c- V. These maps behave as expected with respect to composition
and flat pull-back of cycles, namely

(iy oiy:)' = iy 0y

and
=1 * ~x _ !
i~0g*=¢g%*o01
v°9 g %

ifg:Y = X is flat and§:1~/ y xx V =V is the pull-back of g via iy .

If f : X = Y is a morphism of varieties where Y is smooth, then the inclusion
I'y < X xY of the graph of f into the product is a regular embedding. Theorem
8.5 thereby leads to the following basic result.

Theorem 8.6 (The Intersection Pairing, Friedlander-Gabber [28]). Let
f X = Y be a morphism of quasi-projective varieties where Y is smooth
and of dimension n. Then if p+p’' > n, f determines a natural pairing

Zp(X) AN Zp (Y) — Zpip—n(X).
In particular when X is smooth and of dimension n, one obtains a pairing
(8.3) Zp(X) A Z(X) — Zppyr-n(X)
which extends, up to homotopy, the usual intersection pairing on cycles which

meet in proper dimension. This pairing is homotopy commutative and associa-
tive.

Corollary 8.7. For any smooth quasi-projective variety X, the pairing
L.H.(X)® L.H.(X) — L.H.(X)
induced by (8.3) gives L, H,.(X) the structure of a bigraded commutative ring.

Restricted to @ L,Hzp(X) ( = cycles modulo algebraic equivalence), this is

P
the standard ring structure given by intersection product.
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§9. Operations and filtrations. Using the complex join and the Suspension
Theorem, E. Friedlander and B. Mazur [29] have introduced a ring of opera-
tors on L,H,.. These operators lead to filtrations [29], [30], [23] which are
compatible with, and conjecturally equal to certain standard filtrations.

Throughout this section X will denote a projective variety with a fixed em-
bedding X C PV. The Algebraic Suspension Theorem gives us canonical iso-
morphisms

LpH(X) = Lys1 Hi2(EX) = Lpsa Hipa(B2X) > -
Hence, we can exteﬁd our groups L,H(X) to negative indices by setting
def .. ;
9.1) LoHy(X) ' im Lyps Heroy (BX)

for all kK > 2p. We saw in Chapter I1.5 that L,H,(X) is a bigraded module over
the ring

(92) FM = L,H, (P°) 2 Z[h, s]
where
(9.3) he L_yH ,(P’) and s€ L_1Ho(P°

are the additive generators. These homomorphisms are functorial, i.e., they
are natural transformations of L. H, on the category of projective subvarieties
and polorization-preserving morphisms. They constitute therefore a ring of
“homology operations” which we call Friedlander-Mazur operations.

The first operator h is an operator of Lefschetz type. In fact under the
natural transformation @ of §2 we have a commutative diagram

LyHp(X) =% Ly_1Hi—a(X)
) )
Hy(X;Z) 2 Hypo(X;2)

where A is the Lefschetz map given by cap-product with the hyperplane class
¢1 (Ox (1)) (See [52], [29]). This operator h evidently depends on the projective
embedding since A does. We recall that if X is smooth of dimension n, then
A Hp(X;Q) = Hp—k(X;Q) is an isomorphism.

The second operator s is a special feature of this theory. It preserves homol-
ogy degree and lowers algebraic level. In fact we have commutative diagrams
(cf. [23])

LyHi(X) = L, 1Hi(X)
[ AN v @
Hi(X;Z)

for all p and k. Note in particular that
sP =& : LHy(X) — LoHp(X) = Hr(X; Z).
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Theorem 9.1. The operation 8 of Friedlander and Mazur is a natural trans-
formation of covariant functors. In particular it is independent of projective
embedding and is also compatible with flat pull-back of cycles and localization.

Work on the operation s developed as follows. It was introduced in [29]
where it was proved that s? : L,Hap(X) = Ap(X) = Hzp(X;Z) is the “cy-
cle map” which associates to an algebraic cycle (modulo algebraic equivalence)
its homology class. In [52] Lima-Filho generalized this to prove that the map
s? 1 LyHy(X) = Hy(X;Z), for any k > 2p, agrees with Almgren’s map ([1])
and, in particular, is independent of the projective embeddings of X. Fried-
lander and Gabber [28] then proved that every s: LyHy(X) — Lp—1Hp(X) is
independent of projective embedding. In [23], Friedlander established a num-
ber of interesting properties and interpretations of this operation, some of which
involve the intersection theory discussed above.

Now the powers of s give rise to very interesting filtrations. Consider the
case where k = 2p is even. We have the sequence of homomorphisms

LpHyp(X) 2 Lyp_1Hop(X) S -+ S LiHap(X) = LoHap(X)
9.4 I I
(9.4) A
Hyp(X;2)
where A, denotes the group of algebraic p-cycles modulo algebraic equivalence.

This gives us two filtrations

(95) Ap 2 gp,p 2 gp,p—l :_) e :_) gp,l

(96) -7:2p,p g -7:2p,p—1 g e g ‘7:217,1 g HZp(X;Z)
defined by setting.
9.7) Gpj=ker(s’) and Fy,;= Im(s’)

on Ap and in Hyp(X;Z) respectively. There are of course filtrations induced in
the intermediate groups L;jH,,(X) as well. However the filtrations above are
on classically defined groups and can be compared with well-known filtrations.

Note that Gp , is the Griffiths group of p-cycles homologically equivalent
to zero modulo those algebraically equivalent to zero. There is a filtration of
this group due to Bloch and Ogus defined by setting

GB9 = {c e Ay : cis homologous to zero in an algebraic subset
of dimension <p+1+j € X}.

There is an analogus geometric filtration on H,,(X;Z) defined by setting

feg,',j = span{a € Hyp(X;Z): ais the image F)f a class sypported
on an algebraic subset of dimension <2p—j € X}.

Over Q this is the dual of Grothendieck’s arithmetic filtration on H2P(X; Q).
The following basic results have been proved.
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Theorem 9.2 (Friedlander [23]). For any projective variety X, we have
G C Gng

for allp,j.

Theorem 9.3 (Friedlander-Mazur [29], [30]). For any projective variety X,
we have
Fapj C F: zifj

for all p,j. Furthermore, the analogous result holds on odd-degree cohomology
groups.

Theorems 9.2 and 9.3 are in fact proved in a much stronger form. It is shown
that the filtrations G, . and F,p « coincide with certain geometrically defined fil-
trations. More specifically, in [30] one associates to a morphism f : Y — Cp(X)
from any projective variety Y, an induced Chow correspondence homomorphism
®;: H,(Y; Z) — Hapy.(X; Z) which generalizes very classical constructions.
Let }-c C Hayp4j(X; Z) be the subgroup generated by the images of all such
maps. "Then in [30] it is proved that

Fapj = F5,

D"

This shows that Friedlander’s functor L,H,, which is close to ordinary homol-
ogy theory, has the property that its homologically and geometrically defined
filtrations coincide.

There is an analogous story for G. .. In [23] it is proved that the subgroup
Gp,; is generated by cycles of the form ®;(c), where f : Y — Cp_x(X) and ¢
is an algebraic p-cycle homologous to zero on the projective variety Y.

It is a classical result that the geometric filtration is subordinate to the
Hodge filtration (as strengthened by Grothendieck in [39]). In particular, if X
is smooth we can define

‘7:217,1 Pél @ Hr,s(X)

|r—s|<2(p—J)

where pc : Hap(X;Z) — Hap(X;C) is the coefficient homomorphism, and the

decomposition Hap(X;C) = @ H, ;(X) is dual to the standard Dolbeault
r+8=2p

decomposition of H??(X;C). Define fzp 7 C Fap H ; to be the pull-back by pc

of a maximal Hodge substructure. (See [49] for a nice discussion.) A special

consequence of the above is that

HG
Fap,j € Fap,j-

Question 9.4. Does one have equality in 9.2 and 9.3 when X is a smooth
projective variety?
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It turns out this is not so unreasonable to ask.

Theorem 9.5 (Friedlander [23]). If Grothendieck’s standard conjecture B holds
(cf. [38]) then for a smooth projective variety X,

Fopi ®Q=F5', ®Q
for all p and j.

More modestly one might ask for an example where the filtrations 7, ; and
Gp,; are at least non-trivial. For the case F, j, consider a product of elliptic
curves X = Tj x --- x T,. For each sequence (p;,- - ,pn) of zeros and ones with
> p;j = p we have a map

Zp, (T) A=+ A Zp, (Tn) — Zp(X)
inducing a map
Lp, Hy, (Tn) ® -+ + ® Lp, Hy, (Tn) — LpHi (X)

where 3~ k; = k. This map commutes with the natural transformation ® giving
a diagram
®?=1 ijij (Tj) — Lka (X)

1) 1
Qj=1 H, (Tj;Z) — Hi (X;Z)

from which one can deduce that in this case the filtrations F, . and FS: agree
and coincide with the trancendental Hodge filtration.

The non-triviality of the filtration §. . is related to recent work of M. Nori,
[67]. For smooth varieties X, Nori introduces a filtration G}, on A,(X) which
he proves to be non-trivial on certain projective hypersurfaces. It is shown in
(23] that GY; C Gy, in fact G); is generated in the same fashion as Gp,;, by
Chow correspondence homomorphisms associated to maps f : ¥ — Cp_;(X)
where Y is now assumed to be smooth.

For the motivically minded, one should mention that there is an intriguing
spectral sequence of homology type defined in [23], which incorporates both
filtrations F and G. Its abutment is the associated graded of H,(X; Z) with
respect to the F-filtration, and there are isomorphisms E_k;z;:% = A,/Gp k-

§10. Mixed Hodge Structures. It is a fundamental and useful fact that the
groups L, Hy(X)®Q carry mixed Hodge structures. This fact, due to Dick Hain,
was exploited for example in the work of Friedlander and Mazur mentioned in
the previous section. We recall that a Mixed Hodge Structure over Q is a
finite dimensional vector space W over Q provided with an increasing weight
filtration

e C Wi CW; C Wi C
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and a decreasing Hodge filtration of the space Wg = W ®¢ C
- FITL D FIDFITl ..

so that (W* ® C, F. ,F,) form a triple of opposing filtrations (cf.
[15], (1.2.7) and (1.2.13).). A morphism of mixed Hodge structures is a lin-
ear map of rational vector spaces which is filtration preserving. The mixed
Hodge structures form an abelian category MHS which is closed under tensor
products. One can expand this category to include infinite dimensional vector
spaces which are direct limits in MHS, with morphisms which are direct limits
of morphisms from MHS. This is again an abelian category called limits of
mixed Hodge structures and denoted LMHS (See [40], [41]).

Deligne showed that the functor X — H(X;Q) takes values in MHS.

Theorem 10.1 (Dick Hain ). The functors L,H(X)®Q take values in LMHS.

In other words each group L,Hi(X) ® Q is naturally equipped with a direct
limit of mixed Hodge structures, which is respected by the maps induced by
morphisms of varieties. The idea of the proof, which is given in [29], is that the
groups

H; (2,(X); Q) = lim H; (Cpa(X); Q)

are naturally limits of mixed Hodge structures, and the homotopy groups 7, Z,(X)®
Q can be identified with the primitive elements in the Hopf algebra H, (Z,(X); Q).
Since LMHS is an abelian category, the subspace of primitive elements, which
the kernel of the morphism

H.(2,(X); Q) = H. (2,(X); Q) ® H. (Z,(X); Q)
given by a = A,(a) —a®1-1Q® q, is also in LMHS.

Theorem 10.2 (Friedlander-Mazur [29]). The operators 8 and h on L. H.(X)®
Q, which are discussed in §9 above, respect the (limits of) mized Hodge struc-
tures. In particular, the natural transformation ® : LyH(X) @ Q - H(X;Q)
is a transformation of functors with values in LMHS.

§11. Chern classes for higher algebraic K-theory. Friedlander and Gab-
ber have defined Chern classes for the higher algebraic K-groups of a variety
which have values in L,H,. One of the key steps is to replace a projective
variety X by an “equivalent” affine variety, i.e., an affine variety with the same
K-theory and LH-theory. This affine variety, whose construction is due to
Jouanolou, is the total space of an affine C™-bundle 7 : Jx — X. If X Cc PV,
then Jx is merely the restriction of 7 : Jpv — PN defined as follows. Let

Jpn = {A € MNy1,N+1: A2 =A and rankA = 1}

where Mpyy1,n+1 is the space of (N + 1) x (N + 1) complex matrices. This
is defined in C¥+1)* by the vanishing of the 2 x 2 minors and the equation
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TrA =1 ; hence it is an affine variety. We set 7(4) = Im(A) € PV, and note
that the fibres are affine subspaces.

Now since Jx is an affine variety, it is of the form Spec R where R is the
ring of functions on Jx. Quillen shows that the map K,(X) — K.(Spec R) =
m«(BGL(R)*) is an isomorphism. The homotopy property (cf. Theorem 5.4)
which comes from the Suspension Theorem and Localization, give an isomor-
phism L,H,(X) — L.H.(Spec R) (with a shift in degrees). The Projective
Bundle Theorem (cf. 8.3) and ideas of Grothendieck, lead to the following.

Theorem 11.1 (Friedlander-Gabber [28]). Let X be a smooth, n-dimensional
quasi-projective variety. Then for all j > 0 and all ¢ with 0 <1 < n, there exist
naturally constructed Chern classes

Cij: Kj (X) — Ln—-iH2(n—i)+j (X)

§12. Relation to Bloch’s higher Chow groups. In [5] Spencer Bloch
introduced higher Chow groups for a quasi- projective variety as follows. For
each k > 0 consider the “algebraic simplex”

Alk] = {Z € CH+!1 ;zk:z,. =1}

=0

with combinatorial structure given as in the real case (i.e., “faces” are defined
by intersections with coordinate planes). For a quasi-projective variety X, let
29(X, k) denote the free abelian group generated by irreducible subvarieties of
codimension-q on X x A[k] which meet X x F in proper dimension for each face
F of A[k]. Using intersection and pull-back of cycles, one defines face and degen-
eracy relations in the standard way, making 29(X, x) a simplicial abelian group.
Let |29(X, *)| denote its geometric realization, and let (29(X, x),8) denote the
chain complex naturally associated to z7(X, x) using the additive structure of
each 29(X, ). Then by definition we have

CHY(X,k) = m, (|]29(X, %)|) = He (29(X, %),0) .

Theorem 12.1 (Friedlander-Gabber [28]). Let X be a quasi-projective variety
of dimension n. Then there exist natural homomorphisms

CH" P(X,k) — LpHopyr(X)

for all0 < p<n and all k.

This map is induced by a map z" P —» gp in the derived category of chain
complexes associated to simplicial abelian groups. When X is smooth and
projective they show that 2! (X, *) ® (Z/m) and Z,,_1(X) ® (Z/m) are quasi-
isomorphic for any integer m > 0.
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§13. The theory for varieties defined over fields of positive character-
istic. The discussion in this article has been intentionally restricted to complex
varieties. Nevertheless for many results stated above there are analogues which
hold for varieties defined over arbitrary algebraically closed fields.

This highly non-trivial achievement is due to Eric Friedlander. The reader
should see the announcement [21] and the main paper [22] for details. Very
roughly the main ideas are these. Suppose X is defined over a field of character-
istic p > 0 and £ is a prime # p. Then the Chow monoids C,(X) are well defined,
and one can construct group completions QBC,(X), via étale homotopy theory.
Taking 7, gives ¢-adic homology groups which we shall denote by L,H(X),.
When 2r = k, this is the group of algebraic equivalence classes of r-cycles ; and
when 7 = 0 it is isomorphic to the kt* étale £-adic homology group of X. If X
is defined over C, this group is just the tensor product of L,H(X) with the
{-adic integers.

It is proved in [22] that the Algebraic Suspension Theorem is valid for
L.H.(X),, and the Friedlander-Mazur operations are defined. The map
sP : LyHop(X)e = LoH2p(X)¢ = limy, Hap(Xet,Z /€M), for p > 0, is just the
cycle map. One has filtrations and mixed Hodge structures as in §§9-10 above.

One of the nice features of these groups is that they are Galois modules. Sup-
pose X is defined over a field F and is provided with an embedding X C P%. Let
K be the algebraic closure of F. Then Gal(K/F) acts naturally on L H,(Xk)e,
and the operations and cycle maps discused above are all Gal(K/F)-equivariant.
So also are the maps f, : L.H.(Xk)¢ = L.H.(Yk), induced by a morphism
f: X =Y of varieties over F.

§14. New directions. There have been some recent enhancements of the
above LH-constructions which are both algebraically and geometrically more
sophisticated but, of course, less manageable than the basic theory. The first
is due to Friedlander and Gabber [28] who construct functorial spaces where
mo gives algebraic cycles modulo rational equivalence instead of the coarser
algebraic equivalence. Their theory is therefore a “rational equivalence ana-
logue” of LH-theory. The basic idea is to consider the simplicial monoid
Fp(X) = Mor(Als], Co(X)) where A[k] is the algebraic simplex mentioned in
§12 above. In the case p = 0, this becomes the Suslin complex Fo(X) = Sus.(X)
of algebraic singular chains of the infinite symmetric product of X. It has re-
cently been shown by Suslin and Voevodsky [76] that for all n,

H,(Sus.(X); Z/n) = H.(X; Z/n),

giving an algebraic computation of the singular homology of the variety. Fur-
thermore the result extends to higher dimensional cycles to prove that

H.(Fp(X); Z/n) = LyH.(X; Z/n),

for all p > 0. (See [24], [76].) In [24] the groups H,(F,(X)) are computed for
p=dim(X) - 1.
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The rational theory of Friedlander-Gabber actually has a bivariant formula-
tion in analogy with the constructions of the next section (see [90]).

There has also recently been work of P. Gajer aimed at constructing inter-
section versions of L,H,.(X). He has found workable definitions and has suc-
ceeded in formulating and proving an intersection homology version of the
Dold-Thom Theorem [36]. P.Gajer and C.Flannery have also established the
LH-groups [87], [91].

Chapter V - The Functor L*H* (Morphic Cohomology)

Recently E. Friedlander and the author [31], [32] introduced the notion of
an effective algebraic cocycle on a variety X as a morphism ¢ : X — C, (P"),
i.e., a family of projective cycles parametrized by X. From these basic objects,
bigraded rings were defined on X yielding a functor with a natural transforma-
tion to H*(X;Z). Although very differently defined, this functor enjoys many
of the properties of L, H,, and for smooth projective varieties is “Poincaré dual”
to L.H,.. We present here the outlines of this theory.

§1. Effective algebraic cocycles. Recall that for any finite simplicial com-
plex X we have the theorem of Almgren [1] that

(1.1) m:3;(X) = Hiyj(X;Z)

for all 4,5 > 0, where 3;(X) is the group of integral j-cycles on X. Here the
doubly indexed family of groups 7;3;(X) collapse redundantly to the homology
of X. However, if X is a projective variety and we replace 3;(X) by algebraic cy-
cles Z;(X), then the groups 7; Z;(X) pull apart to become the distinct functors
examined in the last section.

There is a parallel story for cohomology. For any finite complex X, there are
natural isomorphisms

(1.2) m:Map (X, K(Z,)) = H' 7' (X; Z)

for all 0 < 7 < j, giving redundant representations of cohomology. (The case
i = 0 is discussed in Chapter I. (See (1.3.6)). Now the results in the section
above give us algebraic models for Eilenberg-MacLane spaces, namely

K(Z,2j)= 2’ (C*)

for any n > j. Thus, if X is an algebraic variety, one can replace “Map” in (1.2)
with “Mor”, and hope by analogy to find a doubly indexed family of groups with
a natural transformation to ordinary integral cohomology.

This leads us to the following basic definition. Throughout this section we
shall use the term variety to mean a quasi-projective variety. For reasons of
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exposition we shall assume our varieties X to be weakly normal. (The general
case follows easily since weak normalization is a functor; cf. [32]).

Definition 1.1. An effective algebraic s-cocycle on a variety X with
values in a projective subvariety Y is a morphism

p: X = CY).

Note that such a morphism represents a family of codimension -s cycles on Y
parametrized by X. These families occur naturally and abundantly in algebraic
geometry. They are in fact as abundant as cycles themselves.

The following are examples of classical synthetic constructions that naturally
yield cocycles.

Example 1.2. Let f : Y — X be a flat morphism. Then the flat pull-back
o(z) = f~1({=x}) of cycles gives a morphism

p: X = C(Y)

where s = dim(X). As special case considers “Noether normalization” f : Y —
P™ defined by a generic linear projection of Y C PV onto a linear subspace
of the same dimension. This gives an n-cocycle ¢ : P* — SP%(Y) where d =
degree (Y). Composing with f yields a cocycle f*p: Y — SP4(Y).

Example 1.3. Let X C PV be a smooth hypersurface and suppose Y C P¥ is
a subvariety which does not lie in any hyperplane. Then we define

p: X = CYY)
by the intersection-theoretic product
plz) =T XY

of Y with the tangent hyperplanes to X. Interesting cases arise by choosing
Y=X.

Example 1.4. Let X,Y,Z C PV be subvarieties such that for all z € X, the
cone L;Z on Z with vertex z meets Y in proper dimension. Then we can define

o(z) = (L=2) - Y.
Example 1.5. Let X C PV be any subvariety of dimension n and define an
“Alexander dual” cocycle
px : PN — X — eVt (PV)

by setting
px(u) = LuX.
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Example 1.6. Let A = CV /A be an abelian variety with ©-divisor D. Given
Y C A, define
p:A— CYY)
by p(a) = (a+ D) Y.
Many similar constructions are clearly possible.

An interesting consequence of the theory we are about to describe is that to
every algebraic cocycle there is naturally associated an integral cohomology class
just as to every algebraic cycle we can associate an integral homology class.

§2. Morphic cohomology. Let X and Y be as in 1.1, and denote by
C*(X;Y)

the set of effective algebraic s-cocycles on X with values in Y. We provide this
mapping space with the topology of uniform convergence on compact of families
of bounded degree (i.e., families mapping into compact subsets of C*(Y)). This
makes C*(X;Y) an abelian topological monoid.

Any cocycle p € C*(X;Y’) can be “graphed” to give a cycleT'y, € C*(X xY).
We let GC*(X x Y) denote the submonoid of cycles in C*(X x Y) which are
equidimensional over X, i.e., cycles c such that supp(c) N ({z} X Y) is of pure
codimension s for all x € X. Then we have the following.

Theorem 2.1. ([32]). If X is locally irreducible (e.g., smooth), then the graph-
mng map
r:C*X;Y) > GC*(X xY)

s a homeomorphism.
Recall that the homotopy-theoretic group completion of an abelian topolog-
ical monoid M is defined to be M* = QBM. (See 1.8 above and [62].)

Definition 2.2. For X and Y as above, let Z°(X;Y) = C°(X,Y)* and define
the morphic cohomology groups of X with values in Y by

L*HY(X;Y) = sk C*(X;Y)
for all k < 2s.

Theorem 2.3. (The Algebraic Suspension Theorem for Cocycles [32]) The
algebraic suspension map

z2(x;v) 55 2o (x;2v)

is a homotopy equivalence.

Note that when X = P°, morphic cohomology reduces to L,H,.(Y), and The-
orem 2.3 is just the Suspension Theorem of Chapter II. The argument outlined
there essentially carries over to the more general case above.
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Here we are interested principally in the case where X is non-trivial and
Y =¥"P° = P~

Definition 2.4. For n > s let Z%(X;C"*) be the (homotopy) quotient
25(X;C) = 2°(X;P™) /2571 (X; PmY)
(cf. [32]) and define the morphic cohomology groups of X by
L H¥(X) = s Z2°(X; C")
for k < 2s.
Theorem 2.3 gives canonical homotopy equivalences :
Z°(X;C) = 2° (X;CHY)

for all n > s, and so the definition of L*H*(X) is independent of n. Note
that Z°(X;C") can be roughly thought of as families of affine varieties of
codimensions parametrized by X.

We note that, as with cycles, it is possible to replace the homotopy-theoretic
group completion above with the naive topological group coinpletion. Details

of this equivalence appear in [33] and [88].

In the remaining sections we sketch the principal features of morphic coho-
mology theory established in [32].

§3. Functoriality. Morphic cohomology is a functor on the category of quasi-
projective varieties and morphisms. In particular to each morphisms f : X —
X', there is an associated graded group homomorphism

(3.1) F*: L*H*(X') — L*H*(X)

of bidegree (0,0), given by the obvious pull-back of cocycles. If g : X' —» X" is
a morphism on X', then

(gof)*=f"og"

Furthermore if f : X — X' is a flat proper map of fibre dimension d, then
there are induced Gysin “wrong way” maps

(3.2) fi: L*H*(X) — L*H*(X")
of bidegree (d,2d). These satisfy the composition law:
(gofl=giofi

§4. Ring structure. There is a natural biadditive pairing

ZHX;CY) A 2T (X)) — 25 (X O
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induced by the pointwise join
(p#¢')(2) = p(x)#¢' (z)
of effective cocycles. Taking homotopy groups gives a pairing
LS H* (X)® LS HY (X) — L5t fet+k (X)

which makes the morphic cohomology L*H*(X) of X a bigraded commutative
ring. With respect to this the naturally induced maps (3.1) are ring homomor-
phisms.

§5. The natural transformation to H*(e;Z). Passing from morphisms to
general continuous maps gives a natural transformation

®: L°H*(X) - H¥(X;Z)

of functors of all £ < 2s which carries the join-induced product to the cup prod-
uct. That is, for each variety X, ® : L*H*(X) — H*(X;Z) is a homomorphism
of rings.

For any polarized projective variety Y there is also a natural transformation
of functors in X:

k
(5.2) &: L°HYX;Y) — @ H (X; Hymx-nY)
i=0

where m = dim¢ Y and H;(Y) = H;(Y;Z).

§6. Operations and filtrations. The algebraic join of cocycles induces an
exterior product

(6.1) L*H*(X;Y)® L*H*(X";Y') — L*H*(X x X', Y#Y)

in morphic cohomology. The Algebraic Suspension Theorem 2.3 gives us canon-
ical isomorphisms L*H*(X;Y#P") = L*H*(X;Y). Thus when X' = P° and
Y' = P, the product (6.1) induces an action of the algebra

FM =L*H* (P°P°) 2 Z[h, s
of Friedlander-Mazur operations (cf. 1.6 and IV.9), where
he L'H? (P%P°) and seL'H®(P%P°)

are the additive generators in these bidegrees. These operations are functorial.
For any variety X and polarized variety Y there is a commutative diagram

L*H*(X;Y) —2— L*H*(X;Y)

o Js

H*(X; H.(Y)) —— H*(X;H.(Y))
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where )\ denotes cap product with the hyperplane class of Y on the coefficients
H,(Y). There is also a commutative diagram

L*H*(X;Y) — L*H*(X;Y)
3\, /
H*(X; H.(Y))

If we pass to the morphic cohomology groups L*H*(X), the operation h
becomes zero. However, we retain the interesting operation

L*H*(X;Y) = L*H*(X;Y)
which with respect to the natural transformation ® gives commutatives triangles

L*HMX) -5  LsHHKX)
(6.2) 3N\, /@
H*(X;Z)

for all 0 < k < 2s. Thus for any variety X, the morphic cohomology is naturally
a module over F Mg = Z[s]. It is shown that the product in L*H*(X) is F M-
bilinear, i.e., it has the property that s(a-b) = (sa)-b = a - (sb) for all
a,b € L*H*(X). Thus we have

Theorem 6.1 ([32]). For any variety X the morphic cohomology L*H*(X) is
a graded commutative FMoy-algebra natural with respect to morphisms
f:X'-X.

Observe now that the operator s gives a sequence of homomorphisms
(6.3) S LPHNX) S L HEX) S -
which commute with the natural transformation ® to H*(X;Z). Thus if we set
Fo ¥ (L HY (X))
we obtain from (6.3) a filtration
(6.4) Foo c Footl c Fot2 c ... c HYX;Z)
of the integral cohomology of X, where so = [(k + 1)/2]. Set
Fo=F9QcC HYX;Q.

Theorem 6.2 ([32]). The filtration F§ is subordinate to the refined Hodge
filtration.

The refined Hodge filtration is defined at level s to be the maximal rational
subspace of

Hk—S,S(X) @ Hk—s+1,s—1(X) DB Hs,k—s(X)
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which is a sub-Hodge-structure.

Both exterior product and cup product in H*(X;Z) respect the filtration
Fe.

§7. Computations at level 1. Recall that for a projective variety X, there is
a classically defined Picard group Pic(X) which consists of isomorphism classes
of line bundles on X under tensor product. There is a short exact sequence

O — Pic®(X) = Pic(X) - NS(X) = 0

where Pic®(X) is the identity component and NS(X) is the Neron-Severi
group of algebraic equivalence classes of line bundles on X.

Theorem 7.1 ([32]). For any projective variety X there is a natural homotopy
equivalence
ZY(X) = Pic(X) x P,

If X is smooth, then:
1) L'HY(X)=7Z,
2) ®: L'HY(X) S HY(X;Z) is an isomorphism,
3) L'H*(X) = NS(X),
4) with respect to 3), the natural transformation

&:L'HY(X) < HX(X;Z)

is the first Chern class, and
5) L'H*(X) =0 for k > 2.

As a consequence of 3) above we have the naturally defined Lefschetz op-
erators L:L*H*(X) — L**!H**+2(X) given by multiplication by the class of
a fixed, very ample line bundle in L! H?(X). By 4) above, this map transforms
under @ to the standard Lefschetz opertor, given by multiplication by ¢;(L).

Theorem 7.1 together with the inner and other products, gives the existence
of many non-trivial groups L* H*(X). For example, L* H* (P") — H* (P™;Z) is
surjective. This is true also for abelian varieties. Moreover, the 7* and Hodge
filtrations agree for products of elliptic curves.

§8. Chern classes. Let X be a variety and denote by Vect? (X) the equiv-
alence classes of rank-q algebraic vector bundles which are generated by their
global cross-sections. This space can be identified with my of the space

lim Mor (X, G (P"))

when G7 (P™) is the Grassmannian of codimension -¢ planes in P”. Using results
discussed in III.1, one can define Chern classes for such bundles in morphic
cohomology.
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Theorem 8.1 ([32]). For any q > 0 there is a natural transformation of
functors

q
Vect] (X) - PLH*(X)
s=0

with the property that
® q
Vectl (X) =5 P H*(X;2)
=0
is the standard total Chern class.

§9. An existence theorem. Using 8.1 and results of Grothendieck one can
prove the following.

Theorem 9.1 ([32]). Let X be a smooth projective variety. Then every class
in H**(X;Q) which is Poincaré dual to the homology class of a (rational) alge-
braic cycle is represented by a rational linear combination of effective algebraic
cocycles.

In other words at the level of rational cohomology there are at least as many
algebraic cocycles as there are algebraic cycles.

In the next section we shall discuss an even stronger theorem, namely Poincaré
duality at the level of L*H*.

§10. A Kronecker pairing with L.,H,.. It is shown in [32] that for any
projective variety X there is a pairing

L°*H*(X)® L,Hi(X) 5 Z

whenever
2p < k < 2s,

which when p = 0 carries over, under the natural transformation ®, to the
standard Kronecker pairing H*(X;Z)® Hy(X;Z) — Z. In the next section we
examine an even more striking pairing betwen these theories.

Chapter VI - Duality

It is an striking fact the two theories L, H, and L* H* whose definitions are so
completely different (one in terms of cycles and other in terms of morphsims)
actually admit a Poincaré duality map which carries over under the natural
transformations @ to the standard Poincaré duality map. For smooth varieties
this map is an isomorphism!
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§1. Definition. The duality map is generated in an deceptively simple fashion.
Suppose X and Y are projective varieties. Then for each s, 0 < s < dim¢(Y),
there is a natural inclusion

(1.1) C*(X;Y) = C*(X x Y)

as the submonoid of codimension-s cycles on X x Y which are equidimensional
over X. (See V.2.1). This engenders a map

(1.2) Z3(X;Y) — 23X x Y)

of group completions.

Suppose now that Y = CV, i.e., consider the two cases Y = PN and Y =
PN-1 and pass to a quotient. Then (1.2) yields a map
(1.3) 25 (X;CN) — 20 (X xCV) = Z,_4(X)

where n = dim¢(X), and the homotopy equivalence on the right comes from
the Algebraic Suspension Theorem : Z,(X) = Z,4+1(X x C). (See IL.1 and IV.
5). Taking mas—k in (1.3) gives a Duality homomorphism

L*H*(X) 25 Ly—sHaon—r(X)
which is defined in [33], where the following is proved.

Theorem 1.1 ([33]). For any projective variety X of dimension n, the natural
transformations to singular theory give a commutative diagram

LHN(X) —2 Lo oHon_r(X)

@l l‘b
H*(X;Z) LN Hon-k(X;2)

where D is the standard Poincaré duality map (given by cap product with the
fundamental class of X.)

§2. The duality isomorphism : L*H* = L,_,H,_.. The considerations
above lead to the following conjecture.

Conjecture 2.1 (Friedlander-Lawson). For X and Y smooth and projective,
the map (1.2) is a homotopy equivalence.

E. Friedlander and the author verified this in several cases, including the
case s = 1. Ofer Gabber then suggested that a general proof could be obtained
from a good version of the Chow Moving Lemma for Families. Such a Moving
Lemma has now been proved by Friedlander and the author [89]. The result has
some independent interest. It holds over arbitrary infinite fields, and applies to
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classical questions concerning the Chow ring. More importantly here, it leads
to the following result.

Theorem 2.2 ([33]). Conjecture 2.1 is true. In particular, for any smooth
projective variety X of dimension n, the duality map

LH*(X) =5 Lyp_sHan_i(X)

is an isomorphism for all k < 2s.

An analogous duality result holds for quasi-projective varieties. Details of
this appear in [88].

This result has a number of non-obvious consequences. Note for example the
isomorphism

LSHZS(X) — Ln~sH2(n—s)(X) = An—s

which relates families of affine varieties over X to cycles modulo algebraic equiv-
alence inside X. Note also that this gives a complete computation of morphic
cohomology for a number of spaces, including all generalized flag manifolds

(projective spaces, Grassmannians, etc., c.f. IV.6.1.). In particular, for such
spaces we have isomorphisms

L*H*(X) = H*(X;Z)
for all k,s with 2s > k, and the transformations
2%(X;C") — Map(X, Z°(C"))

are homotopy equivalences for all n > s.

Another consequence of duality is that it gives rise to Gysin “wrong way”
maps of L*H* and L, H, for general morphisms between smooth varieties. Such
maps were constructed in [28]. Here however the maps have additional natu-
rality properties which have importance for applications of the theory.
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