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$0
Gy, = /M " (W(V,8))p + 6ec(Vg) Aiy(p).

Now consider the integral

Go = /Mw(m, £)p.

Here 0, ¢ denotes the derivative of the action of the volume-preserving vector fields
on S: the Lie derivative of ¢ along v. This is given by the formula

0v¢ = V¢ +1(Vv)(¢),

where r(Vv) is the vertical vector field defined by Vv € T'(TM ® T*M), as above.
By the definition of the moment map p we have

w(&r(Vv)()) = 6 ((Vv).pg).
Thus

(14) G — Gy =0 / (c(Vpg) Niy + (Vv).pg) p.
M
In index notation, the integrand on the right hand side of (14) is
i + ik}

which is the divergence (v"p{ );j- Thus the integral over M vanishes and so G; = G?,
which is precisely the desired moment map identity.

2.2. The Weil-Petersson metric. The fundamental example of the set-
up considered in the previous subsection arises when the base manifold M is
an oriented surface ¥ of genus genus (X) > 2 and X is the homogeneous space
H? = SL(2,R)/SO(2)—the hyperbolic plane. Points of X can be viewed as com-
plex structures on R? and a section of the bundle X — ¥ is a complex structure
on the surface. Thus we denote a section by J. The symplectic form on H? is
uniquely determined by the SL(2, R)-invariance up to an overall scale. We fix this
scale by decreeing that the moment map u : H?> — sl(2,R) is just one half the
natural inclusion, thinking of points of H? as trace-free endomorphisms of R?. A
little calculation shows if we take the model of H? as the upper half plane in C the
symplectic form we are using is

dzdy
2y

To identify the moment map p in this case we can, given a complex structure
J, choose the connection V to be the Levi-Civita connection of the metric defined
by J and p. Thus the covariant derivatives of J and ps vanish and the only term
remaining in the formula (8) is that involving the curvature, which in this case is
just R = KJ ® p, where K is the Gauss curvature. Since |J|? = 2 the moment
map is g = Kp. Thus we recover the fact that the Gauss curvature furnishes a
moment map for the action of the group of exact area preserving diffeomorphisms
of a surface on the complex structures. As far as the author knows, this was first
shown by Quillen, in about 1983, in answer to a question of Atiyah. (There is
a straightforward variant of the whole theory of (2.1) to the case where X is a
symplectic manifold with an action of the symplectic group Sp(2n,R), the base
manifold M is a symplectic manifold and we consider the action of the group of
exact symplectomorphisms of M on sections of the resulting bundle X — M. The
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fundamental example here is when X = Sp(2n,R)/U(n) so sections are compatible
almost-complex structures on M. Then the general theory produces the moment-
map calculation of [6] which—at least in the case of integrable structures—had
been observed previously by Fujiki in [9].)

Just as for the moduli spaces of flat connections considered in Section 1, one
simple application of this moment map calculation is the definition of a canonical
Kahler metric on the symplectic quotient M = E‘l(cp) /G. Here the appropriate
constant ¢ is fixed by Gauss-Bonnet to be

_ 27(2 — 2genus (X))
(15) €= Area (%, p)

A subtlety arises here because M is not quite the same as the usual moduli space
My of complex structures which is the quotient of u=!(cp) by the group G of all
area-preserving diffeomorphisms. There are two aspects to this. First, the quotient
of the identity component G5~ of Gt by G is the 2g-torus Az = H(Z,R)/H(Z, Z).
This means that the torus Ay acts on M and the quotient is the Teichmuller space
T. Second, the quotient of G* by its identity component GJ is the mapping class
group I'. This discrete group acts on 7 and My with quotient Mg. It is the first
aspect which is of a differential geometric nature. The difficulty is that there is no
way to extend the moment p to an equivariant moment map for the full action of

gg,* . Instead we can proceed as follows. Suppose in general that a torus T acts freely
on a symplectic manifold (Y,w) and that the T-orbits are symplectic submanifolds
of Y. In this special case the naive quotient Y/T has a natural induced symplectic
structure. To see this, we take the field of subspaces H C TY defined as the
anhilliator under w of the tangent spaces to the T-orbits. Since the orbits are
symplectic the subspaces H furnish complements to the orbit tangent spaces and
w is nondegenerate on H. Then identifying H with the pull-back of the tangent
bundle of Y/T we can push the form down to define a nondegenerate 2-form on the
quotient which one checks is closed. We can apply this to our situation, with the
action of Ay, on M. The As-orbits are actually complex submanifolds of M. In fact
we can identify M with the moduli space of pairs consisting of a marked Riemann
surface (¥, J) and a choice of holomorphic line bundle of fixed degree over ¥ and
this moduli space has a natural complex structure. The Ag-orbits just arise from
varying the line bundle and are obviously complex submanifolds. Using this device,
we get a symplectic (Kahler) form on 7 = M /As. But then the whole construction
is obviously invariant under the mapping class group so we finally obtain a Kahler
metric on M which is of course nothing but the standard Weil-Petersson metric.

3. The hyperkahler extension of the Weil-Petersson metric

We will now consider a new example, in which the aim is to produce an explicit
construction of the Feix-Kaledin hyperkahler thickening of the Weil-Petersson met-
ric. As we outline in 3.1 below, we expct that this will be a hyperkahler metric
on the “quasi-Fuchsian moduli space”. We should mention here that I. Platis has
constructed a complex symplectic structure on this space [13] and has investigated
the hyperkahler geometry [14]. It will be interesting to compare the formulae of
Platis with those derived from our moment map point of view. Our construction is
obviously closely modelled on Hitchin’s in the gauge theory case. Variants of the
same idea, which we do not explore here, give a uniform framework for discussing
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other moduli spaces of “pairs” consisting of a Riemann surface with an additional
tensor field.

3.1. The hyperkahler extnsion of the hyperbolic plane. We consider
again the case when the base manifold is a compact surface ¥ with a fixed area
form p. As we have seen, the SL(2,R)-space H?—the upper half plane— leads
essentially to the standard Weil-Petersson metric on the moduli space. Now let X
be the unit disc bundle in the cotangent bundle T*H: this has a natural SL(2;R)
action induced by that on H? which commutes with action of S* given by rotation
of the fibres.

Lemma 16.

There is an SL(2;R) x S'-invariant hyperkahler metric gx on X which on a
fibre of X — H 1is given by
dodo

1ol

N

Here, in the formula for the metric on the fibre, we understand that the fibre is
identified with standard disc in C. The hyperkahler structure comprises complex
structures Iy, Iz, I3 on X and SL(2; R) preserves each of I, I, I3 whereas the circle
action preserves I; but rotates I, I3. This metric is nothing other than the Feix-
Kaledin hyperkahler extension of the constant curvature metric on H? and the point
of Lemma, 16 is to find this extension explicitly. The metric gx is the analogue of
the well-known Calabi-Eguchi-Hanson metric on the cotangent bundle of the round
2-sphere. To find the metric from first principles one can proceed as follows. We
consider C? with the indefinite Hermitian metric |z|> — |w|? and make the standard
identification of H? with the unit disc, the complex projectivization of the positive
cone for this Hermitian form. In this model the symmetry group SL(2; R) appears
as the locally isomorphic group SU(1,1). Then the set

X ={(z,w) €C?:0< |2|> = |w|* < 1}
is a bundle over H? with fibre C* and it is in a natural way a double covering of
X minus the zero section. Thus we can calculate in the more convenient model
X. Here we seek a U(1,1)-invariant Calabi-Yau Kahler metric. Thus we take the
metric to be of the form i00F where F = F(r) is a function of r = |2|? — |w|%. A
short calculation shows that
O0F = (F' + |2|*)dzdz + (|lw|*F" — F")dwdw — F" (2wdzdw + zZwdwdz).

The condition we need to satisfy is the Monge-Ampere equation

(00F)? = dzdZdwdw.
This reduces to the ODE

rF'F" 4+ (F')? = -1.

Setting F' = G, we get a first order equation for G which we can integrate to give

G(r) = \/sz:

for a constant of of integration b. The desired soluton is obtained when b = 1 (other
values just give trivial rescaling). One can check that this induces the metric we
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fixed before on the zero-section of X. On the fibre of X — H given by w = 0 the
metric is just

2
S

V1-|z[*

To get the metric on the fibre of X we set 0 = 22, which yields

] =

dodo
V31— ol?
as asserted in the Lemma.

We now fit into the general framework of Section 2, forming the bundle X over
our surface with fibre X and the space of sections of X, which we will now denote
by S¢. We use the symbol S to denote the sections of the bundle with fibres H 2
considered in the previous section, so we can obviously regard S as a subset of S°.
Explicitly, a point ¢ in S¢ is given by a pair (J, o) where J is a complex structure on
¥ and ¢ is a smooth quadratic differential with respect to this structure, with |o| < 1
everywhere. (Here of course the norm |o| is computed using the metric defined by
J and the area form p.) There is a hyperkahler structure on S° induced from
that on X, preserved by the group G. Thus we are in the familiar general setting,
sketched in (1.2), where we can take a hyperkahler quotient. The three symplectic
forms w;,ws,w3 on X induce forms Q;,Q2,Q3 on S¢ and we have moment maps
By By B

Proposition 17.
The moment maps are given by

HI(J,o>=( T—ToPK + — (o[ — [3o?) + B0 1—|a|2>)p

44/1— |0 |2
(B, +ip,)(J,0) = 9(:00),

where K is the Gauss curvature and ¢ is the natural isomorphism from Q% (T*EX ®
T*Y) to QY0 defined by the metric.

To identify p. , we apply Theorem 9. A complex structure J is, by definition, a
section of TY ® T*X. We claim that the moment map u; : X — sl(2,R), for the
form w; on X, is given by

(18) u(J,0) = %\/1 TP

To see this, observe that symmetry conditions dictate that the moment map has
the form f(|o|)J for some function f. To find this function we need only consider
the action of the circle subgroup generated by J. That is, we essentially have to
find the Hamiltonian H for the rotations acting on the disc with the area form of
Lemma 16. In polar co-ordinates this area form is

1
————rdrdf,
2\/1—7'2r g

and contraction with % yields

r

— ' ___dr=—dH,
2v/1 —r2
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where H(r) = 1+/1—r2. Taking account of the fact that the circle generated
by J acts with weight 2 on the disc and that |J|? = 2, we deduce that f(|o|) =
1\/1—o? as required.
We can now identify the three terms in the formula (8). We use the Levi-Civita
connection V of the metric defined by J and p. The curvature R is thus KJ ® p,
where K is the Gauss curvature, and so (since |J|? = 2):

R.uj, =+/1—-|0|2Kp.

The term w(V¢, V) only has a contribution from Vo, since J is parallel. Writing
the derivative in holomorphic and anti-holomorphic parts and using the formula for
the metric on the fibres of X — H we get
1 —
—=——==(|00]* — |90]*).
4,/1 - |o|?
Finally, the term Vp is just 3J ® d(\/T——IO'F ) and the contraction ¢(Vy) is

3J(d(y/1 - |o[?), where J acts on the 1-forms on ¥ in the standard way. So the
exterior derivative is

de(Vp) = lde(,h “ToP) = i38+/T <o P.

With these identifications we obtain the given formula for By

We could find ,u2 and p, in the same manner, applying the general discussion
of (2.1). However it is much simpler to proceed as follows. Since X is contained in
the cotangent bundle of H?, the space S¢ can be viewed formally as an open set
in the cotangent bundle of S and the form 2y is nothing other than the standard
symplectic form on the cotangent bundle. Now suppose, in general, that a group
G acts on a manifold ) so we have a linear map r : g — I'(T'Q). The tranpose of r
gives a map

T LT Q N g*’

and it is a simple fact that this is the moment map for the induced action of G on the
cotangent bundle 7*@Q). Thus we can apply this procedure to find the moment map
By The Lie algebra of G is identified with the functions on ¥, modulo constants,
and the infinitesimal action on Sy is given by

H— g(UH)

where vy is the Hamiltonian vector field on ¥ defined by H and p and 8 denotes
the d-operator on the tangent bundle. One readily checks that the transpose of
this is given by

o — Re(8100),
whence the identification of us. The formula for W, then follows from the require-
ment of compatibility with the complex structure.

Our interpretation in Lemma 13 of the moment map formula shows that the
integrals of the W, over ¥ are independent of the point (J,0) in S. Clearly these
integrals vanish for ., and Ky and for p, we can find the integral by reducing to
the case when o = 0. Thus Gauss—Bonnet shows that

/ B, = 2m(2 — 2genus (X)).
p)

We have now reached the point where we can apply the general hyperkahler moment
map theory to see that we have a manifold M€, parametrising solutions (J, o) of
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the equations p, = cp,pi2 = p = 0 (where the constant c is again given by (15)),
modulo the action of the group G. The next issue we have to face is that M¢ is larger
than the space we really want. This is just the same point that we encountered in
(2.2), except now we have to take care because the three symplectic forms behave
in different ways. We would really like to take the quotient by the larger group G*
of all area-preserving diffeomorphism but, just as we have seen in (2.2), there is no
way to define an equivariant moment map for the action of this space, extending By
For p, and By however the picture is different. Indeed it follows from the discussion
in the proof of Proposition 17 that the map

(J,0) = 1(00),

defines a moment map for the action of G+ (where we identify Q%! with real 1-forms
and pair these with vector fields). Likewise the map (J,0) — T'(J0o) extends p,.
To handle this, we consider the map

m: M®— H'(Z;R)

defined by mapping a pair (J,0) to the cohomology class of Re.(do). General
principles show that this is the moment map for the action of the torus Ay, = G /G
on M¢ for the symplectic form Q5. Thus we get an induced symplectic form 23 on
the symplectic quotient

f=m™(0)/Ax.

Similarly the map (J,0) — Jm(J, o), using the complex structure on H!(Z;R)
defined by the metric J, is a moment map for the same action with respect to
the form 3, so we also get a symplectic form Qs induced on M. For the first
symplectic structure we need to proceed differently. Let V be the complex vector
bundle over the moduli space M, consisting of isomorphism classes of pairs (J, &),
where J is a complex structure and a is a class in the cohomology group H%!(%)
defined using this complex structure. Thus the total space V is naturally a complex
manifold. We have a map
m: M-V

defined by m(J, o) = (J,m(J, o)), where we use the complex structure J to identify
HY%! with H'(Z;R). One readily checks that this is a holomorphic map, with
respect to the first complex structure on M¢. This means that m~1(0) C M¢,
which is the pre-image of the zero section of V, is a complex submanifold of M¢
with respect to the first complex structure. In particular the form Q; restricts to
a nondegenerate form on m~1(0). Further, one checks much as in (2.2) that the
orbits of the action of J on m~!(0) are complex submanifolds, thus we can use the
same quotient construction as in (2.2) to obtain an induced symplectic form Q; on
M{. Again, everything is invariant under the mapping class group so we finally get
three algebraically-compatible symplectic forms on M§ = M$/T" and hence, by a
lemma of Hitchin [10], a hyperkahler structure.

Now the points of M§ have a more straightforward geometric interpretation.
If p, and g, and m all vanish on a pair (J,0) we have 8.(80) = 0 and +(9o) = 3f
for some function f on ¥. But then 9f = 0 so f is a constant, thus do = 0.
So the points of M§ correspond to equivalence classes of pairs (g,0) where g is a
Riemannian metric on ¥; ¢ is a holomorphic quadratic differential for the complex
stucture defined by g which satisfy the equation K, = cp. The equivalence classes
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are now taken under the action of the full group of diffeomorphisms of 3. When o
is holomorphic we can write the moment map p , in a neater way.

Lemma 18.
If o is a holomorphic quadratic differential we have

g, (J,0) = (K + %Alog(l ++/1- |a|2)> P

To establish this formula we can work around a point where o does not vanish.
Let h be the smooth function |o|?, with the norm defined by the metric. Thus the
curvature form of T*¥ is %88 log h and

|0a|? = h=1|0R|>.
The formula we need then follows from the identity, for any function h,
V1 —h 8dlogh — 6h8h 200v1 — h = 88log h — 2081og(1 + V1 — h),

h\/

which we leave as an exercise for the reader. (The author’s solution to this exercise
goes via the identity:

(19) —20log(l1++v1—h)=+v1—-hOlogh+ ——

To sum up then we have

—L__0h—dlogh.
\/— gh.)

Proposition 20 The moduli space M§ is the quotient by the diffeomorphism
group of the set of pairs (g,0) where g is a Riemannian metric on the surface X
and o is a holomorphic quadratic differential on (2, g) such that

1
K+ §Alog(1 ++1-|o]?) =g,

where the constant c is given by (15). There is a hyperkahler metric on M§ ex-
tending the Weil-Petersson metric on the moduli space Mo C Mg.

2. Geometric interpretation. The equation we have found in the previous
section does not look very natural but we can transform it to a much more familiar
shape. We make a start on this story here, although we have not yet been able to
explore it in full detail.

Suppose we have a Riemannian surface (¥, g) with a holomorphic quadratic
differential o and |o| < 1 everywhere. We define a function F' by

F=1++1-|0f2.
Let g; be the scaled metric g; = F'g. Thus the curvature 2-form of (%, g1) is
0, =0 - 9dlog F,

where O is the curvature form of (¥, g). On the other hand from the definition of
F we have
(F=1)2=1-|of
which implies that
lo®

2
(21) l=Z% -
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If we write, for the original metric
1
K+ ZAlogF =c+x,

then the Gauss curvature of g; is

c+
K = FX.
On the other hand the norm of ¢ in the rescaled metric is
2 |‘7|2
loli = Tz
So
Clo2=X_, ¢
Ki-gloli=%+35

using (21). We see then that the original metric satisfies the equation of Proposition

20 if and only if the rescaled metric satisfies the equation
c

—Sopp=S
(22) Ki—2lof} = .

Notice that |o|; < 1 and that the function

T
v= 1+ /1 —x2
gives a diffeomorphism from [0,1) to itself, so the construction is invertible. Thus
we can equally well regard M§ as a moduli space of pairs (g1,0) which satisfy the
equation (22). It is now convenient to assume that the area of our original metric
was normalised so that ¢ = —2, thus the equation is

(23) K+ o} =-1.

The equation (23) is a reduced form of Hitchin’s equation. In making this
identification however we should be clear that the context is different. In Hitchin’s
case the complex structure on the underlying Riemann surface is fixed whereas in
our case it is allowed to vary. Suppose we have any Riemannian surface (X, g;)
with a quadratic differential . We choose a square root L of the tangent bundle of
¥, so L is a holomorphic line bundle over ¥. Let a denote the U(1)-connection on
L induced by the Levi-Civita connection. Now consider the vector bundle L @ L~!
with the connection

A=

g —a

Here —a denotes the connection on L~! and o is regarded as an element of Q'°(L~2) =
Q%! (Hom(L, L™")). We define the Higgs field ® € Q'°(End(E)) by

01
3= (O 0).
Here the element “1” is regarded as an element of Q9(L?) = QL0(Hom(L™*, L)

by the natural isomorphism. Then

v [(Ki+1+]0? 0 ip
F(A”[@"l’]—( 0 (K +1+40)) 2
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So the solutions to Hitchins equation of this shape precisely correspond to the
solutions of equation (23). All this is very similar to, but not the same as, the
special solutions of Hitchin’s equation studied in [10] of the form

a O 0 1
=0 %)== o)
which lead to a parametrisation of Teichmuller space.

Now, given a solution of equation (22) we get a flat SL(2, C)-connection A +
® 4 ®* over ¥ with a harmonic section of the associated bundle with fibre the
hyperbolic 3-space H® = PSL(2,C)/PU(2). In other words, we get a m;(%)-
equivariant harmonic map from the universal cover ¥ to H3. The derivative of this
map is represented by the Higgs field ®, and the special form of this implies that
the map is actually an isometric immersion. Thus the image is a minimal surface in
H3, by the standard relation between harmonicity and minimality. The quadratic
differential o appears now as the second fundamental form of the surface. Let us
assume now that the quotient of H® by the action of 7;(X) is a manifold: hence
a hyperbolic 3-manifold Y. We then get an isometric minimal immersion of ¥ in
Y. Conversely, given such an immersion we can go backwards to recover the data
(g 1 U) :

The overall picture that can be expected to emerge from this brings in the
“quasi-Fuchsian” moduli space of Riemann surface theory. Let ¥.,¥_ be two
compact Riemann surfaces of the same genus and fix a homotopy class [f] of home-
omorphisms between them. The simultaneous uniformisation theorem of Bers [1]
asserts that there is a discrete subgroup # C SL(2,C) and a Jordan curve whose
complement has two components Q4,Q_, such that Q /7 is a uniformisation of
¥, and Q_/7 is a uniformisation of ¥_ (the surface with the opposite complex
structure). The group 7 also acts on the hyperbolic space H® and the quotient
gives a hyperbolic 3-manifold Y (X4, ¥_,[f]) homeomorphic to ¥4 x R. This is a
“hyperbolic cobordism” from ¥4 to ¥_, in that the conformal structures naturally
induced on the two ends of the 3-manifold are the given ones. The quasifuschian
moduli space QF is the moduli space of this data: it can be regarded either as an
open subset of the moduli space of representations of 71 (24 ) in SL(2, C), modulo
the mapping class group, or as the quotient of 7 x 7 by the mapping class group
(a bundle over the moduli space M, with fibre 7).

It is reasonable to hope that our hyperkahler manifold M§ can identified with
QF via the correspondences above. What this would mean is that one could find a
unique minimal surface, of a suitable kind, in any Y (X,,X_,[f]). This should be
related to old work of Uhlenbeck [16]. Thus, in rough analogy with Hitchin’s case,
we would get three different descriptions of the same manifold:

1. as an open subset of the moduli space of representations of a surface group
in SL(2, C) modulo the mapping class group;

2. as an open subset in the cotangent bundle T* M, (viewed as pairs (J,0));

3. as pairs of Riemann surfaces ¥, ¥_ with a given homotopy class of home-
omorphisms between them.

Let us finally note that the last description gives a particularly attractive rep-
resentation of the metric. Recall that, in the general framework of the Feix-Kaledin
hyperkahler extensions, the Hamiltionian for the circle action with respect to the
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first structure gives a Kahler potential for the metric in the second complex struc-
ture, (see (4) above). Returning to our original picture in (3.1), it is easy to see
that the Hamiltionian is given by

H(J,0) = /}:(\/1 TP -1) p.

But, up to a constant, this is just the area of the surface in the rescaled metric g;.
The second complex structure is the apparent structure in the third (conjectural)
representation above. So we conjecture that there should be a hyperkahler metric
on T x T /T defined by taking the obvious complex structure and a Kahler potential
H(Z4,%_,[f]) given by the area of the preferred minimal surfacein Y(X,X_, [f]).
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