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Manifolds with non-negative sectional curvature have been of interest
since the beginning of global Riemannian geometry, as illustrated by the
theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the
oldest conjectures in global Riemannian geometry, as for example the Hopf
conjecture on S2 × S2, also fit into this subject.

For non-negatively curved manifolds, there are a number of obstruction
theorems known, see Section 1 below and the survey by Burkhard Wilking
in this volume. It is somewhat surprising that the only further obstructions
to positive curvature are given by the classical Bonnet-Myers and Synge
theorems on the fundamental group.

Although there are many examples with non-negative curvature, they all
come from two basic constructions, apart from taking products. One is tak-
ing a quotient of a compact Lie group with a biinvariant metric and another
a gluing procedure due to Cheeger and recently significantly generalized by
Grove-Ziller. The latter examples include a rich class of manifolds, and give
rise to non-negative curvature on many exotic 7-spheres. On the other hand,
known manifolds with positive sectional curvature are very rare, and are all
given by quotients of compact Lie groups, and, apart from the classical rank
one symmetric spaces, only exist in dimension below 25.

Due to this lack of knowledge, it is therefore of importance to discuss
and understand known examples and find new ones. In this survey we will
concentrate on the description of known examples, although the last section
also contains suggestions where to look for new ones. The techniques used
to construct them are fairly simple. In addition to the above, the main tool
is a deformation described by Cheeger that, when applied to non-negatively
curved manifolds, tends to increase curvature. Such Cheeger deformations
can be considered as the unifying theme of this survey. We can thus be fairly
explicit in the proof of the existence of all known examples which should
make the basic material understandable at an advanced graduate student
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64 W. ZILLER

level. It is the hope of this author that it will thus encourage others to
study this beautiful subject. This survey originated in the Rudolph Lipschitz
lecture series the author gave at the University of Bonn in 2001 and various
courses taught at the University of Pennsylvania.

1. General structure theorems

To put the examples discussed in this survey into context, we mention
the main structure theorems and conjectures in this subject. See the survey
by Burkhard Wilking in this volume for further information.

• (Gromov) If Mn is a compact manifold with sec ≥ 0, then there
exists a universal constant c(n) such that bi(Mn, F ) ≤ c(n) for all i
and any field of coefficients F . Furthermore, the fundamental group
has a generating set with at most c(n) elements.

• (Cheeger-Gromoll) If Mn is a compact manifold that admits a
metric with non-negative sectional curvature, then there exists an
abelian subgroup of π1(Mn) with finite index.

• (Lichnerowicz-Hitchin) The obstructions to positive scalar curva-
ture imply that a compact spin manifold with Â(M) �= 0 or α(M) �=
0 does not admit a metric with non-negative sectional curvature.
This holds in particular for the unique exotic sphere in dimension 9.

• (Cheeger-Gromoll) If Mn is a non-compact manifold with a com-
plete metric with sec ≥ 0, then there exists a totally geodesic com-
pact submanifold Sk, called the soul, such that Mn is diffeomorphic
to the normal bundle of Sk.

Surprisingly, for positive curvature one has in addition only the classical
obstructions:

• (Bonnet-Myers) A manifold which admits a metric with positive
curvature has finite fundamental group.

• (Synge) An even dimensional manifold with positive curvature has
fundamental group 0, if orientable, and Z2, if non-orientable. In
odd dimensions a positively curved manifold is orientable.

If we allow ourselves to add an upper as well as a lower bound on the
sectional curvature it is convenient to introduce what is called the pinching
constant which is defined as δ = min sec/max sec. One then has the following
recognition and finiteness theorems:

• (Berger-Klingenberg) If Mn is a compact simply connected mani-
fold with δ ≥ 1

4 , then M is either homeomorphic to Sn or isometric
to CPn, HPn or CaP2 with their standard Fubini metric.

• (Cheeger) Given a positive constant ε, there are only finitely many
diffeomorphism types of compact simply connected manifolds M2n

with δ ≥ ε.
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• (Fang-Rong, Petrunin-Tuschmann) Given a positive constant ε,
there are only finitely many diffeomorphism types of compact man-
ifolds M2n+1 with π1(M) = π2(M) = 0 and δ ≥ ε.

We finally mention some conjectures.
• (Hopf) There exists no metric with positive sectional curvature on

S2 × S2. More generally, there are no positively curved metrics on
the product of two compact manifolds, or on a symmetric space of
rank at least two.

• (Hopf) A compact manifold with sec ≥ 0 has non-negative Euler
characteristic. An even dimensional manifold with positive curva-
ture has positive Euler characteristic.

• (Bott) A compact simply connected manifold M with sec ≥ 0 is
elliptic, i.e., the sequence of Betti numbers of the loop space of M
grows at most polynomially for every field of coefficients.

The latter conjecture, and its many consequences, were discussed in the
literature for the first time in [37].

2. Compact examples with non-negative curvature

There are two natural constructions to produce new metrics with non-
negative curvature from given ones. If M1 and M2 are endowed with metrics
of non-negative curvature, the product metric on M1 ×M2 clearly has non-
negative curvature. The second construction is by taking quotients, or more
generally by considering Riemannian submersions.

Recall that if M and B are two Riemannian manifolds, then a smooth
map π : M → B is called a Riemannian submersion if π∗ is an isometry
on horizontal vectors, i.e., on vectors orthogonal to the fibers. For such
submersions one has the O’Neill formula:

secB(π∗x, π∗y) = secM (x, y) +
3
4
|| [X, Y ]v ||2,

where x, y are orthonormal horizontal vectors, i.e., orthogonal to the fibers,
X, Y are horizontal vector fields extending x, y, and [X, Y ]v denotes the
vertical part of [X, Y ], i.e., the component tangent to the fiber. If M has
non-negative curvature, so does B, and one can hope that in some cases B is
even positively curved. The most basic examples of Riemannian submersions
are given by taking quotients π : M →M/G where G is a compact Lie group
acting freely and isometrically on M . We often call the induced metric on
M/G the ‘quotient’ metric.

Before we describe a third method, let us first recall some standard
ways of putting metrics on homogeneous spaces. If a compact Lie group G
acts transitively on M and p ∈M , we can write M = G/H where H is the
isotropy group at p. We will often fix a biinvariant metric Q on g, the Lie alge-
bra of G. Note that adX : Y → [X, Y ] is then a skew symmetric endomor-
phism with respect to Q. Thus the Q-orthogonal decomposition g = h + m
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satisfies [h, h] ⊂ h and [h, m] ⊂ m. The more restrictive condition [m, m] ⊂ h
corresponds to the case where the metric Q induces a locally symmetric
metric on G/H. We identify m with TpM via action fields: X ∈m → X∗(p)
where X∗(q) = d

dt |t=0 exp(tX)q. The action of H on TpM is then identi-
fied with the action of AdH on m. A metric on G/H, invariant under the
action of G, corresponds to an inner product on m ∼= TpM which is Ad(H)-
invariant. This inner product can be expressed as Q(PX, Y ) where X, Y ∈ m
and P : m → m is a Q-symmetric endomorphism.

A third method that produces new non-negatively curved metrics from a
given one is obtained via a Cheeger deformation. This process was first used
by M. Berger who considered metrics on spheres, shrunk in the direction
of the Hopf fibration, to produce odd dimensional manifolds with small
injectivity radius and positively pinched curvature. A systematic general
description was given in [18]. Let (M, g) be a Riemannian manifold and G
a Lie group acting by isometries on M . We then consider the Riemannian
submersion

π : M ×G→M : (p, g)→ g−1p.

This can also be viewed as a quotient construction via the action

g̃ � (p, g) = (g̃p, g̃g) or simply M = (M ×G)/�G.

We can thus start with a non-negatively curved metric g on M , take a
product with a biinvariant metric, and then the quotient metric defines a
new metric on M . To describe this process as a deformation, fix a biinvariant
metric Q on g and let gt be the metric obtained as a quotient of the product
metric g + 1

t Q on M × G. Tangent to the orbit Gp = G/Gp, we write the
original metric as above in the form Q(PX, Y ), where X, Y ∈ mp, with
mp the orthogonal complement of the Lie algebra of Gp. The symmetric
endomorphism P : mp → mp is changed into a new symmetric endomorphism
Pt describing gt in terms of Q and we claim:

(2.1) Pt = (P−1 + t Id)−1.

To see this, observe that π∗(X∗, Y ) = X∗ − Y ∗. Thus a horizontal lift of
X ∈ mp

∼= Tp(G/Gp) ⊂ TpM , under the Riemannian submersion π, is
equal to

(P−1(P−1 + t Id)−1X∗(p),−t(P−1 + t Id)−1X) ∈ Tp M × g,

and the length squared of this vector is

Q((P−1 + t Id)−1X, P−1(P−1 + t Id)−1X)

+
1
t
Q(t(P−1 + t Id)−1X, t(P−1 + t Id)−1X)

= Q((P−1 + t Id)−1X, X).

Orthogonal to the orbit Gp, the metric is unchanged since a horizontal lift
of X ∈ m⊥

p ⊂ TpM is equal to (X∗(p), 0).
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This process can be considered as a deformation, since we obtain the
original metric g when t = 0. If λi are the eigenvalues of P , the eigenvalues
of Pt are λi

1+tλi
, i.e. the metric is shrunk in the direction of the orbits. This

process will in general destroy symmetries, although the group G clearly
still acts by isometries induced by right multiplication in M × G. We can
thus also consider iterated Cheeger deformations corresponding to a chain
of subgroups H1 ⊂ · · · ⊂ Hk ⊂ G.

The deformation g → gt tends to improve curvature. If the original met-
ric g has non-negative curvature, the deformed metric does also by O’Neill’s
formula. If X, Y span a 0-curvature 2-plane of g, then, by considering the
G-components of vectors in M × G, its curvature becomes positive in the
metric gt if [PXm, PYm] �= 0, where we have associated to X ∈ TpM a vec-
tor Xm ∈ mp such that X∗

m(p) is the component of X in the orbit direction.
Although this will not be needed in this survey, one finds a detailed study of
the basic properties of this deformation in Müter [61]. We mention here only
that, if we let Ct = P−1Pt on mp and Ct|m⊥

p
= Id be the symmetric endo-

morphism that expresses gt in terms of g = g0, then secgt(C
−1
t X, C−1

t Y ) > 0
for t > 0 unless secg(X, Y ) = 0, [PXm, PYm] = 0 and dωZ(X, Y ) = 0 for all
Z ∈ g, where ωZ is the one form dual to the Killing vector field Z. Thus the
0-curvature planes tend to “move” with C−1

t . Furthermore, 2-planes which
are tangent to a totally geodesic flat 2-torus, and which contain a vector
orthogonal to the G orbit, remain flat.

As a starting point for finding examples, one considers compact Lie
groups G endowed with a biinvariant metric since their curvature satisfies:

secG(x, y) =
1
4
|| [x, y] ||2 ≥ 0 for x, y ∈ g orthonormal.

Combining this fact with O’Neill’s formula, we obtain non-negative cur-
vature on every isometric quotient of a compact Lie group. In particular, all
homogeneous spaces G/H, where H is a closed subgroup of G, have metrics
with non-negative curvature. Since the identity component of the isometry
group of a compact Lie group G, endowed with a biinvariant metric, consists
of left and right translations, it is natural to generalize the class of homo-
geneous manifolds to what are called biquotients. Consider H ⊂ G×G and
define an action of H on G by

h � g = h1gh−1
2 , where h = (h1, h2) ∈ H.

The action is free if and only if h1 conjugate to h2, for (h1, h2) ∈ H, implies
that h1 = h2 = e. If this is the case, the quotient is a manifold, which we
denote by G//H and is called a biquotient. If H = L×K ⊂ G×G, we will
also write L\G/K. Thus we obtain:

Theorem 2.2. A biinvariant metric on G induces a metric with non-
negative sectional curvature on every homogeneous space G/H and every
biquotient G//H.
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The first time where biquotients were considered in geometry, was in
[36], where it was shown that an exotic 7-sphere admits non-negative curva-
ture. To describe this example, consider the action of the unit quaternions
Sp(1) on the symplectic group Sp(2) via:

q � A = diag(q, q)A diag(q, 1)−1 q ∈ Sp(1), A ∈ Sp(2).

This action is clearly free and we have:

Theorem 2.3 (Gromoll-Meyer). The non-negatively curved manifold
Sp(2)// Sp(1) is homeomorphic, but not diffeomorphic, to S7.

In order to prove this, one observes that Sp(2)// Sp(1) Sp(1) = diag(q, q)
A diag(r, 1)−1, q, r ∈ Sp(1), is diffeomorphic to S4 since the action of
diag(q, q) on Sp(2)/ diag(r, 1) = S7 is the Hopf action by S3. Thus Sp(2)//
Sp(1) can be considered as an S3 bundle over S4. One then identifies which
sphere bundle it represents by using Milnor’s description of certain exotic
7-spheres as S3 bundles over S4. We also point out that in [77], and inde-
pendently in [55], it was shown that the only exotic sphere which can be
written as a biquotient is the Gromoll-Meyer sphere.

Another special class of non-negatively curved examples were constructed
in [18]:

Theorem 2.4 (Cheeger). The connected sum of any two rank one sym-
metric spaces carries a metric with non-negative sectional curvature.

In [77] it was shown that some of these Cheeger manifolds, but not all,
can be viewed as biquotients as well.

The gluing construction used in order to prove Theorem 2.4, was recently
significantly generalized to what are called cohomogeneity one manifolds.
Recall that if G is a Lie group that acts on a manifold M , the cohomogene-
ity of the action is defined as cohom(M, G) = dimM/G. Thus an action with
cohom(M, G) = 0 is an action that is transitive, i.e., the manifold is a homo-
geneous spaces. Cohomogeneity one manifolds can thus be considered as the
next simplest kind of group actions to study. They are also special among all
group actions since, as we will see, the manifold can be reconstructed from
its isotropy groups. The geometry and topology of homogeneous spaces is
fairly well understood by now, whereas this is not yet the case for coho-
mogeneity one manifolds. One should point out though, that this class of
manifolds does not contain the homogeneous spaces as a subset. In fact only
very few homogeneous spaces carry a cohomogeneity one action.

Let G be a compact group acting by cohomogeneity one on a compact
manifold M . Since M/G is one dimensional, it is either a circle S1, or an
interval I. In the first case all G orbits are principal and π : M →M/G = S1

is a fiber bundle with fiber a principal orbit G/H, and thus the fundamen-
tal group is infinite. One also easily sees that such fiber bundles carry a
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G invariant metric with non-negative curvature. In the second more inter-
esting case there are precisely two nonprincipal G-orbits corresponding to
the endpoints of I, and M is decomposed as the union of two tubular neigh-
borhoods of these nonprincipal orbits, with common boundary a principal
orbit. Let �− and �+ be the codimension of the nonprincipal orbits. We have
the following existence theorem [42]:

Theorem 2.5 (Grove-Ziller). A compact cohomogeneity one G-manifold
with �± ≤ 2 has a G-invariant metric with non-negative sectional curvature.

One easily sees that �± > 1 if M is simply connected. Although the
assumption on the codimensions seems rather special, it turns out that the
class of cohomogeneity one manifolds with �± = 2 is surprisingly rich. An
immediate application is:

Corollary 2.6. Each of the 4 oriented diffeomorphism types of RP5’s
carries a metric with non-negative sectional curvature.

This follows since S5 carries (non-linear) cohomogeneity one actions by
SO(2) SO(3), discovered by G.Calabi, with codimension 2 singular orbits.
They are a special case of the action on Kervaire spheres described below.
The involution in SO(2) acts freely and, using surgery theory, one shows
that any one of the exotic RP5’s can be obtained in this fashion, see [60].

In [42] it was also conjectured that Theorem 2.5 holds without any
assumption on the codimensions. This turns out to be false. One has [40]:

Theorem 2.7 (Grove-Verdiani-Wilking-Ziller). For each pair (�−, �+)
with (�−, �+) �= (2, 2) and �± ≥ 2 there exist infinitely many cohomogeneity
one G-manifolds that do not carry a G invariant metric with non-negative
sectional curvature.

The most interesting example in this Theorem are the Kervaire spheres,
which are the only exotic spheres that can carry a cohomogeneity one action
[74]. They are described as a 2n− 1 dimensional Brieskorn varietiy:

zd
0 + z2

1 + · · · z2
n = 0, |z0|2 + · · · |zn|2 = 1.

It carries a cohomogeneity one action by SO(2)SO(n) defined by (eiθ, A)
(z0, . . . , zn) = (e2iθz0, e

idθA(z1, . . . , zn)t ) whose codimensions are (�−, �+) =
(2, n− 1). For n odd and d odd, they are homeomorphic to spheres, and are
exotic spheres if 2n − 1 ≡ 1 mod 8. If n ≥ 4, d ≥ 3 one shows that there
exists no G-invariant metric with non-negative curvature.

To prove Theorem 2.7, one needs to describe the set of all G-invariant
metrics explicitly. They depend on a finite collection of functions, 6 in the
case of the Kervaire spheres, which need to satisfy certain smoothness con-
ditions at the endpoint. For each choice of 2-planes tangent to the principal
orbit, one obtains differential inequalities on these functions and their first
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derivatives from the Gauss equations. By a suitable choice of 2-planes one
obtains upper and lower bounds on the first derivatives which contradict the
smoothness conditions at one of the singular orbits.

We mention that in the case of Ricci curvature one has the positive
result that every cohomogeneity one manifold carries an invariant metric
with non-negative Ricci curvature, and with positive Ricci curvature if and
only if the fundamental group is finite [43].

To discuss the proof of Theorem 2.5 and some of its applications, we
first recall the basic structure of cohomogeneity one actions. We will only
consider the most interesting case, where M/G = I and let π : M → M/G
be the projection. In order to make the description more explicit, we choose
an arbitrary but fixed G-invariant Riemannian metric on M , normalized
so that with the induced metric, M/G = [−1, 1]. Fix a point x0 ∈ π−1(0)
and let c : [−1, 1] → M be a geodesic orthogonal to the orbit through x0,
and hence to all orbits, and parameterized such that π ◦ c = id[−1,1]. Let
B± = π−1(±1) = G · x± be the two nonprincipal orbits, where x± = c(±1).
It then follows that c : [2n − 1, 2n + 1] → M , n ∈ Z are minimal geodesics
between the two nonprincipal orbits B± since G acts transitively on the set
of all geodesics orthogonal to the orbits. Let K± = Gx± be the isotropy
groups at x± and H = Gx0 = Gc(t), −1 < t < 1, the principal isotropy
group. By the slice theorem, we have the following description of the tubu-
lar neighborhoods D(B−) = π−1([−1, 0]) and D(B+) = π−1([0, 1]) of the
nonprincipal orbits B± = G/K±:

D(B±) = G×K± D�± ,

where D�± is the normal (unit) disk to B± at x±. Here the action of K± on
G×D�± is given by k � (g, p) = (gk−1, kp) where k acts on D�± via the slice
representation. Hence we have the decomposition

M = D(B−) ∪E D(B+),

where E = π−1(0) = G · x0 = G/H is a principal orbit which is canoni-
cally identified with the boundaries ∂D(B±) = G×K± S�±−1, via the maps
G → G × S�±−1, g → (g,∓ċ(±1)). Note also that ∂D�± = S�±−1 = K±/H
since the boundary of the tubular neighborhoods must be a G orbit and
hence ∂D�± is a K± orbit. All in all we see that we can recover M from G and
the subgroups H and K±. We caution though that the isotropy types, i.e.,
the conjugacy classes of the isotropy groups K± and H do not determine M .

An important fact about cohomogeneity one actions is that there is
a converse to the above construction. Suppose G is a compact Lie group
and H ⊂ K± ⊂ G are closed subgroups, which we sometimes denote by
H ⊂ {K−, K+} ⊂ G. Assume furthermore that K±/H = S�±−1 are spheres.
It is well known that a transitive action of a compact Lie group K on a
sphere S� is conjugate to a linear action and is determined by its isotropy
group H ⊂ K. We can thus assume that K± acts linearly on S�± with
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isotropy group H at p± ∈ S�±−1 and define a manifold

M = G×K− D�− ∪G/H G×K+ D�+ ,

where we glue the two boundaries by sending [g, p−] to [g, p+]. G acts on M
via g∗[g, p] = [g∗g, p] on each half and one easily checks that it has isotropy
groups K± at [e, 0] and H at [e, p0] and is thus cohomogeneity one.

Theorem 2.5 clearly follows from the following geometric result by gluing
two such metrics on the tubular neighborhoods D(B±) along their common
boundary G/H.

Proposition 2.8. Let H ⊂ K ⊂ G be Lie groups with K/H = S1 = ∂D2

and fix a biinvariant metric Q on G. On the disc bundle G×KD2 there exists
a G-invariant metric with non-negative sectional curvature, which is a prod-
uct near the boundary G×KS1 = G/H with metric on G/H induced by Q.

The crucial ingredient in the proof of Proposition 2.8 is the following
result about left invariant metrics.

Lemma 2.9. Let G be a compact Lie group and k ⊂ g an abelian subal-
gebra. Consider the left invariant metric on G whose value at TeG = g is
given by

Qt = tQ|k + Q|k⊥ ,

where Q is a biinvariant metric on G. Then Qt has non-negative sectional
curvature as long as t ≤ 4/3.

Proof. The curvature formula for a left invariant metric 〈X, Y 〉 =
Q(PX, Y ) is given by (see e.g. [67]):

〈R(X, Y )Y, X)〉 =
1
2
Q([PX, Y ] + [X, PY ], [X, Y ])− 3

4
Q(P [X, Y ], [X, Y ])

+ Q(B(X, Y ), P−1B(X, Y ))−Q(B(X, X), P−1B(Y, Y )),

where B(X, Y ) = 1
2([X, PY ]− [PX, Y ]).

In our case, let X = A+R, Y = B +S with A, B ∈ m = k⊥ and R, S ∈ k
and hence P (A + R) = A + tR. We can now split up the expressions into
components in direction of m and of k. A computation shows that the m
component is given by

1
4
‖[A, B]m + t[X, B] + t[A, Y ]‖2Q ≥ 0,

where we have used the bi-invariance of Q and the Jacobi identity to show
that 〈[X, B], [A, Y ]〉 = 〈[X, A], [Y, B]〉. On the other hand, the k component
is given by

‖[A, B]k‖2Q −
3
4
t‖[A, B]k‖2Q =

(
1− 3

4
t

)
‖[A, B]k‖2Q,

which is non-negative as long as t ≤ 4
3 . �



72 W. ZILLER

Proof of Proposition 2.8 We have inclusions H ⊂ K ⊂ G with K/H = S1

and define Q-orthogonal decompositions g = k + m and k = h + p. As usual,
we identify the tangent spaces T(H)K/H ∼= p and T(H)G/H ∼= p + m. Since
p is one dimensional, Lemma 2.9 implies that the left invariant metric on G
defined by Qa = aQ|p+Q|h+m has non-negative curvature as long as a ≤ 4/3.
Since [p, p] = 0 and [h, p] ⊂ p, the subalgebra p is an ideal of k and hence
AdK invariant, and thus Qa is right K-invariant as well. In addition we
choose a metric gf = dt2 + f(t)2dθ2 on D2 which is clearly invariant under
the action of K on D2 and has non-negative curvature if f is concave. The
product metric Qa + gf on G × D2 thus induces a non-negatively curved
metric ga,f on the homogeneous disk bundle G ×K D2. We now claim that
given 1 < a ≤ 4/3, we can choose f such that ga,f is a product near the
boundary with metric on G/H induced by Q. To see this, consider the
Riemannian submersion G× (K/H)→ G×K K/H ∼= G/H where we endow
K/H = S1 with the metric of a circle of radius f(t). The induced metric
on G/H is the metric ga,f restricted to the boundary of a tube of radius t.
We compute this metric as in the case of a Cheeger deformation (2.1). If
2πs0 is the length of the circle K/H in the metric Q|p, the metric on K/H

is given by (f/s0)2Q and it follows that the metric on G/H is given by Q

on m and by a
1+a(f/s0)−2 Q = f2a

f2+as2
0
Q on p. Hence we obtain the desired

metric by choosing a concave function f and a t0 such that f2(t) = as2
0

a−1 , for
t ≥ t0. �

Remark. We can view this construction as a “scaling up, scaling down”
procedure. The natural metric on G×KD induced by a biinvariant metric
Q on G shrinks the metric on the boundary G/H in the direction of K/H,
as in the case of a Cheeger deformation. This needs to be compensated by
scaling the metric Q up in the direction of p in order to recover the metric
Q on G/H. This explains the difficulty of proving Proposition 2.8 for � > 2
since left invariant metrics as in Lemma 2.9 in general have some sectional
curvature positive when t > 1. In fact we believe:

Problem 1. Let G be a compact simple Lie group and K a non-abelian
subgroup. Show that a metric Qt as in Lemma 2.9 has some negative sec-
tional curvatures for any t > 1.

Nevertheless, it is possible that there are other special homogeneous disk
bundles for which Proposition 2.8 holds with codimension � > 2.

As was observed by B. Wilking, Theorem 2.5 can be generalized to the
situation where the homogeneous orbits are replaced by biquotients. In other
words, if K± ⊂ G × G acts freely on G and H ⊂ K± with K±/H = S1,
then the resulting manifold carries a metric with non-negative curvature.
This follows by applying Theorem 2.5 to the cohomogeneity one manifold
H ⊂ {K−, K+} ⊂ G × G and then dividing by ΔG ⊂ G × G on the left,
which acts freely by assumption.
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We now apply this result to some concrete cohomogeneity one manifolds
in order to prove:

Theorem 2.10 (Grove-Ziller). Every principal SO(k) bundle P over S4

carries a cohomogeneity one action by SO(3)×SO(k) with codimension two
principal orbits and hence an invariant metric with non-negative curvature.

Thus, by O’Neill’s formula, every associated bundle P ×SO(k)X with X
a non-negatively curved manifold on which SO(k) acts by isometries, also
carries a non-negatively curved metric.

Corollary 2.11. Every sphere bundle over S4 carries a metric with
non-negative sectional curvature.

Of particular interest are S3 bundles over S4 since Milnor discovered the
first exotic spheres among these manifolds. It implies:

Corollary 2.12. Of the 14 (unoriented) exotic 7-spheres, 10 carry a
metric with non-negative curvature.

The group of exotic spheres, under the group operation of connected
sums, is isomorphic to Z28, but a change of orientation corresponds to taking
an inverse. It is not known whether the remaining 4 exotic spheres carry
non-negative curvature metrics as well.

Proof of Theorem 2.10 : Let the cohomogeneity one manifold Pr,s be
given by the isotropy groups:

H = �Q ⊂ {(eirθ, eiθ) ·H, (ejsθ, ejθ ·H} ⊂ S3×S3,

where �Q = {±(1, 1),±(i, i),±(j, j),±(k, k), } is the quaternion group and
eirθ = cos(rθ) + i sin(rθ) is an embedding of a circle into the unit quater-
nions S3. In order for H to be a subgroup of K±, we need to assume that
r, s ≡ 1 mod 4. We then have K±/H = S1 and thus Theorem 2.5 implies
that Pr,s carries an S3×S3 invariant metric with non-negative curvature.
The subgroup S3 = S3×{e} ⊂ S3×S3 acts freely on Pr,s since its isotropy
groups are the intersection of S3×{e} with K± and H, which by construc-
tion are trivial. We now claim that Pr,s/ S3 is S4. To see this, observe that
the second S3 factor induces a cohomogeneity one action with group dia-
gram Q ⊂ {eiθ · Q, ejθ · Q} ⊂ S3 on the quotient. The element −1 ∈ S3

acts trivially and the effective version of the action has isotropy groups
Z2×Z2 ⊂ {S(O(2) O(1)), S(O(1) O(2))} ⊂ SO(3). But there is a well known
linear action by SO(3) on S4 given by conjugation on the set of 3×3 symmet-
ric real matrices with trace 0. Since every matrix is conjugate to a diagonal
one, it follows that the two singular orbits are given by symmetric matrices
with two equal eigenvalues, positive for one and negative for the other, and
the principal orbits by matrices with 3 distinct eigenvalues. One now easily
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checks that the isotropy groups are the same as for the above action and
hence Pr,s/ S3 is equivariantly diffeomorphic to S4.

Thus Pr,s can be viewed as an S3 principal bundle over S4. These are
classified by an integer k, namely the Euler class of the bundle evaluated on
a fixed orientation class of S4. To recognize which bundle it is, one observes
that the Gysin sequence implies H4(E, Z) = Z|k| for such a bundle. For a
cohomogeneity one manifold one can compute the cohomology groups by
using Meyer-Vietoris on the decomposition into the disk bundles D(B±).
The disk bundles are homotopy equivalent to G/K± and their intersection
to G/H. Using well known methods for computing the cohomology groups
of homogeneous spaces one shows that H4(Pr,s, Z) is a cyclic group of order
(r2− s2)/8. But for r, s ≡ 1 mod 4 the values of (r2− s2)/8 can take on any
integer. Thus every S3 principal bundle over S4 is of the form Pr,s for some
r, s. Since every SO(3) principal bundle over S4 is spin, i.e., has a lift to an S3

principal bundle, this implies Theorem 2.10 for k = 3. The case of k = 4 one
obtains by repeating the above argument for G = S3×S3×S3 with K± again
one dimensional and identity component of say K− equal to (eir1θ, eir2θ, eiθ)
with ri ∈ Z. For principal bundles P over S4 with k > 4 it is well known that
their structure group reduces to SO(4). Thus there exists an SO(4)-principal
bundle P ′ with P = P ′×SO(4)SO(k) on which SO(k) acts on the right. Hence
the lift of SO(3) to P ′ also lifts to P and commutes with SO(k). �

We finally indicate how the proof of Cheeger’s Theorem 2.4 fits into the
above framework. Of the connected sums considered in his theorem, only
CPn# − CPn admits a cohomogeneity one action. But a similar idea as
in the proof of Proposition 2.8 applies to all cases. A rank one projective
space Mn with a small ball removed, is diffeomorphic to the disk bundle of
the canonical line bundle over the projective space of one dimension lower.
This bundle is a homogeneous disk bundle with boundary diffeomorphic to
a sphere. One now uses the same “scaling up, scaling down” method as in
the proof of Proposition 2.8 to show that these disk bundles have a metric
with non-negative curvature which is a product near the boundary and has
constant curvature one on the boundary. One can then glue together any
two rank one projective spaces along this boundary.

The methods described in the proof of Theorem 2.10 can also be applied
to other 4-manifolds as base [44]:

Theorem 2.13 (Grove-Ziller). Every principal SO(k) bundle P over CP2

which is not spin, i.e., w2(P ) �= 0, carries a cohomogeneity one action with
codimension two principal orbits and hence an invariant metric with non-
negative curvature. Thus, so does every associated sphere bundle.

To prove this, one uses the linear cohomogeneity one action on CP2

given by SO(3) ⊂ SU(3), which one easily verifies has group diagram Z2 ⊂
{S(O(2) O(1)), SO(2)} ⊂ SO(3) and constructs a group diagram with
G = S3×S3 as above, but with H = {(±1,±1), (±i,±i)}. The topological
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considerations needed to identify what bundle the cohomogeneity one man-
ifold represents, are significantly more difficult. It also raises the following
general question, which the above examples show is important in the context
of cohomogeneity one manifolds.

Given a principal L bundle P →M over a G-manifold M . When does the
action of G on M have a commuting lift, i.e., a lift to an action of G, or
possibly a cover of G, on the total space P , such that the lift commutes
with L.

This problem has been studied extensively. However, apart from the gen-
eral result that every action of a semi simple group admits a commuting lift
to the total space of every principal circle or more generally torus bundle
[63], the results seem to be difficult to apply in concrete cases. For a coho-
mogeneity one manifold MG with isotropy groups H ⊂ {K−, K+} ⊂ G, one
has a natural description of the lifts to an L-principal bundle over MG in
terms of the isotropy groups. Simply choose embeddings of K± into L×G
such that they agree on H and are given in the second component by the
original embeddings into G. The action by L × {e} is then clearly free,
and the quotient is MG since the induced G action has the same isotropy
groups. As long as one allows the action of G on MG to be ineffective, all
lifts are described in this fashion. The difficulty is then to decide what the
isomorphism type of this L-principal bundle is.

Theorem 2.10 and Theorem 2.13 can be restated as saying that the linear
actions of SO(3) on S4 and CP2 have a commuting lift to every principal
SO(k) bundle, respectively principal SO(k) bundle which is not spin. In
[44] one finds a classification of which cohomogeneity one actions on simply
connected 4-manifolds M4 have a commuting lift to a given principal SO(k)
bundle over M4. In particular, it is shown that in the spin case the action
of SO(3) on CP2 only lifts to half of all SO(3) principal bundles. This shows
the limitations of our principal bundle method which finds metrics on their
total space with sec ≥ 0.

A particularly interesting case of the above Problem are SO(k) principal
bundles over Sk since cohomogeneity one actions on spheres are numerous
and have been classified in [52].

Problem 2. Which cohomogeneity one actions on Sn admit a commut-
ing lift to a given SO(k) principal bundle over Sn?

An answer to this question could potentially produce further sphere
bundles over spheres, and hence possibly higher dimensional exotic spheres,
which carry metrics with non-negative curvature.

In light of the existence Theorem 2.5 and the non-existence Theorem 2.7,
it is natural to pose the following somewhat vague but important:

Problem 3. How large is the class of cohomogeneity one manifolds that
admit an invariant metric with non-negative curvature?



76 W. ZILLER

Are there other obstructions, and how strong are the obstructions devel-
oped in the proof of Theorem 2.7? As far as existence is concerned, one
would need to understand how to put non-negative curvature on cohomo-
geneity one manifolds without making the middle totally geodesic. In [69]
Schwachhöfer showed that for the adjoint action of SU(3) on S7 ⊂ su(3) there
exist no invariant metric with non-negative curvature such that the middle
is totally geodesic (for any homogeneous metric on the principal orbit!). But
there of course exists an invariant metric with positive curvature.

We end this section with the following natural problem. Many examples
are obtained by taking a quotient of a compact Lie group, equipped with a
left invariant metric with sec ≥ 0, by a group acting by isometries. It thus
seems to be important to know what all such metrics look like.

Problem 4. Classify all left invariant metrics with non-negative sec-
tional curvature on compact Lie groups.

Surprisingly, the only examples known so far are obtained by combining
the following: Cheeger deformations of a biinvariant metric along a subgroup
K, i.e. the metric on G = G ×K K induced by Q + 1

t Q. If the subgroup is
3-dimensional, we can more generally consider the metric on G induced by
Q + 1

t g where g is a left invariant metric on K with positive curvature.
Finally, we can scale a biinvariant metric up in the direction of an abelian
subalgebra as in Lemma 2.9. The only Lie groups where a complete answer
is known, are SU(2) and U(2), see [15], and with partial results for SO(4),
[51]. In the latter paper it was also shown, as another application of Cheeger
deformations, that every left invariant non-negatively curved metric g on
a compact Lie group G can be connected by an “inverse linear” path of
non-negatively curved left invariant metrics to a fixed biinvariant metric Q.
Indeed, in the Cheeger deformation (2.1) applied to the right action of G
on itself, we can let t →∞ and then the rescaled metric tgt → Q since the
eigenvalues of tgt in terms of Q are tλi

1+tλi
. Thus the main interest lies in

deciding what derivatives are allowed at Q for an inverse linear path of left
invariant metrics with sec ≥ 0. This approach is discussed in detail in [51].

Topology of non-negatively curved manifolds

For the following we assume that our manifolds are compact and simply
connected. Recall the Bott conjecture which states that a non-negatively
curved manifold is elliptic. Even rationally elliptic, i.e., where the condi-
tion on the Betti numbers of the loop space is only assumed for rational
coefficients, already has strong consequences. By Sullivan’s theory of mini-
mal models in rational homotopy theory, rationally elliptic is equivalent to
saying that there are only finitely many homotopy groups which are not
finite. Rationally elliptic implies that the sum of the Betti number of Mn

is at most 2n, which is the optimal upper bound in Gromov’s Betti number
theorem. Furthermore, the Euler characteristic is non-negative (one half of
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the Hopf conjecture), and positive if and only if the odd Betti numbers are 0.
Thus it is natural to conjecture that an even dimensional manifold with pos-
itive curvature has vanishing odd Betti numbers. See [37] where geometric
consequences for rationally elliptic as well as for the remaining class of sim-
ply connected so-called rationally hyperbolic manifolds were first discussed
in detail.

In dimension four, rationally elliptic manifolds are homeomorphic to one
of the known examples with non-negative curvature, i.e., one of S4, CP2,
S2 × S2 or CP2# ± CP2. It is natural to conjecture that a non-negatively
curved manifold is indeed diffeomorphic to one of these, and that only the
first two can admit positive curvature. In [65] it was shown that an elliptic
5-manifold is diffeomorphic to one of the known examples with non-negative
curvature, i.e., one of S5, SU(3)/ SO(3), S3×S2 or the non-trivial S3 bundle
over S2. Thus the Bott conjecture in dimension 5 states that a non-negatively
curved manifold is diffeomorphic to one of these models, and it is natural to
conjecture that only the first admits positive curvature.

We remark that in dimension two a non-negatively curved manifold is
diffeomorphic to S2 by Gauss-Bonnet and in dimension three to S3 by Hamil-
ton’s theorem [46].

We now describe some topological properties of the known examples
with non-negative curvature. A homogeneous manifold M is 2-connected iff
M = G/H with G and H semisimple and hence there are only finitely many
such manifolds in each dimension. If it is not 2-connected, M is a torus
bundle over a 2-connected one. In [77] it was shown that both statements
also hold for biquotients.

On the other hand, the class of biquotient manifolds is significantly
larger than the class of homogeneous spaces. For example, in [78] it was
shown that there exist infinitely many 6-dimensional biquotients of the form
( S3)3//( S1)3 with non-isomorphic rational cohomology rings. On the other
hand, compact simply connected homogeneous spaces in dimension 6 are
either diffeomorphic to a product of rank one symmetric spaces or to the
Wallach manifold SU(3)/T 2.

The class of cohomogeneity one manifolds, including associated bundles
and quotients, is again much larger than both. Indeed, there are infinitely
many homotopy types of 2-connected cohomogeneity one manifolds, starting
in dimension 7, since all S3 bundles over S4 admit non-negative curvature.
In Section 6 one also finds an infinite family of 7 dimensional cohomogeneity
one manifolds, depending on 4 arbitrary integers, which are 2-connected and
have singular orbits of codimension two.

In [24] it was shown that there are infinitely many non-negatively curved
manifolds lying in distinct cobordism classes. One starts with one of the
principal SO(3) bundles P over S4 in Theorem 2.10 and considers the asso-
ciated bundle P ×SO(3) CP2, where SO(3) ⊂ SU(3) acts linearly on CP2.
It clearly has non-negative curvature and a computation of the Pontryagin
classes shows that they have distinct Pontryagin numbers and hence lie in
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different cobordism groups. On the other hand, this is not possible for homo-
geneous spaces and biquotients since circle bundles are the boundary of the
associated disk bundle and hence have vanishing Pontryagin numbers.

In [49] C. Hoelscher classified compact simply connected cohomogeneity
one manifolds of dimension at most seven. In dimension 4 this was done
in [64] (dimension 2 and 3 being trivial). In dimension 5, 6 and 7 there
are many cohomogeneity actions with singular orbits of codimension 2. In
dimension 7 there are also some new families whose codimensions are not
both two, where it is not known if they carry invariant metrics with non-
negative curvature. On the other hand, one also has the exotic Kervaire
spheres in dimension 7, which by Theorem 2.7 does not admit an invariant
metric with non-negative curvature.

3. Non-compact examples with non-negative curvature

For non-compact manifolds one has the well known Soul Theorem [19]:

Theorem 3.1 (Cheeger-Gromoll). If Mn is a non-compact manifold with
a complete metric with sec ≥ 0, then there exists a totally geodesic compact
submanifold Sk such that Mn is diffeomorphic to the normal bundle of Sk.

The submanifold Sk is called the soul of Mn. A major open problem in
this part of the subject is hence:

Problem 5. What vector bundles over compact manifolds with non-
negative curvature admit a complete metric with non-negative sectional cur-
vature?

This is particularly interesting for vector bundles over spheres. Any
homogeneous vector bundle G×K V , where K acts orthogonally on a vector
space V , clearly admits such a metric by O’Neill’s formula. Thus TSn =
SO(n + 1)× SO(n)R

n also does. Every vector bundle over Sn, n = 1, 2, 3 is
a homogeneous vector bundle and hence carries non-negative curvature. In
[68] Rigas showed that every vector bundle of Sn is stably, i.e., after taking
the connected sum with a trivial bundle of sufficiently large dimension, a
homogeneous vector bundle and hence carries non-negative curvature.

As a consequence of Theorem 2.10 and Theorem 2.13 one obtains non-
negative curvature on the vector bundles P ×SO(k) Rk associated to the
principal bundles P :

Corollary 3.2 (Grove-Ziller). Every vector bundle over S4, and every
vector bundle over CP2 which is not spin, carries a complete metric with
non-negative sectional curvature.

This class of vector bundles is quite large since they are classified by
one arbitrary integer when the fiber dimension is three and by 2 if the fiber
dimension is four.
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As far as vector bundles are concerned over the remaining known 4-
manifolds with non-negative curvature, i.e. S2×S2 and CP2#±CP2, most of
them also admit non-negative curvature since their structure group reduces
to a torus and circle bundles over these manifolds are known to admit non-
negative curvature, see [88, 77]. For vector bundles over Sn, n > 4, one knows
that all vector bundles over S5, and most of the vector bundles over S7, admit
non-negative curvature [42]. But in both cases there are only finitely many
such bundles.

If the base does not have finite fundamental group, there are obstructions
to the existence of complete metrics with non-negative curvature due to
Özaydin-Walschap [62], in the case where the soul is flat, and Belegradek-
Kapovitch [6, 7] in general. The simplest examples are:

Theorem 3.3. Every orientable vector bundle over T2 or S3 × S1 with
non-negative curvature is trivial.

In [6, 7] the authors give many more examples of vector bundles over
C×T k with C compact and simply connected and k ≥ 1 which do not admit
non-negative curvature. For example, if k ≥ 4, there exist infinitely many
vector bundles over C × T k of every fixed rank at least two, whose total
space do not admit any complete metric with non-negative curvature. No
obstructions are known when the base is simply connected.

Although it is known that for a given metric on Mn any two souls are
isometric, M can have two distinct non-negatively curved metrics with souls
that are not even homeomorphic. In fact Belegradek [5] proved:

Theorem 3.4 (Belegradek). For each n ≥ 5, there exist infinitely many
complete Riemannian metrics on S3 × S4 × Rn with sec ≥ 0 and pairwise
non-homeomorphic souls.

To prove this, consider the principal SO(3) bundle Pk → S4 correspond-
ing to k ∈ π3(SO(3)) ∼= Z and let En

k = Pk×SO(3)R
n and Sn

k = Pk×SO(3)S
n−1

be the associated vector bundle and sphere bundle coming from the stan-
dard inclusion SO(3) ⊂ SO(n). Then the bundle Δ∗(S4

k × En
−k), where

Δ: S4 → S4 × S4 is the diagonal embedding, can be regarded as a bun-
dle over S4 associated to the principal SO(3)×SO(3) bundle Δ∗(P 4

k ×Pn
−k),

which by Theorem 2.10 carries an invariant metric with non-negative cur-
vature. On the other hand, it can also be regarded as an n-dimensional
vector bundle over S4

k and its soul, since it is an associated vector bundle,
is equal to the 0-section S4

k . Now one uses surgery theory to show that for
k ≡ k′ mod 12 and n ≥ 5, the manifold Δ∗(S4

k × En
−k) is diffeomorphic to

S3 × S4 × Rn and a computation of the Pontryagin classes shows that S4
k is

homeomorphic to S4
k′ if and only if k = ±k′.

See [5] and [53] for further examples of this type.
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4. Known examples with positive curvature

Known examples with positive curvature are surprisingly rare. What is
even more surprising is that they are all obtained as quotients of a com-
pact Lie group equipped with a biinvariant or a Cheeger deformation of
a biinvariant metric divided by a group of isometries. One may view the
following theorem as an explanation of why it is so difficult to find new
examples [85].

Theorem 4.1 (Wilking). If Mn admits a positively curved metric with
an isometric action of cohomogeneity k ≥ 1 with n > 18(k + 1)2, then M is
homotopy equivalent to a rank one symmetric space.

Thus, for any new examples, the larger the dimension, the bigger the
cohomogeneity. This may increase the difficulty of computing its curva-
ture tensor and estimating the sectional curvature. In fact, known examples
exist only in low dimensions. They consist of certain homogeneous spaces in
dimensions 6, 7, 12, 13 and 24 due to Berger [10], Wallach [86], and Aloff-
Wallach [2], and of biquotients in dimensions 6, 7 and 13 due to Eschenburg
[27, 28] and Bazaikin [3]. The purpose of this section is to discuss these
examples.

The main ingredient for all known examples is the following Cheeger
deformation of a fixed biinvariant metric Q on G, of a type we already
considered in Lemma 2.9. Let K ⊂ G be a closed Lie subgroup with Lie
algebras k ⊂ g and g = k + m a Q-orthogonal decomposition. Recall that
(G, K) is a symmetric pair if K is, up to components, the fixed point set of
an involutive automorphism. For our purposes, the property that [m, m] ⊂ k
is all that is needed, and is equivalent to being a symmetric pair if G/K is
simply connected.

For the biinvariant metric Q a 0-curvature 2-plane is characterized by
[X, Y ] = 0. The following deformation thus decreases the set of 0-curvature
2-planes [28].

Lemma 4.2 (Eschenburg). Let Qt be a left invariant metric on G defined
by Qt = tQ|k + Q|m. Then secQt ≥ 0 as long as t ≤ 1. If we assume in
addition that (G, K) is a symmetric pair, X, Y span a 0-curvature 2-plane
of gt, for t < 1, if and only if [X, Y ] = [Xk, Yk] = [Xm, Ym] = 0.

Proof. The metric Qt can be viewed as a Cheeger deformation as in
(2.1) with respect to the right action of K on G and hence has non-negative
curvature for t ≤ 1. As we saw, the metric Q+ 1

sQ on G×K induces a metric
of the form Qt with t = 1

s+1 < 1 and the horizontal lift of X = Xk + Xm ∈
k+m = g is equal to X̄ = (Xm+ 1

1+sXk,− s
1+sXk) ∈ g+k. Since the metric on

G×K is biinvariant, a horizontal 2-plane spanned by X̄, Ȳ has 0 curvature
if and only if [X̄, Ȳ ] = 0. Since the O’Neill tensor is also given in terms of
Lie brackets, the same is true for the 2-plane spanned by X, Y ∈ g. If G/K
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is a symmetric pair, we have [m, m] ⊂ k, which, together with [k, k] ⊂ k and
[k, m] ⊂ m, easily implies the claim. �

Given Lie subgroups H ⊂ K ⊂ G, we define a homogeneous fibration

K/H −→ G/H −→ G/K : gH → gK.

Using the Q-orthogonal decompositions g = k + m and k = h + p, we can
identify the tangent spaces p ∼= T(H)K/H , m ∼= T(K)G/K and p + m ∼=
T(H)G/H. In terms of these identifications, we define a one parameter family
of homogeneous metrics on G/H by

gt = tQ|p + Q|m,

which scales the fibers of the homogeneous fibrations by t. Notice that they
can also be viewed as a Cheeger deformation of the metric Q on G/H in
direction of the left action of K on G/H. It is natural to ask, if one has such
a metric with positive curvature on the base and on the fiber, when does gt

have positive curvature. A partial answer to this question is given by [86]:

Proposition 4.3 (Wallach). Given a homogeneous fibration as above,
assume that:

(a) The base (G, K) is a compact symmetric pair of rank one.
(b) The metric on the fiber K/H induced by Q has positive curvature.
(c) For any non-zero vectors X ∈ p and Y ∈ m we have [X, Y ] �= 0.

Then the metric gt with t < 1 has positive sectional curvature.

Proof. The interpretation as a Cheeger deformation implies that secgt ≥
0 for t ≤ 1. If we define the left invariant metric Qt on G by Qt = tQ|k+Q|m,
the projection G → G/H is a Riemannian submersion with respect to the
metrics Qt and gt. Thus, if X, Y ∈ p + m ∼= THG/H span a 0-curvature
2-plane of gt, they span a 0-curvature 2-plane of Qt as well and hence
[X, Y ] = [Xk, Yk] = [Xm, Ym] = 0 by Lemma 4.2. The vectors Xk, Yk ∈ p can
be viewed as spanning a 2-plane of the fiber K/H and since it is assumed to
have positive curvature, Xk, Yk must be linearly dependent. Similarly, since
the base has positive curvature, Xm, Ym are linearly dependent. Hence we
can find a new basis of this plane with X ∈ p and Y ∈ m. But now condition
(c) implies that [X, Y ] = 0 is impossible and thus secgt > 0. �

The condition that [X, Y ] �= 0 is equivalent to the positivity of the curva-
ture of the 2-plane spanned by X, Y , i.e. the vertizontal sectional curvatures.
This condition is the fatness condition we will discuss in Section 6.

Homogeneous examples with positive curvature

Homogeneous spaces which admit a homogeneous metric with positive
curvature have been classified by Wallach in even dimensions [86] and by
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Bérard-Bergery in odd dimensions [9]. We now describe these examples,
leaving out the compact rank one symmetric spaces as well known. In all
cases except for one, we will show that they indeed carry a metric with
positive curvature as a consequence of Proposition 4.3.

1) The first class of examples are the homogeneous flag manifolds due to
Wallach: W 6 = SU(3)/ T2, W 12 = Sp(3)/ Sp(1)3 and W 24 = F4 / Spin(8).
They are the total space of the following homogeneous fibrations:

S2 → SU(3)/ T2 → CP2,

S4 → Sp(3)/ Sp(1)3 → HP2,

S8 → F4 / Spin(8)→ CaP2.

We now show that W 6 = SU(3)/ T2 has positive curvature, the other cases
being similar. Consider the inclusions T2 ⊂ U(2) ⊂ SU(3) giving rise to
the above homogeneous fibration. Here we embed U(2) as the upper 2 × 2
block, i.e., U(2) = {diag(A, det Ā) | A ∈ U(2)}. A vector in m is of the form

Y =
(

0 v
−v̄ 0

)
with v ∈ C2 and one easily shows that [A, Y ] = Av+tr(A)v

for A ∈ u(2). Hence if X ∈ p ⊂ su(2) and Y ∈ m, [X, Y ] = 0 iff X = 0 or
Y = 0. This shows that part (c) of Proposition 4.3 holds. As for (a) and (b)
the fiber and base are symmetric spaces of rank 1 and thus SU(3)/ T2 has
positive curvature. On the other hand, one easily sees that there are vectors
X, Y ∈ m + p with [X, Y ] = 0. Thus the biinvariant metric has non-negative
curvature but with some 0-curvature 2-planes. The Cheeger deformation
deforms this metric into one with positive curvature.

2) The Berger space B13 = SU(5)/ Sp(2) · S1 admits a fibration

RP5 → SU(5)/ Sp(2) · S1 → CP4,

coming from the inclusions Sp(2) · S1 ⊂ U(4) ⊂ SU(5). Here Sp(2) ⊂ SU(4)
is the usual embedding and S1 is the center of U(4). Furthermore, the fiber
is U(4)/ Sp(2) · S1 = SU(4)/ Sp(2) · Z2 = SO(6)/ O(5) = RP5. A biinvariant
metric on SU(5) restricts to a biinvariant metric on SO(6) which induces
a metric with constant curvature on the fiber RP5. The base is clearly a
symmetric space of rank 1 and condition (c) is verified as in the previous case.

3) The Aloff-Wallach spaces W 7
p,q = SU(3)/ diag(zp, zq, z̄p+q), (p, q) =

1, form an infinite family. We claim that they have positive curvature iff
pq(p + q) �= 0. They admit a fibration

S3/Zp+q →Wp,q → SU(3)/ T2,

coming from the inclusions diag(zp, zq, z̄p+q) ⊂ U(2) ⊂ SU(3). Hence, as long
as p+q �= 0, the fiber is the lens space U(2)/ diag(zp, zq) = SU(2)/ diag(zp, zq)
with zp+q = 1.
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A vector in m again has the form Y =
(

0 v
−v̄ 0

)
. Since the Lie algebra

of H is spanned by diag(ip, iq,−(ip + iq)), we can write an element in p as

X = diag(A,− trA) where A =
(

i(2q + p)a z
−z̄ −i(q + 2p)a

)
with a ∈ R

and z ∈ C. Hence [X, Y ] = Av + i(q − p)av, i.e., A has an eigenvalue
i(p−q)a if v �= 0. But one easily shows that this is only possible when A = 0
or pq = 0. Hence condition (c) is satisfied and since (a) and (b) clearly
hold, Wp,q has positive curvature as long as pq(p + q) �= 0. If on the other
hand one of p, q or p + q is 0, say p = 0, one easily shows that the fixed
point set of diag(1,−1,−1) ∈ H = diag(zp, zq, z̄p+q) = diag(1, z, z̄) is equal
to U(2)/ diag(z, z̄) = S2 × S1/Z2. Since fixed point sets of isometries are
totally geodesic, and since S2× S1/Z2 does not carry a metric with positive
curvature, these Aloff-Wallach spaces cannot carry a homogeneous metric
with positive curvature.

4. Finally we have the Berger space: B7 = SO(5)/ SO(3). To describe
the embedding SO(3) ⊂ SO(5), we recall that SO(3) acts orthogonally via
conjugation on the set of 3 × 3 symmetric traceless matrices. This space
is special since SO(3) is maximal in SO(5) and hence does not admit a
homogeneous fibration. It is also what is called isotropy irreducible, i.e.,
the isotropy action of H on the tangent space is irreducible. This implies
that there is only one SO(5) invariant metric up to scaling. Now a direct
calculation is necessary in order to show that a biinvariant metric on SO(5)
induces positive curvature on B7.

Remark. a) The examples B7 and B13 were found by Berger [10] when
classifying normal homogeneous metrics with positive curvature i.e., met-
rics on G/H induced by a biinvariant metric on G. But in [83] B. Wilk-
ing observed that the Aloff-Wallach space W1,1 is missing since it can be
written as SU(3) SO(3)/ U(2) where a biinvariant metric induces positive
curvature.

b) In [86] Wallach also proved that if one adds to the assumptions in
Proposition 4.3 that the fiber is a symmetric pair as well, then the metrics
gt with 1 < t < 4/3 have positive curvature also. This applies to the flag
manifolds and the Berger space B13. We do not know of a simple geomet-
ric proof of this fact, similar to the one we gave in Proposition 4.3. It is
also mysterious that the limiting value 4/3 is the same as in Lemma 2.9.
The number 4/3 shows up again if one considers homogeneous metrics on
spheres, scaled in the direction of one of the Hopf fibrations with fibers
S1, S3 or S7. As was shown in [81], they have positive curvature as long as
the scale is less than 4/3. In the cases where the fiber is 3 or 7 dimensional,
the proof again requires detailed curvature estimates. It would be interesting
to obtain a uniform and less computational understanding why the number
4/3 appears in all 3 cases.
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After a classification of all homogeneous spaces which admit a metric
with positive curvature, one can ask for the best homogeneous metric, i.e.,
the one with largest pinching δ. This is a rather difficult question since
pinching constants are notoriously difficult to compute. For the homoge-
neous spaces which are not symmetric spaces of rank 1 this was done in
[79] for the flag manifolds and in [67] for the remaining cases (see also
[26, 47, 50] for previous work). Interestingly, one obtains three homoge-
neous spaces, B7, B13 and W1,1 which admit metrics with pinching δ = 1/37.
In the first two cases this is the best metric and in the latter case the
best one among all metrics invariant under SU(3) SO(3). For the flag man-
ifolds the best metric has pinching δ = 1/64. In [67] one finds numeri-
cal values for the pinching constants of the best homogeneous metrics on
Wp,q �= W1,1. It turns out to be an increasing function of p/q when 0 < p≤ q
and is in particular always <1/37. For W1,1 the set of SU(3) invariant met-
rics is 10-dimensional, which makes the computations rather difficult, even
numerically.

Biquotients with positive curvature

As explained in Section 2, biquotients G//H are obtained when
H ⊂ G×G acts on G from the left and from the right. When the action is
free, the biinvariant metric on G induces a metric on G//H with non-negative
sectional curvature. In some cases, this can be deformed via a Cheeger defor-
mation into one with positive curvature. We now describe these biquotient
examples explicitly and prove that they have positive curvature.

1) There is an analogue of the 6-dimensional flag manifold which is a
biquotient of SU(3) under an action of T2 = {(z, w) | z, w ∈ C , |z| = |w| =
1}. It is given by:

E6 = diag(z, w, zw)\SU(3)/ diag(1, 1, z2w2)−1.

The action by T2 is clearly free. In order to show that this manifold is
not diffeomorphic to the homogeneous flag W 6, one needs to compute the
cohomology with integer coefficients. The cohomology groups are the same
for both manifolds, but the ring structure is different [28]. The fact that this
manifold admits a metric with positive curvature will follow from the next
example.

2) We now describe the 7-dimensional family of Eschenburg spaces Ek,l,
which can be considered as a generalization of the Aloff Wallach spaces.
Let k := (k1, k2, k3) and l := (l1, l2, l3) ∈ Z3 be two triples of integers with∑

ki =
∑

li. We can then define a two-sided action of S1 = {z ∈ C | |z| = 1}
on SU(3) whose quotient we denote by Ek,l:

Ek,l := diag(zk1 , zk2 , zk3)\SU(3)/ diag(zl1 , zl2 , zl3)−1.
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The action is free if and only if diag(zk1 , zk2 , zk3) is not conjugate to
diag(zl1 , zl2 , zl3), i.e.

gcd(k1 − li , k2 − lj) = 1, for all i �= j , i, j ∈ {1, 2, 3} .

We now claim:

Proposition 4.4. An Eschenburg space Ek,l has positive curvature if

ki /∈ [min(l1, l2, l3), max(l1, l2, l3)]

holds for all 1 ≤ i ≤ 3.

Proof. As a metric we choose the one induced by a left invariant metric
on SU(3), in fact the same one as in Lemma 4.2 that we used for W 6 and
W 7

p,q. We first describe in a more explicit fashion the set of 0-curvature 2
planes.

Lemma 4.5. Let Qt be a left invariant metric on SU(3) as in Lemma 4.2
with G = SU(3) and K = U(2) = diag(A, det Ā). A 0-curvature 2-plane
either contains a vector of the form X = diag(i, i,−2i), which lies in the
center of U(2), or one of the form X = Ad(k) diag(−2i, i, i) for some k ∈ K.

Proof. By Lemma 4.2 a 0-curvature 2-plane is spanned by X, Y with
[X, Y ] = [Xk, Yk] = [Xp, Yp] = 0. Since Xp, Yp are tangent to G/K = CP2,
they are linearly dependent, and we can thus assume that Xp = 0. If X, Y
both lie in k, the fact that [X, Y ] = 0 implies that the 2-plane intersects
the center of u(2) ∼= R ⊕ su(2), i.e. it contains X = diag(i, i,−2i). If not,

let X = diag(A,− trA) and Yp =
(

0 v
−v̄ 0

)
with 0 �= v ∈ C2. Then 0 =

[X, Yp] = Av + (trA)v implies that − trA and 2 trA are eigenvalues of A
which means A is conjugate to diag(−2i, i), which proves our claim. �

In order to show that Qt induces positive curvature on Ek,l, we need
to prove that a 0-curvature 2-plane can never be horizontal, i.e., it can-
not be orthogonal to the vertical direction of the S1 action. Let X1 =
idiag(k1, k2, k3) and X2 = idiag(l1, l2, l3). Then the vertical space at g ∈
SU(3) is spanned by (Rg)∗(X1)− (Lg)∗(X2), where Rg and Lg are right and
left translations. Since the metric is left invariant, we can translate hori-
zontal and vertical space back to e ∈ SU(3) via L∗

g−1 . Thus the translated
vertical space is spanned by Ad(g−1)X1 −X2. We now need to show that a
vector as in Lemma 4.5 can never be orthogonal to it.

To facilitate this computation, observe the following. If t is the Lie
algebra of a maximal torus in G, then critical points of the function g →
Q(Ad(g)A, H) for fixed A, H ∈ t are obtained when Ad(g)A ∈ t also. Indeed,
if g0 is critical, we have 0 = Q([Y,Ad(g0)A], H) = Q([Ad(g0)A, H], Y ) for all
Y ∈ g and thus [Ad(g0)A, H] = 0. For a generic vector H ∈ t we have that
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exp(tH) is dense in the compact torus exp(t) and hence [Ad(g0)A, t] = 0
which by maximality of t implies that Ad(g0)A ∈ t. If H is not generic, the
claim follows by continuity.

We now apply this to the function Qt(Ad(g)X1 − X2, diag(i, i,−2i))
which we need to show is never 0. This amounts to showing that Q(Ad(g)X1,
diag(i, i,−2i)) �= Q(diag(i, i,−2i), X2) = l1 + l2 − 2l3. But maximum and
minimum of the left hand side, according to the above observation, lies
among the values kr + ks − 2kt, r, s, t distinct. Subtracting

∑
ki =

∑
li we

see that one needs to assume that l3 /∈ [min(ki), max(ki)]. Next, according to
Lemma 4.5, we need Q(Ad(g) diag(−2i, i, i), X1) �= Q(Ad(k) diag(−2i, i, i),
X2)) for any g ∈ G and k ∈ K. According to the above principle, the left
hand side has max and min among kr + ks − 2kt whereas the right hand
side among −2l1 + l2 + l3, −2l2 + l1 + l3. Thus we need to assume that the
interval [min(l1, l2), max(l1, l2)] does not intersect [min(ki), max(ki)]. This is
one of the possible cases. To obtain one of the other ones, we can choose a
different block embedding for K = U(2) ⊂ SU(3). �

Among the biquotients Ek,l there are two interesting subfamilies. Ep =
Ek,l with k = (1, 1, p) and l = (1, 1, p + 2) has positive curvature when
p > 0. It admits a large group acting by isometries. Indeed, G = SU(2) ×
SU(2) acting on SU(3) on the left and on the right, acts by isometries in
the Eschenburg metric and commutes with the S1 action. Thus it acts by
isometries on Ep and one easily sees that Ep/G is one dimensional, i.e., Ep

is cohomogeneity one. A second family consists of the cohomogeneity two
Eschenburg spaces Ea,b,c = Ek,l with k = (a, b, c) and l = (1, 1, a + b + c).
Here c = −(a+b) is the subfamily of Aloff-Wallach spaces. The action is free
iff a, b, c are pairwise relatively prime and the Eschenburg metric has positive
curvature iff, up to permutations, a ≥ b ≥ c > 0 or a ≥ b > 0, c < −a. For
these spaces G = U(2) acts by isometries on the right and Ea,b,c/G is two
dimensional. For a general Eschenburg space G = T3 acts by isometries and
Ek,l/G is four dimensional. In [39] it was shown that these groups G are
indeed the id component of the full isometry group of a positively curved
Eschenburg space (unless it is an Aloff-Wallach space).

To see that the biquotient SU(3)// T2 has positive curvature, we can
view it as an S1 quotient of the Eschenburg spaces diag(zp, zq, zp+q)\SU(3)/
diag(1, 1, z2p+2q)−1 which has positive curvature when pq > 0.

3) We finally have the 13-dimensional Bazaikin spaces Bq, which can be
considered as a generalization of the Berger space B13. Let q = (q1, . . . , q5)
be a 5-tuple of integers with q =

∑
qi and define

Bq = diag(zq1 , . . . , zq5)\SU(5)/ diag(zq, A)−1,

where A ∈ Sp(2) ⊂ SU(4) ⊂ SU(5). Here we follow the treatment in [89] of
Bazaikin’s work [3]. First, one easily shows that the action of Sp(2) · S1 is
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free if and only if

all qi’s are odd and gcd(qσ(1) + qσ(2), qσ(3) + qσ(4)) = 2,

for all permutations σ ∈ S5. On SU(5) we choose an Eschenburg metric by
scaling the biinvariant metric on SU(5) in the direction of U(4) ⊂ SU(5).
The right action of Sp(2) · S1 is then by isometries. Repeating the same
arguments as in the previous case, one shows that the induced metric on
SU(5)// Sp(2) · S1 satisfies

sec > 0 if and only if qi + qj > 0 (or < 0) for all i < j.

The special case of q = (1, 1, 1, 1, 1) is the homogeneous Berger space. One
again has a one parameter subfamily that is cohomogeneity one, given by
Bp = B(1,1,1,1,2p−1) since U(4) acting on the left induces an isometric action
on the quotient. It has positive curvature when p ≥ 1.

Unlike in the homogeneous case, there is no general classification of posi-
tively curved biquotients, except in the following cases. We call a metric on
G//H torus invariant if it is induced by a left invariant metric on G which is
also right invariant under the action of a maximal torus. The main theorem
in [28] states that an even dimensional biquotient G//H with G simple and
which admits a positively curved torus invariant metric is diffeomorphic to
a rank one symmetric space or SU(3)//T 2. In the odd dimensional case he
shows that G//H with a positively curved torus invariant metric and G of
rank 2 is either diffeomorphic to a homogeneous space or a positively curved
Eschenburg space. In particular, the sufficient conditions in Proposition 4.4
are also necessary not only for Eschenburg metrics, but more generally torus
invariant metrics. The classification of the remaining odd dimensional posi-
tively curved biquotients with rkG > 2 was taken up again in [12], where it
was shown that if one assumes in addition that H = H1 ·H2 with H1 of rank
one and such that H2 has no rank one factors and operates only on one side
of G, the manifold is diffeomorphic to a homogeneous space, an Eschenburg
space, or a Bazaikin space with positive curvature. The case where G is not
simple, on the other hand, is wide open. As we will see in Section 5, one
obtains a large number of examples with almost positive curvature in this
more general class of biquotients.

Not much is known about the pinching constants of the positively curved
metrics on biquotients. One easily sees that for a sequences of Eschenburg
spaces Ek,l where (k/|k|, l/|l|) converges to ((1, 1,−2)/

√
6, (0, 0, 0)), the

pinching of the Eschenburg metric converges to 1/37. In [25] W. Dickinson
proved that for a general positively curved Eschenburg space Ek,l with its
Eschenburg metric one has δ ≤ 1/37 with equality only for W1,1. Further-
more, the pinching constant for the cohomogeneity one Eschenburg spaces
Ep goes to 0 when p→∞.
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Fundamental groups of positively curved manifolds

A classical conjecture of S.S. Chern states that, analogously to the
Preismann theorem for negative curvature, an abelian subgroup of the fun-
damental group of a positively curved manifold is cyclic. This is in fact not
true. The first counter examples were given in [71], and further ones in [38]
(see also [4]):

Theorem 4.6. The following groups act freely on a positively curved
manifold:

(a) (Shankar) Z2 ⊕ Z2 on the Aloff Wallach space W1,1 and the coho-
mogeneity one Eschenburg space E2.

(b) (Grove-Shankar) The group Z3 ⊕ Z3 on the Aloff Wallach space
Wp,q if 3 does not divide pq(p + q).

In the case of W1,1 = G/H = SU(3)/ diag(z, z, z̄2) this follows since
N(H)/H = U(2)/Z(U(2)) = SO(3) acts isometrically in the Eschenburg
metric and the right action of N(H)/H is free on any G/H. Thus a finite
subgroup of SO(3) acts freely as well. Further example are given in [39]
for the cohomogeneity two Eschenburg spaces. But there are no examples
known where π1(M) = Zp ⊕ Zp, p > 3 a prime, acts freely on a positively
curved manifold.

Topology of positively curved examples

In dimension 7 and 13 we have infinitely many homotopy types of pos-
itively curved manifolds since an Eschenburg spaces satisfies H4(Ek,l, Z) =
Zr with r = σ2(k)−σ2(l) and for a Bazaikin spaces one has H6(Bq, Z) = Zr

with 8r = σ3(q)− σ1(q)σ2(q) where σi is the elementary symmetric polyno-
mial of degree i. On the other hand, for a fixed cohomology ring, there are
only finitely many known examples [20, 32]. A classification of 7-dimensional
manifolds whose cohomology type is like that of an Eschenburg space was
obtained by Kreck-Stolz [58] in terms of certain generalized Eells-Kuiper
invariants. They also computed these invariants for the Aloff Wallach spaces
and obtained examples that are homeomorphic but not diffeomorphic.
Kruggel [57] computed the Kreck-Stolz invariants for a general Eschenburg
space in terms of number theoretic sums and Chinburg-Escher-Ziller [20]
found further examples of this type.

Theorem 4.7. One has the following examples with positive curvature:
(a) The pair of Aloff Wallach spaces Wk,l with (k, l) = (56.788, 51.561)

and (k, l) = (61.213, 18.561) and the pair of Eschenburg spaces Ek,l

with (k; l) = (79, 49, −50; 0, 46, 32) and (k; l) = (75, 54, −51;
0, 46, 32) are homeomorphic to each other but not diffeomorphic.

(b) The pair of Aloff Wallach spaces Wk,l with (k, l) = (4.638.661,
4.056.005) and (k, l) = (5.052.965, 2.458.816) and the pair of
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Eschenburg spaces Ek,l with (k; l) = (2.279, 1.603, 384; 0, 0, 4.266)
and (k; l) = (2.528, 939, 799; 0, 0, 4.266) are diffeomorphic to each
other but not isometric.

The diffeomorphic pairs of Aloff-Wallach spaces give rise to different
components of the moduli space of positively curved metrics [59], in fact
these two metrics cannot be connected even by a path of metrics with posi-
tive scalar curvature. The diffeomorphic pair of Eschenburg spaces are inter-
esting since such cohomogeneity two manifolds also carry a 3-Sasakian metric
(see Section 6) and they give rise to the first known manifold which carries
two non-isometric 3-Sasakian metrics.

The situation for the Bazaikin spaces seems much more rigid. A compu-
tation of the Pontryagin classes and the linking form indicates, verified for
the first 2 Billion examples, that Bazaikin spaces are all pairwise diffeomor-
phically distinct, see [32]. There is also only one Bazaikin space, the Berger
space B13, which is homotopy equivalent to a homogeneous space.

The Berger space B7 = SO(5)/ SO(3) plays a special role. It is, apart
from spheres, the only known odd dimensional positively curved manifold
which is 2-connected, which should be compared with the finiteness theorem
by Fang-Rong and Petrunin-Tuschmann mentioned in Section 1. It is also,
apart from the Hopf bundle, the only S3 bundle over S4 which is known to
have positive curvature since it was shown in [35] that it is diffeomorphic
to such a bundle. The topology of S3 bundles over CP2 is studied in [31]
where it is shown that they are frequently diffeomorphic to positively curved
Eschenburg spaces when the bundle is not spin. It is thus natural to ask:

Problem 6. Does every S3 bundles over S4, and every S3 bundle over
CP2 which is not spin, admit a metric with positive curvature. Do S3-
principal bundles over S4, and SO(3)-principal bundles over CP2 which are
not spin, admit a metric with positive curvature invariant under the princi-
pal bundle action.

Notice that the existence in the latter case would imply infinitely many
homotopy types of positively curved manifolds in dimension 6. Also recall
that there are two SO(3)-principal bundles over CP2 with such positively
curved metrics and that all bundles in Problem 6 have a metric with non-
negative curvature.

5. Examples with almost positive or almost
non-negative curvature

As was suggested by Fred Wilhelm, there are two natural classes of
metrics that lie in between non-negative curvature and positive curvature.
In an initial step of deforming a non-negatively curved metric into one with
positive curvature one can first make the curvature of all two planes at a
point positive. We say that a metric has quasi positive curvature if there
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exists an open set such that all sectional curvatures in this open set are
positive. In a second step one can try to deform the metric so that all
sectional curvatures in an open and dense set are positive. We say that
a metric with this property has almost positive curvature. It is natural to
suggest that there should be obstructions to go from non-negative to quasi
positive curvature and from almost positive to positive curvature, but that
one should always be able to deform a metric from quasi positive to almost
positive curvature.

The first example of a manifold with almost positive curvature was given
by P.Petersen and F.Wilhelm in [66], where it was shown that T1S4 has
this property. In [82] it was shown that the Gromoll Meyer sphere Σ7 =
Sp(2)// Sp(1) admits a metric with almost positive curvature as well. See
[29, 30] for a simpler proof for a slightly different metric on Σ7.

We now describe some remarkable examples of metrics with almost pos-
itive curvature due to Wilking [84]:

Theorem 5.1 (Wilking). Let M be one of the following manifolds:

(a) One of the projectivised tangent bundles PRT (RPn), PCT (CPn), or
PHT (HPn).

(b) The homogeneous space M4n−1
p,q = U(n + 1)/Hk,l with Hk,l = {diag

(zp, zq, A) | |z| = 1, A ∈ U(n− 1)}, where pq < 0 and (p, q) = 1.

Then M carries a metric with almost positive curvature.

Here projectivised means that we identify a tangent vector v with λv
where λ ∈ R, C or H respectively. Notice that in contrast to the known
positively curved examples, these almost positively curved manifolds exist
in arbitrarily high dimensions. Furthermore, in the case of n = 2 these are
one of the known manifolds with positive curvature, namely PCT (CP2) and
PHT (HP2) are the flag manifolds W 6 and W 12 and M7

p,q is the Aloff Wallach
space Wp,q. Notice that the unique Aloff Wallach space W1,0 = W1,−1 which
does not admit a homogeneous metric with positive curvature, thus admits
a metric with almost positive curvature.

These examples also show that in general a metric with almost positive
curvature cannot be deformed to positive curvature everywhere. Indeed,
PRT (RP2n+1) is an odd dimensional non-orientable manifold and hence by
Synge’s theorem does not admit positive curvature. A particularly interest-
ing special case is PRT (RP3) = RP3 × RP2 and PRT (RP7) = RP7 × RP6.
If the manifold is compact and simply connected, it is not known whether
an almost positively curved metric can be deformed to positive curvature.
On the other hand, there either are obstructions, or the generalized Hopf
conjecture on S3 × S2 is false.

Proof. We prove Theorem 5.1 in the simplest case of PRT (RP3) =
RP3 × RP2.
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Define a left invariant metric g on G = S3×S3 by scaling a biinvari-
ant metric on g in the direction of the diagonal subgroup K = Δ S3 as in
Lemma 4.2. Since G/K = S3 is a symmetric pair of rank one, and since
(X, Y )k = 1

2(X + Y, X + Y ) and (X, Y )m = 1
2(X − Y,−X + Y ), Lemma 4.2

implies that a 0 curvature plane is spanned by vectors (u, 0), (0, u) with
0 �= u ∈ Im H. Here we regard S3 as the unit quaternions with Lie algebra
Im H. G acts on T1S3 = {(p, v) | |p| = |v| = 1, 〈u, v〉 = 0} via (q1, q2)�(p, v) =
(q1pq−1

2 , q1vq−1
2 ) and the isotropy group of (1, i) is equal to H = (eiθ, eiθ)

and thus G/H = T1S3. We can rewrite the homogeneous space G/H as a
biquotient ΔG\G×G/(1×H) since ΔG\G×G = G.

We now claim that the product metric g + g on G×G induces a metric
with almost positive curvature on ΔG\G × G/(1 × H). For this, notice
that each orbit of ΔG acting on the left on G × G contains points of
the form p = (ā, b̄, 1, 1), a, b ∈ S3. The vertical space, translated to the
identity via left translation with (a, b, 1, 1), is equal to the direct sum of
(Ad(a)v, Ad(a)w, v, w) with v, w ∈ Im H and (0, 0, i, i) ·R. If we set g(A, B)
= Q(PA, B) where Q is a biinvariant metric on G, a horizontal vector is of
the form

(
P−1(−Ad(a)v,−Ad(b)w), P−1(v, w)

)
with (v, w)⊥(i, i). Since P

clearly preserves 2-planes spanned by (v, 0), (0, v), a horizontal 0-curvature
plane is spanned by

(
P−1(−Ad(a)v, 0), P−1(v, 0)

)
and

(
P−1(0,−Ad(b)v),

P−1(0, v)
)

with Ad(a)v = ±Ad(b)v. Thus āb either commutes or anticom-
mutes with v ∈ Im H and since also v⊥i, either āb⊥i or āb⊥1. Hence points
with 0-curvature 2 planes lie in two hypersurfaces in G/H.

Since the group L generated by (1,−1) and (j, j) normalizes H, and
since the left invariant metric g is also right invariant under L, the quotient
G/H ·L inherits a metric with almost positive curvature and one easily sees
that this quotient is PRT (RP3) = RP3 × RP2. �

See [84] for further examples. In [76] K. Tapp proved that the unit tan-
gent bundles of CPn, HPn and CaP2, as well as the manifolds in Theorem 5.1
(b) with pq > 0, have quasi positive curvature. In [56] M. Kerin showed that
all Eschenburg spaces have a metric with quasi positive curvature and that
E0, the unique cohomogeneity one Eschenburg space which does not admit a
cohomogeneity metric with positive curvature, admits a metric with almost
positive curvature.

All known examples of almost positive curvature (and in fact all posi-
tively curved examples as well) can be described, after possibly enlarging
the group, as so called normal biquotients, i.e., M = G//H with metric
on M induced by a biinvariant metric on G. B. Wilking showed in [84]
that for such normal biquotients the exponential image of a 0-curvature
2-plane is totally geodesic and flat. As was observed by K. Tapp, this remains
true more generally for a Riemannian submersion G → M . It is a natural
question to ask if the existence of an immersed flat 2-torus is sometimes
an obstruction to deform a metric with non-negative curvature to one with
positive curvature.
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In [84] one finds a number of natural open questions:
• Can every quasi positively curved metric be deformed to almost

positive curvature.
• Can a quasi positively curved metric where the points with 0-

curvatures are contained in a contractible set be deformed to posi-
tive curvature.

• Does an even dimensional almost positively curved manifold have
positive Euler characteristic.

Almost non-negative curvature

We say that a manifold M has almost non-negative curvature if there
exists a sequence of metrics gi, normalized so that the diameter is at most
1, with sec(gi) ≥ −1/i for all i ∈ N. This includes the almost flat manifolds
where sec(gi) ≤ 1/i as well. By Gromov’s almost flat manifold theorem, the
latter are finitely covered by a compact quotient of a nilpotent Lie group
under a discrete subgroup.

This is a much larger class of manifolds. Besides being invariant under
taking products, it is also well behaved under fibrations. In [34], Fukaya-
Yamaguchi showed that:

Theorem 5.2 (Fukaya-Yamaguchi). The total space of a principal G-
bundle with G compact over an almost non-negatively curved manifold is
almost non-negatively curved as well.

To see this, one puts a metric on the total space M such that the projec-
tion onto the base is a Riemannian submersion with totally geodesic fibers.
Scaling the metric on M in the direction of the fibers then has the desired
properties as the scale goes towards 0.

Thus every associated bundle P ×G F , where G acts isometrically on
a non-negatively curved manifold F, has almost non-negative curvature as
well. This applies in particular to all sphere bundles.

As was shown in [70], this class also includes all cohomogeneity one
manifolds:

Theorem 5.3 (Schwachhöfer-Tuschmann). Every compact cohomogene-
ity one manifold has almost non-negative curvature.

Proof. As was observed by B. Wilking, this follows easily by using a
Cheeger deformation. If a compact group G acts by cohomogeneity one on
M then M/G is either a circle or an interval. In the first case M carries a G-
invariant metric with non-negative curvature. In the second case we choose
a G-invariant metric g on M which has non-negative curvature near the two
singular orbits. This is clearly possible since a neighborhood of a singular
orbit is a homogeneous disk bundle G×K D. We now claim that a Cheeger
deformation gt with respect to the action of G on M has almost positive
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curvature as t → ∞. Setting s = 1/t, the metric on M = M × G/ΔG is
induced by a metric of the form g + sQ on M × G. Thus its diameter is
clearly bounded as s → 0. On the regular part, we can assume that our
2-plane is spanned by vectors X + αT and Y , where X, Y are tangent to a
principal orbit and T is a unit vector orthogonal to all principal orbits. As
we saw in Section 2, the horizontal lift of these vectors to M ×G under the
Riemannian submersion M×G→M are of the form (sP−1(sP−1+Id)−1X+
αT,−(sP−1 +Id)−1X) and (sP−1(sP−1 +Id)−1Y,−(sP−1 +Id)−1Y ). Only
the first component can contribute to a negative curvature. The curvature
tensor of this component goes to 0 with s, of order 2 if α �= 0 and of order
4 if α = 0. On the other hand, |(X + αT ) ∧ Y |2gt

goes to 0 with order 1 if
α �= 0 and order 2 if α = 0. Hence the negative part goes to 0 as s→ 0. �

The main obstruction theorems for almost non-negative curvature are:

• (Gromov) The Betti numbers are universally bounded in terms of
the dimension.

• (Fukaya-Yamaguchi [34]) The fundamental group contains a nilpo-
tent subgroup of finite index.

• (Kapovitch-Petrunin-Tuschmann [54]) A finite cover is a nilpotent
space, i.e. the action of the fundamental group on its higher homo-
topy groups is nilpotent,

Notice that a compact quotient of a nilpotent non-abelian Lie group
has almost non-negative curvature, but does not admit a metric with non-
negative curvature. On the other hand, for simply connected manifolds there
are no known obstructions which could distinguish between almost non-
negative and non-negative (or even positive) curvature. As was suggested by
K. Grove, it is also natural to formulate the Bott conjecture more generally
for almost non-negatively curved manifolds.

6. Where to look for new examples?

There are two natural suggestions where one might look for new exam-
ples with positive sectional curvature. The first is given by a structure that
almost all known examples share. They are the total space of a Riemannian
submersion. If one considers the more general class where the base space of
the submersion is allowed to be an orbifold, then all known examples share
this property, see [33].

Fiber bundles

A. Weinstein [87] considered fiber bundles π : M → B, where π is a
Riemannian submersions with totally geodesic fibers. He called such a bun-
dle fat if all vertizontal curvatures, i.e. the curvature of a 2-plane spanned
by a horizontal and a vertical vector, are positive. This seemingly week
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assumption already places strong restrictions on the bundle. In fact, one
has [21]:

Theorem 6.1. (Derdzinski-Rigas) Every S3 bundle over S4 which is fat
is a Hopf bundle.

This negative result seems to have discouraged the study of fat fiber
bundles until recently. On the other hand, as we saw in Proposition 4.3,
most homogeneous examples of positive curvature are the total space of a
fat bundle. See [90] for a survey of what was known up to that point. In
Theorem 6.7 we will see that there are infinitely many S3 orbifold bundles
over S4 which are fat. It is thus natural and important to study fat bundles
in this more general category.

A natural class of metrics is given by a connection metric on a principal
G-bundle π : P → B, sometimes also called a Kaluza Klein metric. Here
one chooses a principal connection θ, a metric g on the base B, and a fixed
biinvariant metric Q on G and defines:

gt(X, Y ) = tQ(θ(X), θ(Y )) + g(π∗(X), π∗(Y )).

The projection π is then a Riemannian submersion with totally geodesic
fibers isometric to (G, tQ). Weinstein observed that the fatness condition
is equivalent to requiring that the curvature Ω of θ has the property that
Ωu = Q(Ω, u) is a symplectic 2-form on the horizontal space for every u ∈ g.
If G = S1, this is equivalent to the base being symplectic. If one wants to
achieve positive curvature on the total space, we need to assume, in addition
to the base having positive curvature, that G = S1, SU(2) or SO(3). In [17]
a necessary and sufficient condition for positive curvature of such metrics
was given. The proof carries over immediately to the category of orbifold
principal bundles, which includes the case where the G action on P has only
finite isotropy groups.

Theorem 6.2. (Chaves-Derdzinski-Rigas) A connection metric gt on an
orbifold G-principal bundle with dimG ≤ 3 has positive curvature, for t
sufficiently small, if and only if

(∇xΩu) (x, y)2 < |ixΩu|2kB(x, y),

for all linearly independent horizontal vectors x, y and 0 �= u ∈ g.

Here kB(x, y) = g(RB(x, y)y, x) is the unnormalized sectional curvature
and ixΩu �= 0 is precisely the above fatness condition. We call a principal
connection with this property hyperfat.

The simplest examples of hyperfat principal connections are given by
the Aloff-Wallach spaces Wk,l, considered as a circle bundle over SU(3)/T 2,
since the fibers of a homogeneous fibration are totally geodesic. As mentioned
earlier, W1,1 can also be considered as an SO(3) principal bundle over CP2
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which thus carries an SO(3) hyperfat connection (a fact first observed in
[16]). In the orbifold category one has many more examples. Recall that a
metric is called 3-Sasakian if SU(2) acts isometrically and almost freely with
totally geodesic orbits of curvature 1. Moreover, for U tangent to the SU(2)
orbits and X perpendicular to them, X ∧U is required to be an eigenvector
of the curvature operator R̂ with eigenvalue 1. In particular the vertizontal
curvatures are equal to 1, i.e., the bundle is fat. This gives rise to a large new
class of fat orbifold principal bundles, see [13] for a survey. The dimension of
the base is a multiple of 4, and its induced (orbifold) metric is quaternionic
Kähler with positive scalar curvature. One easily sees that the condition on
the curvature operator is equivalent to ∇xΩu = 0 for all u ∈ g. Hence we
obtain the following Corollary, which was proved independently in [22]:

Corollary 6.3. A 3-Sasakian manifold has positive sectional curvature,
after the metric in the direction of the SU(2) orbits is scaled down suffi-
ciently, if and only if the quaternionic Kähler quotient has positive sectional
curvature.

In [11] it was shown that a quaternionic Kähler manifold of dimension
4n > 4 has positive sectional curvature if and only if it is isometric to HPn,
which also holds for orbifolds. When the base is 4-dimensional, quaternionic
Kähler is equivalent to being self dual Einstein and here an interesting new
family of examples arises. In [14] it was shown that the cohomogeneity two
Eschenburg spaces Ea,b,c = diag(za, zb, zc)\SU(3)/ diag(1, 1, za+b+c), with
a, b, c positive and pairwise relatively prime, carry a 3-Sasakian metric with
respect to the right action by SU(2). The quotients are weighted projective
spaces and Dearricott examined their sectional curvatures in [23]:

Corollary 6.4. (Dearricott) The principal connection for the 3-Sasakian
manifold Ea,b,c with 0 < a ≤ b ≤ c is hyperfat if and only if c2 < ab.

Although the total space also carries an Eschenburg metric with positive
curvature, the projection to the base in that case does not have totally
geodesic fibers.

Since many of the known examples are also the total space of sphere
bundles, it is natural to study this category as well. A connection metric
on a sphere bundle can be defined in terms of a metric connection ∇ on
the corresponding vector bundle. It induces a horizontal distribution on
the sphere bundle and the fibers are endowed with a metric of constant
curvature. An analogue of 6.2 for sphere bundles was proved in [75]:

Theorem 6.5 (Tapp). A connection metric on an orbifold sphere bundle
E → B has positive curvature, for sufficiently small radius of the fibers, if
and only if

〈(∇xR∇)(x, y)u, v〉2 < |R∇(u, v)x|2kB(x, y),
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for all linearly independent x, y ∈ TpB and u, v ∈ Ep, where we have set
〈R(u, v)x, y〉 = 〈R(x, y)u, v〉

Notice that R∇(u, v)x �= 0 for all u ∧ v �= 0, x �= 0, means that
(x, y) →< R∇(x, y)u, v > is nondegenerate for all u ∧ v �= 0. But this is
simply Weinstein’s fatness condition for the sphere bundle.

Known examples are the homogeneous Wallach flag manifolds W 6, W 12,
W 24. The Aloff-Wallach spaces Wp,q with p + q = 1 are hyperfat S3 bundles
over CP2. Furthermore, the 3-Sasakian Eschenburg spaces Ea,b,c in Corol-
lary 6.4, where one of a, b, c is even, are hyperfat S3 orbifold bundles and
the associated S2 bundle Ea,b,c/ S1 → Ea,b,c/ SU(2) is hyperfat as well. If the
base is a manifold, the condition ∇R = 0 is rather restrictive. For example,
if the base is a symmetric space, it was shown in [45] that the bundle must
be homogeneous. Homogeneous fat fiber bundles were classified in [8]. If the
fiber dimension is larger than one, the base is symmetric. But if we assume
in addition that the base has positive curvature, only the Wallach spaces
remain.

The fiber bundle structure for most of the Eschenburg spaces and
Bazaikin spaces do not have totally geodesic fibers. The Berger space B7 =
SO(5)/ SO(3) is also the total space of an SU(2) orbifold principal bundle
over S4, but the fibers are again not totally geodesic. It is therefore also
natural to examine warped connection metrics on the total space where the
metric on the fiber is multiplied by a function on the base, see [75, 72]. But
notice that the known fibrations of the Eschenburg and Bazaikin spaces,
with fiber dimension bigger than one, are not of this form either. Connec-
tion metrics with non-negative curvature have also been studied in [73, 88]
and [72].

Cohomogeneity one manifolds

A second natural class of manifolds where one can search for new exam-
ples, especially in light of Theorem 4.1, are manifolds with low cohomogene-
ity. Positively curved homogeneous spaces are classified, so cohomogeneity
one manifolds are the natural next case to study.

There are many cohomogeneity one actions on symmetric spaces of rank
one. Among the examples of positive curvature discussed in Section 4, one
has a number of other cohomogeneity one actions. As mentioned there, the
positively curved Eschenburg spaces

E7
p = diag(z, z, zp)\SU(3)/ diag(1, 1, z̄p+2), p ≥ 1,

and the Bazaikin spaces

B13
p = diag(z, z, z, z, z2p−1)\SU(5)/ Sp(2) diag(1, 1, 1, 1, z̄2p+3), p ≥ 1,

admit cohomogeneity one actions. Two further examples are the Wallach
space W 7

1,1 = SU(3) SO(3)/ U(2) where SO(3) SO(3) acts by cohomogeneity
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one, and the Berger space B7 = SO(5)/ SO(3) with SO(4) ⊂ SO(5) acting
by cohomogeneity one.

In even dimensions, L. Verdiani [80] classified all positively curved coho-
mogeneity one manifolds. Here only rank one symmetric spaces arise. In odd
dimensions, one finds a “preclassification” in [41]. In dimension seven, a new
family of candidates arises: Two infinite families Pk, Qk, k ≥ 1, and one iso-
lated manifold R. The group diagram for Pk is similar to the one considered
in Theorem 2.10:

H = ΔQ ⊂ {(eiθ, eiθ) ·H , (ej(1−2k)θ, ej(1+2k)θ) ·H} ⊂ S3×S3,

whereas the one for Qk is given by

H = {(±1,±1), (±i,±i)} ⊂ {(eiθ, eiθ) ·H, (ejkθ, ej(k+1)θ) ·H} ⊂ S3×S3 .

R is similar to Qk with slopes (3, 1) on the left, and (1, 2) on the right.

Theorem 6.6. (Verdiani, Grove-Wilking-Ziller) A simply connected coho-
mogeneity one manifold M with an invariant metric of positive sectional
curvature is equivariantly diffeomorphic to one of the following:

• An isometric action on a rank one symmetric space,
• One of E7

p , B13
p or B7,

• One of the 7-manifolds Pk, Qk, or R,
with one of the actions described above.

The first in each sequence Pk, Qk admit an invariant metric with positive
curvature since P1 = S7 and Q1 = W 7

1,1.
Among the cohomogeneity one manifolds with codimension 2 singular

orbits, which all admit non-negative curvature by Theorem 2.5, are two
families like the above Pk and Qk, but where the slopes for K± are arbi-
trary. It is striking that in positive curvature, with one exception, only the
above slopes are allowed. The exception is given by the positively curved
cohomogeneityone action on B7, where the isotropy groups are like those
for Pk with slopes (3,−1) and (−1, 3). In some tantalizing sense then, the
exceptional Berger manifold B7 is associated with the Pk family in an ana-
logues way as the exceptional candidate R is associated with the Qk family.
It is also surprising that all non-linear actions in the above Theorem, apart
from the Bazaikin spaces B13

p , are cohomogeneity one under a group locally
isomorphic to S3×S3.

These candidates also have interesting topological properties. Qk has the
same cohomology groups as Ek with H4(Qk, Z) = Zk. The manifolds Pk are
all 2-connected with H4(Pk, Z) = Z2k−1. Thus it is natural to ask:

Problem 7. Are any of the manifolds Qk, k > 1, diffeomorphic to a
positively curved Eschenburg space? Are any of the manifolds Pk, k > 1,
diffeomorphic to an S3 bundle over S4?
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Manifolds of this type are classified by their Kreck-Stolz invariants, but
these can be very difficult to compute in concrete cases.

A somewhat surprising property that these candidates also have is that
they admit fat principal connections, in fact they admit 3-Sasakian metrics:

Theorem 6.7. Pk and Qk admit 3-Sasakian metrics which are orbifold
S3-principal bundles over S4 respectively CP2.

This follows [41] from the celebrated theorem due to Hitchin [48] that
S4 admits a family of self dual Einstein orbifold metrics invariant under the
cohomogeneity one action by SO(3), one for each k ≥ 1, which is smooth
everywhere except normal to one of the singular orbits where it has angle
2π/k. One then shows that the induced 7-dimensional 3-Sasakian metric
has no orbifold singularities, and by comparing the isotropy groups of the
cohomogeneity one actions, it follows that they are equivariantly diffeomor-
phic to Pk and Qk. Unfortunately, the self dual Einstein metric on the base
does not have positive curvature, unless k = 1, corresponding to the smooth
metrics on S4 respectively CP2. So Corollary 6.3 does not easily yield the
desired metrics of positive curvature on Pk and Qk.

Hence these candidates surprisingly have both features, they admit coho-
mogeneity one actions, and are also the total space of an orbifold principal
bundle. Both of these properties thus suggest concrete ways of finding new
metrics with positive curvature. We thus end with our final problem.

Problem 8. Do all manifolds Pk , Qkand R admit a cohomogeneity met-
ric with positive curvature?

Notice that a positive answer for the manifolds Pk would give infinitely
many homotopy types of positively curved 2-connected manifolds. Thus the
pinching constants δk, for any metric on Pk, would necessarily go to 0 as
k → ∞, and Pk would be the first examples of this type. It is natural to
suggest that the manifolds Ep, although not 2-connected, should have the
same property since the pinching constant for the Eschenburg metric goes
to 0 as p→∞.
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[61] P. Müter, Krümmungserhöhende Deformationen mittels Gruppenaktionen, Ph.D. the-

sis, Univerity of Münster, 1987.
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[67] T. Püttmann, Optimal pinching constants of odd dimensional homogeneous spaces,

Invent. math. 138, (1999), 631–684.
[68] A. Rigas, Geodesic spheres as generators of the homotopy groups of O, BO, J. Dif-

ferential Geom. 13 (1978), 527–545.
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