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Editorial: On the interface of statistics and
machine learning

Andreas Christmann and Xiaotong Shen

This special issue in Statistics and Its Interface is devoted
to several statistical topics in machine learning which obtain
great interdisciplinary research interests. In statistics, ma-
chine learning has been also extensively studied under the
name of nonparametric classification and regression. In the
past few years, statistics has seen very significant develop-
ments particularly in the areas of nonparametric classifi-
cation and regression. These developments are driven by a
fundamental understanding of the phenomenon of the bias-
variance trade-off in function estimation and many appli-
cations in science and engineering. While computer scien-
tists and engineers deal with decision functions for classifi-
cation, statisticians focus more on conditional probabilities
that yield decision functions.

These developments are mainly driven by the following
facts. There is still an increasing interest in real applica-
tions to automatically analyze large and high-dimensional
data sets with unknown complex dependency structures ba-
sically without any prior knowledge on the data generating
distribution. We mention here only data-, text-, and web-
mining, fraud detection, non-parametric classification and
regression. The computational resources have become avail-
able to store huge data sets on the hard-disk and to process
these data sets on faster computers, perhaps even using par-
allel CPUs. Many advances were made in the fundamental
understanding of the learning process.

There exists a vast body of literature on statistical learn-
ing, especially for classification and regression purposes, and
no attempt will be made to give an overview. We would like
to mention here only

• general learning [9, 12],
• ensemble methods [10, 11, 19, 4, 5],
• neural networks [18, 2, 17, 1],
• spline methods [27, 14, 28],
• support vector machines [24, 25, 7, 20, 22],
• trees [6, 17, 13], and
• wavelets [8, 15].

Ensemble methods are based on the idea to generate many
so-called “weak” decision rules and aggregate their results.
Special cases are boosting [11], bagging [4], and random
forests [5]. In boosting for classification purposes, succes-
sive trees give extra weight to points incorrectly predicted
by earlier decision rules and finally a weighted vote is taken
for the actual prediction. In bagging, successive trees do not

depend on earlier trees because each tree is independently
constructed from a bootstrap sample of the data set and
finally a simple majority vote is taken for the actual predic-
tion. Random forests are a combination of tree predictors
such that each tree depends on the values of a random vec-
tor sampled independently and with the same distribution
for all trees in the forest. Important questions of ensem-
ble methods are the choice of weak decision rules and the
stopping rule such that the resulting learning method yields
an accurate prediction rule for new unseen data, can be
computed in an efficient manner, and has good statistical
properties.

Support vector machines (SVMs) are nowadays investi-
gated as special minimizers of regularized empirical risks
over reproducing kernel Hilbert spaces, although this is (for
the special case of the least squares loss function) a relatively
old idea (see, e.g., [16, 27] and the references therein). The
current view on SVMs with general loss functions is often
preferable to the historically used view on SVMs that was
based on a geometric idea which led to the first algorithms
named “support vector machines,” see [3] and even the gen-
eralized portrait algorithm proposed by [26]. Large margin
classification, on one hand, can be cast into the framework
of empirical risk regularization [21]. Under rather weak as-
sumptions SVMs exist, are unique, and depend continuously
on the data points. Important questions of SVMs are the
choice of the loss function and the kernel (which specifies the
reproducing kernel Hilbert space) such that the SVM can
“learn” the unknown distribution, has good finite-sample
and asymptotic properties, and allows an efficient numeri-
cal computation even for large data sets.

The aim of this special issue is to examine important
issues in machine learning and statistics to explore ideas for
accurate learning. The issue is structured around topics on
support vector machines, boosting, regression, and random
forests, as well as applications in biomedical research.

With regard to large margin classification, Zhu, Pan and
Shen propose support vector machines for gene-network
classification involving high-dimensional microarray data.
Park and Liu study the connection between unbounded loss
functions and bounded loss functions with respect to accu-
racy of classification. Christmann, Van Messem and Stein-
wart study consistency and robustness aspects of SVMs
which work for all distributions, even for heavy-tailed ones.

http://www.intlpress.com/SII/


With regard to boosting, Steinwart investigates general-
ization properties of boosting classifiers, which is in a paral-
lel fashion as those of large margin classifiers. Zhu proposes
a multi-class version of two-class AdaBoost. Kim, Kim, Kim
and Lee embed boosting into the functional ANOVA anal-
ysis. Zhang and Wang study on another ensemble method–
random forest, where they show that a certain random for-
est can be small enough to achieve a high level of prediction
while remaining visible for interpretation and presentation.

Many learning tasks are often high-dimensional. Hwang,
Zhang and Ghosal combine the idea of selection with shrink-
age for high-dimensional sparse regression. Breheny and
Huang propose feature selection methods through regular-
ization.

Finally, we sincerely hope that this special issue can stim-
ulate further interest of statisticians, computer scientists
and engineers, and promote further interdisciplinary col-
laborations among them to attack important science and
engineering problems.
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