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Regularized estimation of hemodynamic response
function for fMRI data

Chunming Zhang
∗

and Zhengjun Zhang

One of the primary goals in analyzing fMRI data is
to estimate the Hemodynamic Response Function (HRF),
which is a large-dimensional parameter vector possessing
some form of sparsity. This paper introduces a varying-
dimensional model for the HRF, and develops novel regu-
larization methods for estimating the HRF from fMRI time
series via incorporating the sparsity feature. Particularly, we
present three types of penalty choice methods: the Lasso, the
adaptive Lasso and the SCAD. Simulation studies demon-
strate the advantages of regularization methods, in terms
of sparsity recovery, over conventional non-regularized ap-
proaches which restrict the HRF to be fixed low dimensional
without capturing the sparsity structure. We illustrate the
regularized methods for estimating the HRF using a real
fMRI data set and compare with results offered by a popu-
lar imaging analysis tool AFNI.

Keywords and phrases: Covariance matrix, Linear
model, Loss function, Penalty, Sparsity, Stimuli, Time res-
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1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a re-
cent and exciting method that allows investigators to deter-
mine which areas of the brain are involved in a cognitive
task. Following Ward (2001) and Worsley et al. (2002), a
single-voxel fMRI time-series {s(ti), y(ti)}n

i=1, for a given
scan and a given subject, can be captured by the convolu-
tion model,

(1.1) y(t) = d(t) + s ∗ h(t) + ε(t), t = t1, . . . , tn,

where ∗ denotes the convolution operator, y(t) is the mea-
sured noisy fMRI signal, s(t) is the external input stimulus
(which could be from a design either block- or event-related
and where s(t) = 1 or 0 indicates the presence or absence
of a stimulus), h(t) is the hemodynamic response function
(HRF) at time t after neural activity, d(t) is a slowly drifting
baseline, and the errors ε(ti) are zero-mean and temporally
autocorrelated. Similar models can be found in Chen et al.
(2006). Refer to Zhang and Yu (2008) and references therein
for a recent review of statistical issues and methods in fMRI
data analysis.
∗Corresponding author.

Figure 1. An illustrative plot of the HRF h(tj) with tj = j/n
and n = 80.

One of the primary interests to neuroscientists in ana-
lyzing an event-related fMRI experiment is the estimation
of the underlying HRF at time points tj . Typically, the
peak value of the HRF h(·) is reached after a short de-
lay of the stimulus and drops quickly to zero. A typical
example of h(·), given in Glover (1999), is plotted in Fig-
ure 1. If we look at the entire sequence of HRF coefficients
{h(tj) : j = 1, . . . , n}, the number of indices j for which
h(tj) is non-zero is small. Thus, to obtain statistically more
efficient estimates of the HRF associated with event-related
fMRI experiments, the sparsity of the HRF needs to be
taken into account. We thus suppose that exactly sn values
of h(tj) are non-zero, and h(tj) = 0 for all j > pn. By “spar-
sity of HRF coefficients”, we mean that sn is small compared
with the dimension pn. Now the problem amounts to esti-
mating the first pn values of h(tj), where sn ≤ pn and pn is
less than n, the length of the fMRI time series. In neuroimag-
ing studies, the temporal drift d(·) is a nuisance function and
usually approximated by a kth (at most third order) poly-
nomial; see for example, the popular imaging analysis tool
AFNI at http://afni.nimh.nih.gov/afni/ (Cox, 1996)
and Worsley et al. (2002). As such, (1.1) is re-expressed as

(1.2) y = T̃α̃ + Shn + ε,

where y = (y(t1), . . . , y(tn))T ,
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T̃ =

⎡
⎢⎣

1 t1 · · · tk1
...

...
. . .

...
1 tn · · · tkn

⎤
⎥⎦ ,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(0) 0 · · · 0
s(t2 − t1) s(0) · · · 0

...
...

. . .
...

s(tpn − t1) s(tpn − t2) · · · s(0)
...

... · · ·
...

s(tn − t1) s(tn − t2) · · · s(tn − tpn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the n × pn Toeplitz matrix, ε = (ε(t1), . . . , ε(tn))T , and
α̃ = (α0, α1, . . . , αk)T and hn = (h(t1), . . . ,h(tpn))T are
both vectors of unknown parameters. (Note that the forms of
models (1.1)–(1.2) also accommodate fMRI data with multi-
ple types of stimuli and multiple runs. Details can be found
in Zhang and Yu (2008), for example.)

In the framework of linear regression model (1.2), the pn-
dimensional vector hn can be estimated via weighted least-
squares using the quadratic loss. Recall also that it is sn

that characterizes the features of the HRF that are “really
there”. In practice, however, sn, termed the “intrinsic di-
mensionality of fMRI data” (Cordes and Nandy, 2006), is
unknown for real fMRI data. As far as we know, all pub-
lished work assumes that

(1.3) sn = pn = p

is a known fixed number, followed by traditional para-
metric inference based on asymptotic derivations of fixed-
dimensional estimators. Indeed, neuroscientists are in gen-
eral interested in the first 15–20, or 30 seconds at best, of
the HRF, following the presentation of the stimulus (in an
event-related experiment). There, the selection of the num-
bers 15, 20, 30 etc is made based more on experience or
pilot studies. Some potential problems may arise from the
use of (1.3): The larger the number p is specified, the more
likely sn will be over-estimated and overfitting will occur;
conversely, the larger the modeling bias will be induced.

To reduce modeling biases due partly to a restrictive
choice of pn and to achieve effective feature selection, sta-
tistical modeling and estimation which allow flexible choices
of the dimension pn as well as data-driven methods for sn

are desired. This motivates us to consider a more flexible
relation between sn, pn and n expressible as follows,

(1.4) sn ≤ pn < n or pn varies with n.

We call the resulting model (1.2) a “varying-dimensional
model” (VDM) relating fMRI signals to neural changes, at
a given voxel. Clearly, the set-up (1.4) includes both the
fixed-dimensional case (1.3) and various other cases where
pn depends on n.

This paper intends to explore the penalization methods
for estimating the pn-dimensional parameter hn. The pro-
posed methods differ from existing methods in two aspects.

First, the choice of pn is allowed to be either fixed or reason-
ably large, provided it embeds the “intrinsic dimension” sn.
Second, the use of penalization methods better integrates
the sparsity of the HRF coefficients. In the statistical litera-
ture, many asymptotic results, such as consistency, sparsity
property and limit law, have been established for the conven-
tional penalized estimators of regression parameters in the
traditional linear regression model with i.i.d. observations.
To our knowledge, this is the first paper in the literature
on examining the practical performance of the penalized es-
timates (in the temporal domain) of a varying-dimensional
HRF for fMRI time series. Our simulation studies lend sup-
port to the regularization methods applied to the important
application of fMRI time series with correlated data. Par-
ticularly, the results demonstrate the advantages of regular-
ization methods, in terms of sparsity recovery, over conven-
tional non-regularized approaches which restrict the HRF
to be fixed low dimensional without capturing the sparsity
structure.

More generally, penalization arises as a very natural ap-
proach to making inferences for sparse signals in various
large-dimensional statistical problems. As stated in John-
stone and Silverman (2004, p. 1595), “Estimating a sparse
signal is like finding needles in a haystack; it will be neces-
sary to find which are the very few signal values that are
nonzero, as well as to estimate them. On the other hand,
estimating a dense signal is more like finding straw in a
haystack; no longer will we be surprised if a particular μi

is nonzero.” In their set-up, the signals {μi} correspond to
the HRF coefficients {h(ti)} in the convolution model. Our
simulation studies indicate that the penalization methods
for estimating the HRF are adaptive to sparsity when it is
advantageous to do so: For a sparse hn, the penalized meth-
ods produce estimates in which many are zero, while for the
dense hn, the penalized methods perform as good as the
non-penalized approach.

The rest of the paper is organized as follows. Section
2 introduces the regularization methods for estimating pa-
rameters in regression models with independent data. Sec-
tion 3 develops regularized estimation of the HRF coeffi-
cients in varying-dimensional convolution models for fMRI
time series data. Section 4 performs numerical assessment of
the regularization methods. Section 5 analyzes a real fMRI
data and compares estimates of the HRF using the non-
regularized method of AFNI and regularized methods. Sec-
tion 6 concludes this paper with a brief discussion.

2. REGULARIZED ESTIMATION WITH
INDEPENDENT DATA

Regularization is a technique aiming at obtaining well be-
haved solutions to overparameterized estimation problems.
This technique is particularly appealing for dealing with
large-dimensional problems. A review article on regulariza-
tion in statistics can be found in Bickel and Li (2006). This
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section overviews some regularized estimation methods. Let
(Xn, Yn) be the generic pair of a random realization from
some underlying population, where Xn = (X1, . . . , Xpn)T is
the input vector and Yn is the output variable. The dimen-
sion pn is related to n according to (1.4). Suppose that the
mean regression function is modeled by

(2.1) m(xn) = E(Yn | Xn = xn) = F−1(βn,0;0 + xT
nβn;0),

where F is a known link function, βn,0;0 ∈ R
1 and βn;0 =

(βn,1;0, . . . , βn,pn;0)T ∈ R
pn are the unknown true parame-

ters. For sparse models, it is assumed that part of the true
parameters in βn;0 are exactly zero. Without loss of gener-

ality, write βn;0 = (β(I)T
n;0 ,β

(II)T
n;0 )T , in which the β

(I)
n;0 part

collects all nonzero coefficients, and β
(II)
n;0 = 0. Let sn be the

number of nonzero elements in βn;0, i.e., the length of the

vector β
(I)
n;0.

The goal is to estimate, via penalization, the true pa-
rameters (βn,0;0,βn;0) in the presence of sparsity. Let Tn =
{(Xn1, Yn1), . . . , (Xnn, Ynn)} be the set of independent sam-
ples, where Xni = (Xi1, . . . , Xipn)T . To quantify the error
measures for different types of response variables, Zhang,
Jiang and Chai (2008) considered a broad class of loss
functions Q(·, ·), called Bregman divergence (BD). The
penalized-BD estimator (β̂n,0, β̂n) is defined as the mini-
mizer of the following criterion function,

�n,λn(βn,0,βn) =
1
n

n∑
i=1

Q(Yni, F
−1(βn,0 + XT

niβn))(2.2)

+
pn∑

j=1

Pλn(|βn,j |),

where βn = (βn,1, . . . , βn,pn)T is a vector of parameters for
non-constant covariates, the loss function Q(·, ·) is a BD, and
Pλn(·) represents a nonnegative penalty function, imposed
on the regression coefficients, indexed by a tuning parameter
λn > 0. Set β̃n = (βn,0,β

T
n )T , and correspondingly X̃ni =

(1, XT
ni)

T . Then the criterion function above can be written
as follows,

(2.3)

�n,λn(β̃n) =
1
n

n∑
i=1

Q(Yni, F
−1(X̃

T

niβ̃n)) +
pn∑

j=1

Pλn(|βn,j |).

The penalized-BD estimator ̂̃
βn = (β̂n,0, β̂n,1, . . . , β̂n,pn)T

amounts to the solution,

̂̃
βn = arg min

β̃n

�n,λn(β̃n).

In the particular case of an identity link function us-
ing F (μ) = μ, model (2.1) reduces to the linear regression
model,

(2.4) Yn = βn,0;0 + XT
nβn;0 + εn,

where εn is the random noise satisfying E(εn | Xn) = 0.
Moreover, using a quadratic loss, Q(Y, μ) = (Y −μ)2 in (2.2),
the penalized least-squares estimator (β̂n,0, β̂n) minimizes
the criterion function,

�n,λn(βn,0,βn) =
1
n

n∑
i=1

(Yni−βn,0−XT
niβn)2+

pn∑
j=1

Pλn(|βn,j |).

Accordingly, the criterion function (2.3) can be written as

(2.5) �n,λn(β̃n) =
1
n

n∑
i=1

(Yni − X̃
T

niβ̃n)2 +
pn∑

j=1

Pλn(|βn,j |).

Recently, the regularization approach has drawn a good
deal of attention as a tool for statistical estimation and mod-
eling especially in dealing with large-dimensional data. We
will describe three types of penalty choice methods that are
of particular relevance to the application in fMRI data.

2.1 Conventional Lasso

For linear regression model estimation with a fixed num-
ber p of parameters, Tibshirani (1996) introduced the L1-
penalty, Pλn(|βn,j |) = λn|βn,j |, for the proposed Lasso (least
absolute shrinkage and selection operator) method, where
the quadratic loss is in use. Theoretical properties related to
the Lasso have been intensively studied. Particularly, Knight
and Fu (2000) showed that, under proper conditions, the
Lasso is consistent for estimating the regression parameters
and that its limit distribution has positive probability mass
at zero if the true value of the parameter is zero. Conditions
for the Lasso to be variable selection consistent were stud-
ied in Meinshausen and Buhlmann (2006). Computationally,

the Lasso solution for ̂̃
βn can be obtained from the LARS

algorithm (Efron et al., 2004).

2.2 SCAD

Using the smoothly clipped absolute deviation (SCAD)
penalty,

(2.6) Pλ(|x|) =

⎧⎪⎨
⎪⎩

λ|x|, if |x| ≤ λ,

− (|x|−aλ)2−(a2−1)λ2

2(a−1) , if λ < |x| ≤ aλ,
(a+1)λ2

2 , if |x| > aλ,

for some constant a > 2, Fan and Li (2001) showed that
the penalized-likelihood estimator achieved the oracle prop-
erty: the resulting estimator is asymptotically as efficient
as the oracle estimator, which supplies perfect information
about which coefficients were non-zero. In their treatment,
the number pn of model parameters is fixed at p, and the loss
function equals the negative log-likelihood. Fan and Peng
(2004) further extended the oracle property from the pn = p
fixed setting to pn diverging with n at a certain lower rate.
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Unlike the convex L1 penalty in Lasso, the SCAD penalty
is non-convex.

Under the class of Bregman divergence as the general
loss functions, Zhang, Jiang and Chai (2008) studied the
consistency rate, sparsity property and asymptotic normal-
ity of the penalized-BD estimator in the relatively low-
dimensional case,

Case I: pn � n,

where the rate of pn is similar to that in Fan and Peng
(2004). Computationally, the SCAD penalty can be approx-
imated by the local linear approximation (LLA) method
(containing derivative calculation) and the resulting estima-

tor ̂̃
βn can be obtained via the LARS algorithm.

2.3 Adaptive Lasso

The adaptive Lasso (aLasso) method, introduced by Zou
(2006), uses adaptive weights for the L1 penalties to pe-
nalized least-squares estimates in fixed-dimensional linear
regression models. The penalty corresponds to the weighted
L1-penalties, Pλn(|βn,j |) = λnwn,j |βn,j |, with non-negative
weights {wn,j}. Zou mentioned that the Lasso is in general
not variable selection consistent, but the adaptive Lasso via
combining appropriately weighted L1-penalties is consistent.

Under the class of Bregman divergence as the gen-
eral loss functions, Zhang, Jiang and Chai (2008) investi-
gated the consistency rate, sparsity property and asymptotic
normality of the penalized-BD estimator in the medium-
dimensional case,

Case II: pn ≈ n.

Namely, the dimension pn is allowed to be as large as nearly
comparable to n. From a theoretical perspective, the spar-
sity property indicates that with probability converging to

one as n increases, the estimators, β̂
(II)

n , of the zero pa-
rameters take exactly zero values. This issue was addressed
assuming s4

n/n → 0 and sn(pn − sn) = o(n) as n → ∞,
the conditions of which are indeed applicable to (1.3) and
(1.4). Analogous to the SCAD method, the adaptive Lasso

solution for ̂̃
βn can be obtained from the LARS algorithm.

As to the selection of the weights {wn,j}pn

j=1, Jiang and
Zhang (2008) developed two selection methods, called the
componentwise regression (CR) method and the penal-
ized componentwise regression (PCR) method, respectively.
They showed the oracle properties of the resulting adaptive
Lasso estimators in Case I–Case II. In the CR method, the
weights are selected according to

ŵCR
n,j = |β̂CR

n,j |−1, j = 1, . . . , pn,

based on some initial estimator, β̂
CR

n = (β̂CR
n,1 , . . . , β̂CR

n,pn
)T ,

minimizing the criterion function,

�CR
n (βn) =

pn∑
j=1

{
1
n

n∑
i=1

Q(Yni, F
−1(Xijβn,j))

}
,

for the componentwise regression. In the PCR method, they
selected the weights by

ŵPCR
n,j = |β̂PCR

n,j |−1, j = 1, . . . , pn,

where β̂
PCR

n = (β̂PCR
n,1 , . . . , β̂PCR

n,pn
)T is chosen to be the min-

imizer of the criterion function,

�PCR
n (βn) =

pn∑
j=1

{
1
n

n∑
i=1

Q(Yni, F
−1(Xijβn,j)) + κn|βn,j |

}
,

for the penalized componentwise regression, with some se-
quence κn > 0.

Interestingly, when the loss function is a quadratic func-
tion and the link function is an identity link function, both
minimizers β̂

CR

n and β̂
PCR

n have explicit expressions, which
greatly facilitate the computation. These results will be uti-
lized in our numerical algorithm.

3. REGULARIZED ESTIMATION OF HRF
FOR FMRI DATA

In fMRI data applications, the errors {ε(ti)} in the con-
volution model (1.2) are serially dependent, thus some de-
correlation procedure is needed before estimating the HRF
coefficients. Denote by cov(ε, ε) = σ2Rn the error covariance
matrix, with Rn the true correlation matrix. We transform
model (1.2) to

(3.1) y∗ = T̃
∗
α̃ + S∗hn + ε∗,

where y∗ = R
−1/2
n y = (Y ∗

n1, . . . , Y
∗
nn)T , T̃

∗
= R

−1/2
n T̃,

S∗ = R
−1/2
n S, and ε∗ = R

−1/2
n ε = (ε∗(t1), . . . , ε∗(tn))T .

The transformed errors {ε∗(ti)} are homoscedastic and un-
correlated. Model (3.1) can be re-written as

(3.2) y∗ = X̃
∗
β̃n + ε∗,

where

X̃
∗

=
[
T̃

∗
, S∗

]
and β̃n =

[
α̃
hn

]
are an n× (k + 1 + pn) matrix and a (k + 1 + pn)× 1 vector

respectively. Then the penalized least-squares estimator ̂̃
βn

minimizes the criterion function,

(3.3) �n,λn(β̃n) =
1
n

n∑
i=1

(Y ∗
ni−X̃

∗T

ni β̃n)2+
k+pn∑

j=k+1

Pλn(|βn,j |),

where X̃
∗T

ni is the ith row vector of X̃
∗
. The similarity be-

tween (2.5) and (3.3) enables us to apply the regularization
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methods discussed in Section 2 to obtain the penalized es-
timators of hn.

Remark 1. Long et al. (2004) adopted the wavelet domain
L1 spatial constraint on the activation map. The current pa-
per develops the temporal regularization of HRF coefficients
via Lasso, adaptive Lasso and SCAD penalties.

3.1 Unknown noise covariance matrix

In practice, the true error correlation matrix Rn is un-
known and needs to be estimated before applying the trans-
form in (3.1). Since the dimension of Rn is large (increas-
ing with n), not all commonly assumed structures on the
fMRI error process are computationally feasible in estimat-
ing the large error covariance matrix. Refer to Bickel and
Levina (2008) for further discussions on large covariance
matrix estimation. Since the temporal correlation decreases
significantly as the time interval between measurements in-
creases, we assume that {ε(ti)} is a zero-mean stationary g-
dependent sequence (Sen 1968, p. 1724) with variance equal
to σ2, where g is a non-negative integer. Namely, the random
vectors (ε(t1), . . . , ε(ti)) and (ε(tj), ε(tj+1), . . .) are stochas-
tically independent if j− i > g. Denote by ρ(j) and γ(j) the
auto-correlation and auto-covariance of {ε(ti)} respectively,
with time lag j ≥ 0. It is readily seen that

ρ(0) = 1, and ρ(|j|) = 0 for |j| > g,(3.4)
γ(j) = σ2ρ(j),(3.5)

and

Rn =

⎡
⎢⎢⎢⎣

1 ρ(1) · · · ρ(n − 1)
ρ(1) 1 · · · ρ(n − 2)

...
...

. . .
...

ρ(n − 1) ρ(n − 2) · · · 1

⎤
⎥⎥⎥⎦ .

To balance the trade off between the bias and variance
of higher-order difference-based estimators, as exemplified
in Fan and Zhang (2003), and to expedite computation, we
adopt the first-order difference-based method (Zhang et al.,
2008) for estimating Rn. Define by D{y}(ti) = y(ti)−y(ti−1)
the operator for the first-order difference of {y(ti)}. Denote
by

(3.6) e(ti) ≡ D
(

y −
r∑

j=1

sj ∗ hj

)
(ti)

the transformed data after applying the first-order differ-
ence, where r is the number of types of stimuli. Let γe(j)
be the auto-covariance of {e(ti)}, with time lag j ≥ 0. Since
e(ti) = Dd(ti) + ε(ti)− ε(ti−1), direct calculations give that

γe(j) = −γ(j − 1) + 2γ(j) − γ(j + 1), j = 0, 1, . . . .

This, along with (3.4)–(3.5), leads to the identities,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γe(0)
γe(1)
γe(2)

...
γe(g − 1)

γe(g)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 0 0 0 · · · 0 0 0 0
−1 2 −1 0 0 · · · 0 0 0 0
0 −1 2 −1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 0 −1 2 −1
0 0 0 0 0 · · · 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ(0)
γ(1)
γ(2)

...
γ(g − 1)

γ(g)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Substituting {γe(j)} with their empirical moment estimates
and solving equation (3.7), we can obtain the estimates
{γ̂(j)} of {γ(j)}. Utilizing (3.4)–(3.5), the noise variance
and auto-correlation can be estimated by σ̂2 = γ̂(0) and
ρ̂(j) = γ̂(j)/γ̂(0) respectively. It is then immediate to ac-
quire an estimate R̂n of Rn. In our numerical implemen-
tation, g = 2 is adopted for computational stability and
efficiency. For different problems, other choices of g can also
be used.

In practice, we need a preliminary estimate of the HRF in
(3.6). Again, this initial estimate ĥDBE can be obtained via
a difference-based method: apply the first-order difference
to y and S simultaneously, ignore the drift term in (1.2),
followed by an ordinary least-squares estimation of the HRF.
To illustrate the idea, let us take the difference of (1.2).
Under the smoothness assumption on the drift function d(·),
it follows that d(ti) − d(ti−1) = d′(ti−1)n−1 + O(n−2) =
O(n−1). Hence the difference of (1.2) yields

y(ti) − y(ti−1) = (ei − ei−1)T Shn + ε(ti) − ε(ti−1) + O(n−1),
i = 2, . . . , n,

where ej denotes the jth column of an identity matrix. As
the sequence length n grows, the magnitude of the difference
(and higher-order difference) of d(·) will be negligible. This
example lends support to the root-n consistency of ĥDBE

under mild conditions.

Remark 2. Carew et al. (2003) characterized the error au-
tocorrelation by assuming that ε ∼ N(0, σ2KKT ) for an un-
known matrix K. Instead of estimating the error covariance
matrix, they examined the smoothed fMRI by multiplying
both sides of (1.2) by a particular choice of smoothing ma-
trix, A, of the spline smoothing; they used AAT to approx-
imate the covariance matrix, AKKT AT , of the smoothed
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errors Aε, and to ease the inference procedure, but the
smoothed errors continued to be correlated.

3.2 Computation

We would like to make some remarks on the computa-
tional aspects of the penalization procedure. For an entire
brain data, the penalized estimation of the HRF (via min-
imizing (3.3)) will be applied voxel-wise, involving large-
scale computational power. On the other hand, for each fixed
voxel, minimizing (3.3) via modifying the LARS algorithm
is indeed computationally efficient. As discussed in Efron et
al. (2004), the computational cost of the LARS algorithm is
the same as that of the conventional least-squares estima-
tion. This makes the penalization method computationally
feasible and efficient for real brain data.

4. SIMULATION STUDY

To illustrate the application of penalized least-squares es-
timators of the HRF in fMRI data, we conduct the simula-
tion study. For illustrative purpose, 6 numerical procedures
for obtaining these estimators are compared: (I) the ordi-
nary least-squares (OLS) and weighted least-squares (WLS)
estimators; (II) the SCAD penalty combined with the lo-
cal linear approximation (LLA) and the LARS algorithm;
(III) the L1 penalty combined with the LARS algorithm;
(IV) the adaptive Lasso combined with the CR weight se-
lection method and the LARS algorithm; (V) the adaptive
Lasso combined with the PCR weight selection method and
the LARS algorithm; (VI) the Oracle estimator using the
set of significant variables (whose coefficients are non-zero).
Throughout the numerical work in the paper, the SCAD
penalty in (2.6) uses an accompanying parameter a = 3.7.
Refer to Fan and Li (2001) for a detailed discussion on this
choice of a.

4.1 Example 1: Regression model for i.i.d.
Gaussian responses

We generate i.i.d. Gaussian responses from the linear re-
gression model (2.4), with

Xn ∼ N(0, (
√

2)2Ipn), and εn ∼ N(0, 1),

where Ipn denotes a pn × pn identity matrix, and Xn and εn

are independent. The regression coefficients are βn,0;0 = 2.5,
and βn;0 = [0, 0, 0, 0, .0014, .2788, .8526, .8698, .4031,
−.0310, −.2017, −.1842, −.1121, −.0541, −.0221, −.0080,
−.0026,−.0008, 0, . . . , 0]T . Note that the number sn of non-
zero entries of βn;0 equals 14 and the number of zero entries
of βn;0 is pn minus sn. The penalization problem (2.5) is
considered. For illustrative purpose, we focus on n = 200,
with the dimensions pn varying from n/8 = 25, n/2 = 100
to n − 1 = 199 representing small-, medium- and large-
dimensions, respectively. By varying pn, sequences of βn;0

possessing different amount of sparsity can also be gener-
ated. The top left panels of Figures 2, 3 and 4 (correspond-
ing to pn equal to n/8 = 25, n/2 = 100 and n − 1 = 199
respectively) plot the magnitude of the components of βn;0,
which mimics the shape of an HRF in Figure 1.

First, to examine the effect of penalized regression es-
timates on model fitting, for each set of simulated data
{(Xni, Yni)}n

i=1, the model error (ME) is calculated by the
mean squared error of the regression function estimate,∑n

i=1{m̂(Xni) − m(Xni)}2/n, and the relative model error
(RME) is the ratio of ME using penalized estimators and
ME using the non-penalized OLS estimator. The tuning pa-
rameters λn in each simulation for methods (II)–(V) are
selected separately by 3-fold cross validation; the tuning pa-
rameters λn and κn for method (V) are searched on a surface
of grid points and selected by minimizing the 3-fold cross-
validated residual sum of squares. The MRME is the median
of RMEs obtained from those 100 sets of simulation. Table 1
summarizes the penalized estimates of parameters, in small-,
medium- and large-dimensional cases. The gain achieved by
the penalized estimators in reducing the function estima-
tion error over the OLS estimator is clearly seen. In the
low-dimensional case, i.e. where βn;0 is dense, the reduction
of function estimation errors by the penalized estimators is
close to that of the Oracle estimator.

Second, to study the utility of penalized estimators in
revealing the effects in variable selection, Table 1 lists a col-
umn labeled “#CZ” as the average number of coefficients
which are correctly estimated to be zero when the true co-
efficients are zero, and a column labeled “#IZ” as the av-
erage number of coefficients which are incorrectly estimated
to be zero when the true coefficients are nonzero. The stan-
dard deviations of the corresponding estimations across 100
simulations are given in brackets. For instance, the Oracle
method invariably produces estimates with “#CZ” equal to
pn minus sn and “#IZ” equal to 0. For a better visual as-
sessment, Figures 2–4 each display a path of the coefficient
estimates for βn;0 from a typical sample for each method.
The typical sample is selected in such a way that the num-
ber of coefficients which are estimated to be zero is equal to
the 50th percentile of the numbers in the 100 simulations. In
the presence of sparsity, the penalized estimators help yield a
sparse solution and build a parsimonious model. It is clearly
seen that as the dimension pn grows, the performance of the
OLS estimator dramatically deteriorates, without capturing
the sparsity structure.

4.2 Example 2: Convolution model for fMRI
with known Rn

Typically, the analysis of the entire brain fMRI data
is conducted by a two-step procedure: voxelwise statistical
analysis in the first step, followed by multiple comparison in
the second step. Since this paper aims at developing statis-
tical estimation of the HRF in the first step, illustration of
single-voxel analysis is focused on.
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Figure 2. Penalized estimates of βn;0 for i.i.d. Gaussian responses, where pn = n/8.

Figure 3. Penalized estimates of βn;0 for i.i.d. Gaussian responses, where pn = n/2.
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Figure 4. Penalized estimates of βn;0 for i.i.d. Gaussian responses, where pn = n − 1.

Table 1. Penalized estimates of βn;0 for i.i.d. Gaussian responses

Regression Variable Selection
n pn Method MRME #CZ (std) #IZ (std)

200 n/8 = 25 OLS 1.00 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 0.62 7.89 ( 2.26) 4.55 (1.66)
L1; LARS 0.74 6.54 ( 2.64) 3.81 (1.81)
aLasso-CR 0.68 8.60 ( 2.10) 5.52 (1.93)
aLasso-PCR 0.73 8.74 ( 2.09) 5.94 (1.95)
Oracle 0.58 11.00 ( 0.00) 0.00 (0.00)

n/2 = 100 OLS 1.00 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 0.25 74.14 ( 8.66) 6.09 (1.61)
L1; LARS 0.27 69.41 ( 8.43) 5.67 (1.53)
aLasso-CR 0.25 76.98 ( 5.64) 6.81 (1.29)
aLasso-PCR 0.27 78.00 ( 5.55) 7.27 (1.35)
Oracle 0.13 86.00 ( 0.00) 0.00 (0.00)

n − 1 = 199 OLS 1.00 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 0.16 173.03 (13.09) 7.11 (1.15)
L1; LARS 0.20 167.36 (15.11) 6.72 (1.42)
aLasso-CR 0.16 171.66 (10.18) 7.27 (1.32)
aLasso-PCR 0.17 172.60 ( 8.87) 7.62 (1.43)
Oracle 0.06 185.00 ( 0.00) 0.00 (0.00)
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Table 2. Penalized estimates of hn for the simulated fMRI with true Rn

Variable Selection
n pn Method #CZ (std) #IZ (std)

200 n/8 = 25 WLS 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 10.65 ( 2.61) 3.98 (1.19)
L1; LARS 7.21 ( 3.35) 2.37 (1.50)
aLasso-CR 8.38 ( 3.01) 3.50 (1.70)
aLasso-PCR 10.60 ( 2.48) 5.41 (1.73)
Oracle 14.00 ( 0.00) 0.00 (0.00)

n/2 = 100 WLS 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 76.06 ( 4.26) 4.60 (0.99)
L1; LARS 74.10 ( 6.78) 4.12 (1.08)
aLasso-CR 77.61 ( 9.12) 6.80 (1.32)
aLasso-PCR 79.94 ( 7.23) 7.43 (1.24)
Oracle 89.00 ( 0.00) 0.00 (0.00)

n − 5 − k = 193 WLS 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 163.45 ( 7.05) 4.75 (1.08)
L1; LARS 160.53 ( 9.49) 4.33 (1.36)
aLasso-CR 168.44 (10.44) 7.07 (1.23)
aLasso-PCR 169.47 ( 8.80) 7.59 (1.12)
Oracle 182.00 ( 0.00) 0.00 (0.00)

We simulate an fMRI experiment with a single run and
a single type of stimulus. In the simulation, n = 200, ti =
i/n, i = 1, . . . , n, and 100 realizations are conducted. (I)
The time-varying stimuli are generated from independent
Bernoulli trials such that P{s(ti) = 1} = .5. (II) Following
Glover (1999), the HRF is h(tj) = g1(1.5(j − 1)− 5.5)/a1 −
0.4×g2(1.5(j−1)−5.5)/a2 for j = 1, . . . , [9(n1/5.5−1)]+1,
and h(tj) = 0 for j = [9(n1/5.5−1)]+2, . . . , pn, where g1(t) =
t5 exp(−t/.9) I(t ≥ 0) and g2(t) = t12 exp(−t/.7) I(t ≥
0), a1 = max{g1(t)} and a2 = max{g2(t)}. (III) The
drift function is d(ti) = α0 + α1ti + α2t

2
i , i = 1, . . . , n,

where (α0, α1, α2) = (−7.8737, 47.5836,−32.6734)/5. (IV)
The noise process ε is the sum of independent noise pro-
cesses ε1 and ε2 (see Purdon et al., 2001); {ε1(ti)} are
i.i.d. normal with mean zero and variance .52162, .36892,
.26082 and .18442 respectively; ε2 is AR(1), i.e., ε2(ti) =
ρε2(ti−1) + z(ti) with ρ = .638 and z(ti) follows the
normal distribution with mean zero and variance .52162,
.36892, .26082 and .18442 respectively. These choices give
the noise lag-one auto-correlation equal to .4 and the signal-
to-noise-ratio (SNR) about 1, 2, 4 and 8, where SNR =
variance(Shn)/variance(ε).

The estimation problem (3.1) is studied. For lack of space,
we only present the results with SNR = 4; see Table 2
and Figures 5–7 for the estimates of the HRF coefficients,
where the number sn of non-zero HRF coefficients equals 11,
and the order k = 2 for the drift is used in the estimation
throughout the computation. Three things can be observed.
First, similar to the results of Example 1 with i.i.d. Gaussian
responses, the WLS estimator fails to produce zero estimates
when the true HRF coefficients are equal or close to zero. In
terms of the sparsity property, the SCAD, aLasso-CR and
aLasso-PCR continue to outperform the Lasso. Second, for
both the WLS and penalized methods, the larger the dimen-

sion pn is, the less efficient the estimates are. Third, for Fig-
ures 6–7 with medium- and large-dimensions pn, the HRF
estimates obtained by the penalized methods miss some dip
point of the HRF, partly because the penalization methods
tend to shrink small estimates to zero. Nonetheless, for the
counterparts in Figures 3–4 with i.i.d. data, all penalized es-
timation methods maintain the dip point. In this respect, it
will be useful to devise penalization methods that are better
able to account for the time series dependence.

4.3 Example 3: Convolution model for fMRI
with unknown Rn

In this study, the simulation set-up is identical to that
of the previous Example 2, except that the true correlation
matrix Rn in (3.1) is unknown and replaced by the estimate
R̂n. We would like to remark that since entries of the matrix
S are either 0 or 1, S itself forms a sparse matrix. Hence-
forth, we set pn in the large-dimensional case to be n−5−k
to ensure that the difference-based estimator of Rn is com-
putationally feasible. For the sake of comparison, n − 5 − k
is also used in Example 2.

The results analogous to Table 2 and Figures 5–7 are
given in Table 3 and Figures 8–10. They lend support to
the validity of the covariance matrix estimation method pro-
posed in Section 3.1.

5. APPLICATION TO A REAL FMRI DATA

5.1 Experiment design, data description and
analysis aim

In an emotional control study, subjects saw a series of
negative or positive emotional images, and were asked to
either suppress or enhance their emotional responses to the
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Figure 5. Penalized estimates of hn for the simulated fMRI with the true Rn, where pn = n/8.

Figure 6. Penalized estimates of hn for the simulated fMRI with the true Rn, where pn = n/2.
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Figure 7. Penalized estimates of hn for the simulated fMRI with the true Rn, where pn = n − 5 − k.

Table 3. Penalized estimates of hn for the simulated fMRI with the estimated Rn

Variable Selection
n pn Method #CZ (std) #IZ (std)

200 n/8 = 25 WLS 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 10.48 ( 2.99) 3.50 (1.45)
L1; LARS 7.51 ( 3.43) 2.43 (1.54)
aLasso-CR 7.48 ( 3.52) 3.92 (2.14)
aLasso-PCR 9.73 ( 3.13) 5.79 (2.04)
Oracle 14.00 ( 0.00) 0.00 (0.00)

n/2 = 100 WLS 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 77.10 ( 4.87) 4.48 (1.29)
L1; LARS 74.64 ( 8.52) 4.28 (1.40)
aLasso-CR 75.55 (10.11) 7.43 (1.05)
aLasso-PCR 78.16 ( 9.56) 7.84 (0.97)
Oracle 89.00 ( 0.00) 0.00 (0.00)

n − 5 − k = 193 WLS 0.00 ( 0.00) 0.00 (0.00)
SCAD; LLA-LARS 160.96 ( 8.40) 4.31 (1.54)
L1; LARS 153.97 (18.40) 4.12 (1.50)
aLasso-CR 160.54 (15.85) 6.97 (1.47)
aLasso-PCR 162.96 (15.26) 7.38 (1.34)
Oracle 182.00 ( 0.00) 0.00 (0.00)
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Figure 8. Penalized estimates of hn for the simulated fMRI with the estimated Rn, where pn = n/8.

Figure 9. Penalized estimates of hn for the simulated fMRI with the estimated Rn, where pn = n/2.
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Figure 10. Penalized estimates of hn for the simulated fMRI with the estimated Rn, where pn = n − 5 − k.

image, or to simply attend to the image. Therefore, there
were 6 types of trial (i.e., 6 types of stimuli): negative–
enhance (neg-enh), negative–attend (neg-att), negative–
suppress (neg-sup), positive–enhance (pos-enh), positive–
attend (pos-att), positive–suppress (pos-sup). The se-
quence of trials was randomized. The time between suc-
cessive trials also varied. There were 24 trials each of the
neg-enh, neg-sup, pos-enh, and pos-sup; there were 11
trials each of the neg-att and pos-att.

The size of the whole brain dataset is 64 × 64 × 30. At
each voxel, the time series has 6 runs, each containing 185
observations with a time resolution of 2 secs, thus TR = 2
secs and the total length is 1, 110. In contrast, the length
of stimuli is 2, 220; the timing of the stimuli has a time
resolution of 1 second, and thus each HRF output will also
be sampled at 1 second. Hence, the odd rows of the design
matrix S in (1.2) suffice for analysis.

The study aims to estimate the BOLD (Blood Oxygena-
tion Level-Dependent) response to each of the trial types
following the image onset. We analyze the fMRI dataset
containing one subject. The length of the estimated HRF
is set equal to [n/10] = 18. This choice mimics the low-
dimensional cases in the simulation study of Section 4.

Recall from Section 3.2, the penalized estimates of the
HRF coefficients can be obtained in each brain voxel, so
that the voxel-wise comparison of the penalized estimates
and the AFNI estimates can be made. For lack of space, we

present results conducted at two randomly selected voxels
which are marked by AFNI as activated. Specifically, no
procedure that corrects for multiple comparison is applied
in AFNI analysis here. Similar to the specification in AFNI,
the polynomial degree k = 2 for the drift part is used in the
penalized estimation throughout the computation.

Remark 3. Although the paper compares results us-
ing AFNI, other popular tools in neuroimage study,
such as SPM (Friston et al., 1997) and FSL (at
http://www.fmrib.ox.ac.uk/fsl/) (Smith et al., 2004
and Woolrich et al., 2001), have been implicitly considered
as well, since the AFNI method is being offered as an option
under the name FIR.

5.2 Single-voxel fMRI analysis: Voxel 1

Figure 11 plots the fMRI time series of six runs from a
brain voxel (24, 32, 7) that shows activation as given by
AFNI analysis. The estimates of BOLD response to each of
the 6 stimulus types, i.e. six sets (using different colors) of
HRF estimates, as calculated by the AFNI program 3dDe-
convolve and the regularized estimation methods, are com-
pared in Figure 12. Note that since the drift and HRF are
common to all runs, the coefficients of the drift and HRF
are estimated based on data from the combined runs.

In this voxel, the detected activation effect by the reg-
ularized methods appears to be quite different from that
of AFNI. The regularized estimates of the HRF, associated
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Figure 11. Raw fMRI time series from an activated brain voxel (24, 32, 7).

Figure 12. Six sets of HRF estimates (for six types of stimuli) at an activated brain voxel (24, 32, 7).
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Figure 13. Raw fMRI time series from an activated brain voxel (49, 41, 10).

Table 4. The estimated number sn of non-zero HRF
coefficients for the real fMRI data

Stimulus Type
Voxel Method 1 2 3 4 5 6

(24, 32, 7) AFNI 18 18 18 18 18 18
SCAD; LLA-LARS 5 8 9 6 2 7
L1; LARS 5 8 9 6 2 7
aLasso-CR 6 8 10 9 3 7
aLasso-PCR 6 8 11 8 3 7

(49, 41,10) AFNI 18 18 18 18 18 18
SCAD; LLA-LARS 17 16 16 17 17 16
L1; LARS 17 18 17 16 17 17
aLasso-CR 18 15 17 17 16 17
aLasso-PCR 18 15 17 17 16 17

with certain stimulus types, exhibit some sparsity pattern
at certain time points. See Table 4 for the estimated number
sn of non-zero HRF coefficients. Recall that the AFNI re-
sults are based on the OLS method with the errors specified
to be i.i.d. Recall also that the OLS estimator invariably
produces non-zero estimates at all time points, even if the
sparsity of the HRF does exist at certain time points. In
that case, some of the non-zero estimates obtained by OLS
are spurious. Based on our previous simulation studies, the
seemingly strong magnitude of the estimated HRF by AFNI
calls for re-examination.

5.3 Single-voxel fMRI analysis: Voxel 2

Recall in model (1.2), the matrix S for stimuli is com-
mon to all voxels, but the HRF hn varies from one voxel to
another voxel. To examine the relative performance of the
penalized estimates of the HRF at other voxels, we consider
a brain voxel (49, 41, 10) that shows activation as given
by AFNI analysis. Figure 13 plots the fMRI times series
from 6 runs. The estimated HRFs using AFNI and penal-
ized methods are graphed in Figure 14 and are tabulated in
Table 4. Unlike the previous voxel, the profiles of the HRF
estimated by the penalized methods compare favorably well
with those calculated by AFNI. This is possibly due to the
absence (or less presence) of sparsity of the HRF at this par-
ticular voxel. This indicates that when a model well reflects
the realistic data and the parameter hn is not sparse, the pe-
nalized methods do not falsely produce zero estimates, thus
are more adaptive to either sparse or non-sparse models.

6. DISCUSSION

In considering the choice between the regularized and
non-regularized estimation methods for the HRF coeffi-
cients, both approaches have merit, depending on the con-
text or goal of the experiment. For example, in cases where
the prior information on the true dimension pn is available
and there is dense structure among the HRF coefficients, the
least-squares method enjoys computational simplicity and
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Figure 14. Six sets of HRF estimates (for six types of stimuli) at an activated brain voxel (49, 41, 10).

good practical performance. In this case, the oracle prop-
erty of the penalized estimation methods guarantees that
they perform as good as the least-squares method, though
some difference may arise in finite-sample situations.

This paper focuses on the problem of estimating an un-
known parameter HRF having a sparse representation. We
introduce a varying-dimensional model for the HRF and
present penalization schemes into the estimation of the
HRF. The simulation studies demonstrate the improvement
of the adaptive Lasso and SCAD compared with the Lasso,
which performs better than the least-squares estimation
method in terms of model fitting and sparsity recovery. The
numerical results also indicate that, for large-dimensional
HRF, the adaptive Lasso methods utilizing both CR and
PCR for selecting weights are computationally more stable
than the SCAD. For realistic applications, we recommend
the adaptive Lasso and SCAD in the estimation of small-
and medium-dimensional HRF; for large-dimensional HRF,
the adaptive Lasso approach is preferable.

The penalized estimation methods could be improved in
many aspects. For example, as the design matrix for fMRI
data is sparse, more refined weight selection procedures for
aLasso methods are desirable to enhance their performances
in revealing the dip points. Regarding sources for sparsity,
temporal sparsity in this paper seems to be more natural for
the voxelwise estimation approach. Exploiting other phys-
iological factors to be included in model (1.2) and taking
into account the sparsity structure from both the temporal

and spatial domains will be an interesting future work. Ar-
eas for future research include (I) more efficient methods for
estimating the large error covariance matrix, (II) more rig-
orous investigation of the sampling properties of penalized
estimators under the convolution model, (III) confidence in-
tervals for hn in spirit similar to that of Sara et al. (2004)
and hypothesis testing of hn = 0 for detecting activation via
the penalized estimators, and (IV) related multiple compari-
son procedures and activation maps. It’s worthy mentioning
that Zhang, Jiang and Chai (2008) developed statistical in-
ference tools for testing the significance of large-dimensional
parameters via penalized estimators, when the data are in-
dependent and identically distributed. More refined work
is needed for generalizing those inference methods to the
fMRI time series, which are serially correlated. Again, for
issue (III) relevant to a more in-depth study of the brain
activity, issues (I), (II) and (IV) are indispensable and very
likely need to be well developed ahead of (III).
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