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1. SIMULATION STUDIES

In this section, based on the placement value model,
we conduct simulation studies to evaluate the finite sam-
ple performances of the AIC, BIC and FIC in terms of the
Mean Square Error (MSE) and the Mean Absolute Devia-
tion (MAD) of the estimators for AUC index.

For the diseased sample, the AIC and BIC under a sub-
model S can be expressed as (See Hjort and Claeskens,
2003):

AICD
S = −δ̂full(K

D)−
1
2HD

S (KD)−
1
2 δ̂full + 2|S|,(1.1)

BICD
S = −δ̂full(K

D)−
1
2HD

S (KD)−
1
2 δ̂full + log(n)|S|,(1.2)

respectively, where |S| is the number of elements in S.
Based on expressions (1.1) and (1.2), we choose the mod-

els with the smallest AIC and BIC value as the best one.
Using the FIC criteria, we choose the model with the small-
est FIC value focused on AUC as the best one. In simulation
studies, we compare performances of the AIC, BIC, and FIC
criteria through comparing the estimates ÂUC(Z0) of AUC

at the given covariates Z0, the MSE and MAD of ÂUC(Z0)
over M=1000 simulation runs under each simulation setting,
where MSE(Z0) = 1

M

∑M
m=1(ÂUCm(Z0) − AUC(Z0))

2,

MAD(Z0) = 1
M

∑M
m=1 |ÂUC(Z0)m − AUC(Z0)|, and

ÂUC(Z0)m is the estimate for AUC(Z0) based on the m-th
simulated sample.

We use the following placement value model in examples
1-5:

Φ−1(UD|ZD) = −η0X
D − ηtZD + ε,

where ε ∼ N(0, σ2). The simulated data are generated from
the models with different simulation settings.

Example 1: We set XD = 1. The q dimension covariates
ZD̄ are generate from ZD ∼ N(µ,Σ), where µ = (1, · · · , 1),
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and the covariance matrix Σ = (Σij) with Σii = ρ|i−j|,
1 ≤ i ̸= j ≤ q. The correlation coefficient ρ is chosen to be
0.5, and 0.8, respectively. We choose θ = (η0, σ) = (0.8, 0.1),
and η = (0.5, 0.3, 0.2, 0) with q = 4. The diseased sample
size is n1 = 300;

Example 2: The model is the same as that in example 1
except that the sample size is n1 = 500;

Example 3: The model is the same as that in example 1
except that the sample size is n1 = 1000;

Example 4: The model is the same as that in example 1
except that η = (0.5, 0.3, 0, 0, 0, 0, 0.4, 0) with q = 8;

Example 5: To consider the robustness of the proposed
method, we consider a case in which the error term doesn’t
follow the normal distribution, but the simulation is still
conducted under the assumption that the error follows the
normal distribution. The placement values are generated
from the following model:

Φ−1(UD|ZD) = −η0X
D − ηtZD + ε,

where XD = (1, ξ) with ξ ∼ N(0, 1), ZD are generated
from the same distribution as that in example 1. The coef-
ficients η0 = (0.2,0.1) and η = (0.5,0,0.3,0.2,0,0). The
true distribution of error term is ε ∼ 0.1t(3), where t(3) is
a t-distribution with 3 degree of freedom.

For given Z0, AUC can be expressed as AUC(Z0) =
g(θ0,η0 + δ/

√
n1|Z0) = E

(
1− UD|Z0

)
. Using the simu-

lated data from the true placement value models described
in examples 1-5, we estimate AUCs at 100 different covari-
ates Z0 and the corresponding MSE(Z0)’s and MAD(Z0)’s
under the selected models by using AIC, BIC and FIC over
M=1000 simulation runs, respectively.

Figures 1 − 10 display the results for AUC, MSE amd
MAD comparisons by using the AIC, BIC and FIC. From
these figures, we can see that the true AUC is varying with
Z0, and the estimates of AUC based on FIC are much closer
to the true AUC than the AIC and BIC based estimates.
Figures 1 − 12 show that the MSE(Z0) and the MAD(Z0)
based on the FIC selected models are smaller than those
based on the AIC and BIC selected models, which indicates
that the FIC has better finite sample performances than the
AIC and BIC in variable selection of placement value model.
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Figure 1. Example 1: Comparison with n1 = 300 and ρ = 0.5
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Figure 2. Example 1: Comparison with n1 = 300 and ρ = 0.8
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Figure 3. Example 2: Comparison with n1 = 500 and ρ = 0.5
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Figure 4. Example 2: Comparison with n1 = 500 and ρ = 0.8
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Figure 5. Example 3: Comparison with n1 = 1000 and ρ = 0.5
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Figure 6. Example 3: Comparison with n1 = 1000 and ρ = 0.8
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Figure 7. Example 4: Comparison with n1 = 300, ρ = 0.5, and

q = 8
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Figure 8. Example 4: Comparison with n1 = 300, ρ = 0.8, and

q = 8
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Figure 9. Example 5: Comparison with n1 = 300, ρ = 0.5, q = 6

and ε ∼ 0.1t(3).
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Figure 10. Example 5: Comparison with n1 = 300, ρ = 0.8, q = 6

and ε ∼ 0.1t(3).
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