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Analysis of longitudinal data by combining
multiple dynamic covariance models

Lin Xu, Man-Lai Tang, and Ziqi Chen
∗

In longitudinal data analysis, it is crucial to understand
the dynamic of the covariance matrix of repeated measure-
ments and correctly model it in order to achieve efficient es-
timators of the mean regression parameters. It is well known
that any incorrect covariance matrices can result in ineffi-
cient estimators of the mean regression parameters. In this
article, we propose an empirical likelihood based method
which combines the advantages of different dynamic covari-
ance modeling approaches. The effectiveness of the proposed
approach is demonstrated by an anesthesiology dataset and
some simulation studies.

Keywords and phrases: Empirical likelihood, Longitudi-
nal data analysis, Maximum likelihood, Modified Cholesky
decomposition, Multiple covariance models.

1. INTRODUCTION

In longitudinal studies, repeated measurements are ob-
served on subjects over time and responses from the same
subject are very likely to be correlated (Liang and Zeger,
1986; Diggle et al., 2002). The within-subject correlation
must be incorporated into the estimation of mean regres-
sion parameters; otherwise, the resultant estimators may
be inefficient (Qu et al., 2000; Daniels and Zhao, 2003).
Although one can specify the within-subject correlation
structure (e.g., AR, MA, or exchangeable structure) with
some index parameters (Diggle et al., 2002; Qu et al., 2000;
Leung et al., 2009; Li and Pan, 2013), more general forms
of the correlation structure are not allowed, and covariates,
which may help to explain the dynamic of the covariance
matrices for different subjects, can not be flexibly incor-
porated. To get efficient maximum likelihood or GEE es-
timators of the mean parameters, dynamic covariance ma-
trices changing in response to some subject-dependent co-
variates could be adopted (Pourahmadi, 2000; Ye and Pan,
2006; Chen et al., 2011b).

Recently, parsimonious models for characterising the de-
pendence structure among repeated measurements has at-
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tracted increasing attention. Pourahmadi (1999) proposed
to dynamically model the covariance matrices by using
the modified Cholesky decomposition (see also, Pourahmadi
(2007); Pan and Mackenzie (2003); Leng et al. (2010)). An
attractive aspect of such a decomposition is that the entries
in this decomposition have autoregressive and log innovation
interpretations. Zhang and Leng (2012) considered an alter-
native decomposition in which the entries have moving aver-
age and log innovation interpretations. By applying hyper-
spherical coordinates, Zhang et al. (2015) proposed a novel
dynamic variance-correlation modeling approach. It is note-
worthy that these parsimonious covariance models are more
flexible and adaptive than those only specifying the corre-
lation structure (e.g., AR, MA, or exchangeable structure).
Thus, it is expected that more efficient maximum likelihood
or GEE estimators of the mean regression parameters could
be obtained based on those estimated dynamic covariance
matrices (see, Pourahmadi (2000); Ye and Pan (2006)).

Different dynamic covariance modeling approaches may
result in different estimators of the mean regression parame-
ters but selection of the correct covariance modeling method
has not been developed to the best of our knowledge. In
this article, we propose an empirical likelihood (Owen, 1988,
2001) based method which combines the advantages of the
existing dynamic covariance modeling approaches and thus
yields efficient mean coefficient estimators.

The rest of the paper is organized as follows. In Sec-
tion 2, we propose a combined multiple likelihood (CML)
estimating procedure based on three well-known dynamic
covariance models. In Section 3, the spinal anesthesiol-
ogy data is analyzed, and comprehensive simulation stud-
ies are conducted to evaluate the finite-sample perfor-
mance of the proposed method. Finally, some conclud-
ing remarks are briefly summarized in Section 4. The de-
tailed calculation techniques of the combined multiple like-
lihood estimation and an constrained iterative profile op-
timization algorithm are given in the Supplementary Ma-
terials http://intlpress.com/site/pub/files/ supp/sii/2019/
0012/0003/SII-2019-0012-0003-s003.pdf.

2. METHODOLOGY

Suppose we have n independent subjects, and the ith
subject has mi generic repeated measurements yi =

http://www.intlpress.com/SII/
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(yi1, yi2, . . . , yimi)
� which are observed at irregular time

points ti = (ti1, ti2, . . . , timi)
�. The corresponding design

data are recorded in a mi × p matrix, denoted as xi, which
includes a column of units if an intercept term is desired.
By allowing the number of repeated measurements mi to be
subject specific, our framework is valid for the unbalanced
longitudinal data. Assume the response vector yi follows a
multivariate normal distribution N(μi,Σi) with

μi = E(yi|xi) = μ(xiβ), i = 1, . . . , n,

where μ(·) is a differentiable link function andΣi is themi×
mi positive definite covariance matrix. We are interested in
the efficient estimation of β in this paper.

The traditional static covariation patterns (e.g., AR,
MA, or exchangeable structure) could not depict the dy-
namic dependence structure. Dynamic covariance mod-
elling approaches provides some unconstrained parametriza-
tions by modelling the dependence structure and innova-
tion variance in a time series context (Kou and Pan, 2010;
Fan and Wu, 2008). An appropriate modelling of covari-
ance structure will improve efficiency of mean parameter
estimators (Wang and Carey, 2003; Lin and Carroll, 2006;
Carey and Wang, 2011).

2.1 Existing dynamic covariance modeling
approaches

The modified Cholesky decomposition factor based co-
variance model originated from Pourahmadi (1999, 2000)
is a commonly used dynamic covariance modelling method,
which provides a unconstrained parametrization for the co-
variance matrix via modeling the autoregressive parameters
and the innovation variances using covariates. They pro-
posed to decompose the covariance matrix Σi as TiΣiT

�
i =

Di where Ti is a lower unitriangular matrix with the
(j, k)-th below diagonal entry being −φijk and Di =
diag(σ2

i1, . . . , σ
2
imi

). The below diagonal entries of Ti are
the negatives of the autoregressive coefficients φijk in the
following autoregressive model:

(1) yij − μij =

j−1∑
k=1

φijk(yik − μik) + εij , j = 1, 2, . . . ,mi.

Here, the notation Σ0
k=1 means zero throughout this paper.

The diagonal elements σ2
ij of Di are the innovation vari-

ances σ2
ij = var(εij). The autoregressive parameters φijk

and innovation variances could be modeled dynamically as

φijk = z�ijkγ, ln(σ2
ij) = h�

ijλ,(2)

where zijk and hij are q× 1 and d× 1 vectors of covariates,
respectively. The covariates zijk usually could be taken as
a polynomial of time difference tik − tij for k > j. Up to
constants, the minus twice log-likelihood function can be

written as

−2l(β,γ,λ) =

n∑
i=1

ln |Σi|

+

n∑
i=1

(yi − μ(xiβ))
TΣi(γ,λ)

−1

× (yi − μ(xiβ)).

We minimize −2l(β,γ,λ) to obtain the maximum likeli-

hood estimators of β, γ and λ (i.e., β̂, γ̂ and λ̂). The de-
tailed algorithms could be found in the paper of Pourahmadi
(2000). As a result, we can get the estimates T̂i and D̂i of
Ti and Di, respectively. The estimate of Σi could be sim-

ply computed by Σ̂
MCDF

i = T̂−1
i D̂iT̂

T−1
i , which is positive

definite. This is the so-called the modified Cholesky decom-
position factor estimating procedure (MCDF).

Zhang and Leng (2012) provided the moving average
Cholesky factor modeling for parameterizing covariance
structures. Briefly, they decomposed Σi as Σi = LiDiL

�
i ,

where Li is a lower unitriangular matrix. The entries of
Li = (φijk) could be interpreted as the moving average pa-
rameters in

(3) yij − μij =

j−1∑
k=1

φijkεik + εij , j = 1, . . . ,mi,

where εi1 = yi1 − μi1 and εi = (εi1, . . . , εimi) ∼ N(0,Di).
The elements σ2

ij of the diagonal matrix Di are the innova-

tion variances, σ2
ij = var(εij). The entries in this decomposi-

tion have a moving average and log innovation interpretation
and are modeled as linear functions of covariates. Specifi-
cally, the models for φijk and σ2

ij can be found in Equation
(2). Based on Equation (2) or (3), we could get the maxi-

mum likelihood estimators of β, γ and λ (i.e., β̂, γ̂ and λ̂,
for details, see Zhang and Leng (2012)). Thus, we can get

the estimates L̂i and D̂i of Li and Di, respectively. The esti-

mate of Σi could then be calculated as Σ̂
MACF

i = L̂iD̂iL̂
T
i .

This is the moving average Cholesky factor estimating pro-
cedure (MACF).

Zhang et al. (2015) proposed an unconstrained
parametrization for the correlation matrix by using the
hyperspherical coordinates. Specially, write Σi = ΓiRiΓi,
where Γi = diag(σi1, . . . , σimi) with σij being the standard
deviation of yij and Ri = (ρijk)

mi

j,k=1 is the correla-
tion matrix of yi. Using hyperspherical coordinates and
trigonometric functions, the correlation matrices Ri can
be parameterized as Ri = CiC

T
i , where Ci is a lower

triangular matrix:

Ci =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
ci21 si21 . . . 0
ci31 ci32si31 . . . 0
...

...
. . .

...

cimi1 cimi2simi1 . . .
∏mi−1

l=1 simil

⎞
⎟⎟⎟⎟⎟⎠

,
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with cijk = cos(φijk) and sijk = sin(φijk). Here, φijk is
a function of the correlation parameters and could be in-
terpreted as an angle (for details, see, Zhang et al. (2015)).
φijk and σ2

ij are modeled as in Equation (2). Using the al-
gorithms proposed by Zhang et al. (2015), we could obtain

the maximum likelihood estimates of β, γ, and λ (i.e., β̂, γ̂

and λ̂). As a result, we get the estimators Γ̂i and R̂i, and

the estimator of Σi can be obtained by Σ̂
HSCF

i = Γ̂iR̂iΓ̂i.
We call this the hyperspherical coordinates factor estimat-
ing procedure HSCF.

2.2 The combined multiple likelihood
(CML) estimating procedure

Suppose that s dynamic covariance candidate models are
available. For example, we could consider the s = 3 covari-
ance modeling methods (i.e., MCDF, MACF and HSCF)
introduced in the previous section. We denote the true co-

variance matrix for the ith subject as Σ
(k)
i with k = 1, · · · , s

and i = 1, . . . , n. Ideally, if one of the s dynamic covariance
models is consistent with that of the true covariance struc-
ture, efficient and reliable estimator for β can be achieved.
Unfortunately, ones seldom know the true dynamic covari-
ance structures and misspecification often occurs, which will
lead to considerable efficiency loss in parameter estimation.
We employ the empirical likelihood to assemble advantages
of all the candidate covariance models. The estimated co-

variance matrix for the ith subject is denoted as Σ̂
(k)

i when
the kth covariance modeling method is used, for k = 1, . . . , s;
i = 1, . . . , n. The ith subject’s information can be available
for s independent estimation functions expressed as a vec-
tors of length s× p,

g(yi;xi,β) = (g1(yi;xi,β)
�, . . . , gs(yi;xi,β)

�)�,

for i = 1, . . . , n. The component gk(yi;xi,β) is the ith sub-
ject’s score function based on the kth candidate covariance
modeling and can be termed as

gk(yi;xi,β) = x�
i ΔiΣ̂

(k)−1

i (yi − μ(xiβ)), k = 1, . . . , s.

where Δi = diag(μ(1)(x�
ijβ)), where μ(1)(·) is the first

derivative of μ(·).
The estimate of β is obtained by maximizing

the following empirical likelihood (Owen, 1988, 2001;
Qin and Lawless, 1994):

LCML(β) =

n∏
i=1

pi,

subject to the constrains pi ≥ 0,
∑n

i=1 pi = 1 and

n∑
i=1

pig(yi,xi;β) = 0.

likelihood estimating equations (CML). The potential ad-
vantage of this method is that it can get the information
of estimating a p-dimensional parameter β by an efficient
combination of the s× p-dimensional zero-mean estimating
functions g(yi;xi,β), for i = 1, . . . , n. Specifically, we con-
sider the class of p-dimensional estimating functions

Ξ = {ψ(β)|ψ(β) = τ(β)

n∑
i=1

g(yi;xi,β)},

where τ(β) is a p × s × p matrix of real functions. Based
on the estimating function theory (Godambe and Heyde,
1987), we call an estimating function ψ∗(β) ∈ Ξ optimum in

Ξ if the estimator β̂ from ψ∗(β) = 0 has minimum asymp-
totical variance. By this understanding, our empirical like-
lihood based estimator β̂CML is fully efficient because of
Corollary 2 in Qin and Lawless (1994). That is, our pro-
posed method combines the advantages of the s estimat-
ing functions g1(yi;xi,β), . . . , gs(yi;xi,β) and thus efficient
mean coefficient estimator could be yielded. readily derive
the asymptotical normality property of the CML estimator
(i.e., β̂CML). The detailed estimation procedure and calcu-
lations can be found in the Supplementary Materials. Using
similar arguments of Theorem 1 in Qin and Lawless (1994),
we can readily derive the asymptotical normality property
of the CML estimator (i.e., β̂CML). Specifically, we give the
following Theorem. Let || · ||F be the Frobenius norm.

Theorem 1. Assume

• (i) μ has continuous second order derivative;

• (ii) there exists a matrix Σ
(k)
i , such that ||Σ̂(k)

i −
Σ

(k)
i ||F = op(1) and Σ

(k)
i is positive definite;

• (iii) the largest eigenvalues of Σ
(k)
i and Σi = var(yi)

both can be bounded by some integrable functions, for
k = 1, · · · , s.

Define

ḡ(yi;xi,β) = (ḡ1(yi;xi,β)
�, · · · , ḡs(yi;xi,β)

�)�,

for i = 1, . . . , n, where

ḡk(yi;xi,β) = x�
i ΔiΣ

(k)−1
i (yi − μ(xiβ)), k = 1, . . . , s.

Assume E(ḡḡ�|β = β0) is positive definite. We have

√
n(β̂CML − β0) →L N(0,V),

where V = (V�
12V

−1
22 V12)

−1, with

V12 = E

(
∂ḡ

∂β

∣∣β = β0

)
and V22 = E(ḡḡ�|β = β0).

Remark 1. Let s = 1. If the covariance model is correctly

specified, i.e, Σ
(1)
i = Σi, we can have that, our proposed

estimator is fully efficient. Otherwise, the estimator is not
efficient.
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Remark 2. By Corollary 1 or the same arguments in page
318 in Qin and Lawless (1994), dropping gk(yi;xi,β) (i.e.,
one candidate covariance model), the asymptotic variance of√
n(β̂CML −β0) cannot decrease. Therefore, if one of the s

candidate covariance models is correctly specified, i.e, there

exists k such that, Σ
(k)
i = Σi, β̂CML can be fully efficient.

Remark 3. We use the candidate covariance models:
MCDF, MACF and HSCF and assume the link function
μ(·) is an identity function. g(yi;xi,β) can be written as

g(yi,xi;β) =

⎛
⎜⎜⎜⎝

x�
i Σ̂

MCDF−1

i (yi − xiβ)

x�
i Σ̂

MACF−1

i (yi − xiβ)

x�
i Σ̂

HSCF−1

i (yi − xiβ)

⎞
⎟⎟⎟⎠ ,

i = 1, . . . , n.

The asymptotic covariance matrix of β̂CML can be esti-
mated by

1

n
(Ṽ�

12Ṽ
−1
22 Ṽ12)

−1,(4)

where

Ṽ12 =

⎛
⎜⎜⎜⎝

− 1
n

∑n
i=1 x

�
i Σ̂

MCDF−1

i xi

− 1
n

∑n
i=1 x

�
i Σ̂

MACF−1

i xi

− 1
n

∑n
i=1 x

�
i Σ̂

HSCF−1

i xi

⎞
⎟⎟⎟⎠

�

and Ṽ22 = 1
n

∑n
i=1 g(yi,xi; β̂CML)g

�(yi,xi; β̂CML).

3. NUMERICAL STUDIES

3.1 Real data analysis

Spinal anesthesia is a common clinic anesthetic technique
used in surgery and may cause hypotension during opera-
tion. Diastolic blood pressure (DBP) is an important in-
dex in measuring a patient’s physical status during a surgi-
cal operation. Therefore, investigating the relationship be-
tween DBP and particular risk factors (e.g., age, gender,
and anesthesia drug doses) is valuable to anesthesiologists
Sharma et al. (1997); Lin et al. (2008); Samur et al. (2014).
In the following analysis, all subjects that were admitted to
the Akdeniz University Hospital Anesthesiology and Rean-
imation Department during the period of January 2008 to
January 2011 were evaluated retrospectively. There are 375
patients (with 210 males and 165 females) and the diastolic
blood pressures (DBP) were observed 9 times for each in-
dividual, which were measured every 5 minutes during the
surgery.

The outcome variable of interest is DBP, and the explana-
tory variables include age, gender, pulse and the doses of
marcain-heavy, midazolam, chirocaine and fentanyl. There
is no missing observations in either outcome or covariates.

We compared MCDF, MACF, HSCF and CML in terms
of estimated standard errors (SEs) and mean squared re-
gression errors (MSRE). Let MCDF, MACF, HSCF share
the same covariates for covariance modeling, i.e., hij =
(1, pulseij/100) and zijk = (1, (tij − tik), (tij − tik)

2), where
pulseij and tij are the heart pulse value and observed time
point for the j−th observation of subject i, respectively. The
CML estimator is conducted based on MCDF, MACF and
HSCF covariance models (for details, see Remark 3). We
obain the MCDF, MACF, HSCF and CML regression co-
efficient estimates and the estimated standard errors (SEs),
respectively. We calculate the mean squared regression error
as (MSRE = 1∑375

i=1 mi

∑375
i=1

∑mi

j=1(yij − xijβ̂)
2).

The results of the GEE and QIF (Qu et al., 2000) are
also shown in Table 1 for comparison. The GEE method is
carried out with AR(1) and exchangeable correlation struc-
tures, respectively. For the QIF method, following Qu et al.
(2000) and Leung et al. (2009), we combined the three basis
matrices: M0 is the identity matrix, M1 is a matrix with 0
on the diagonal and 1 off the diagonal, and M2 is a matrix
with 1 on the two main off-diagonals and 0 elsewhere.

The main difference among MCDF, MACF and HSCF
lies in the covariance structure modelings. Table 1 shows
that the combining multiple likelihood estimation (CML)
has the generally lowest SE and MSRE values among all the
approaches. This may indicate that the CML method com-
bines the advantages of all the candidate covariance models
and is the most efficient estimating procedure. We conclude
CML estimation is the most preferred method for analyzing
this dataset. Program codes prepared in R have been de-
veloped to implement the methodologies developed in this
article and are available from the first author upon request.

3.2 Simulation studies

In this subsection, we carry out some simulation studies
to investigate the finite sample performance of the CML
estimation. The main purposes of the simulation studies are
to evaluate:

(i) the efficiency of GEE, QIF , MCDF,MACF, HSCF and
CML under different scenarios; and

(ii) the flexibility of CML estimation for the non-normal
data generated from a mixture of same-mean and different-
covariance multivariate normal distributions.

For all simulation studies, the datasets are generated from
the model:

yij = x�
ijβ + eij , j = 1, . . . ,mi; i = 1, . . . , n,(5)

where xi = (xi1, . . . ,ximi) and the zero-mean error ei =
(ei1, . . . , eimi)

� is of a specified covariance structure (e.g.,
MCDF, MACF or HSCF). The mean regression parameters
are β = (1,−0.5, 0.5) and the corresponding covariate is
xij = (1, xij1, xij2)

�, where (xij1, xij2)
� is generated from

a multivariate normal distribution with mean zero, marginal
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Table 1. The spinal anesthesia data analysis. The estimates of regression coefficients, the corresponding standard errors (SEs)
and the mean squared regression error (MSRE).

Covariate MCDF MACF HSCF CML GEE.AR(1) GEE.EXch QIF

β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE

Intercept 39.65 2.23 40.18 2.23 42.85 7.97 42.76 2.31 36.95 3.06 27.16 3.07 42.75 3.89

Age 0.10 0.02 0.10 0.02 0.16 0.07 0.08 0.02 0.09 0.04 0.09 0.04 0.08 0.04

Gender 6.30 0.89 6.28 0.89 7.33 2.90 7.29 0.91 7.24 1.41 8.33 1.54 7.24 1.47

Pulse 0.34 0.02 0.33 0.02 0.29 0.07 0.25 0.02 0.33 0.02 0.41 0.02 0.25 0.03

Marcain-heavy -0.07 0.08 -0.09 0.08 0.01 0.27 -0.11 0.07 -0.10 0.13 -0.08 0.14 -0.09 0.14

Midazolam -1.08 0.33 -1.06 0.33 -0.85 1.08 -0.98 0.32 -0.90 0.52 -0.93 0.57 -0.94 0.52

Chirocaine 0.04 0.06 0.05 0.06 0.16 0.21 0.07 0.05 0.06 0.10 0.08 0.11 0.06 0.09

Fentanyl -25.42 6.62 -23.85 6.62 26.10 21.14 -22.32 6.04 -25.78 9.91 -29.61 10.84 -26.19 9.92

MSRE 162.17 160.55 228.91 144.74 147.35 149.75 152.83

variance 1 and two dimensional exchange correlation struc-
ture with ρ = 0.5. Motivated by the anesthesia data analy-
sis in the previous section, we take quadratic polynomials of
time difference zijk = (1, (tij − tik), (tij − tik)

2)� as the co-
variate and set γ = (0.3,−0.2, 0.3)�. The covariate for log
innovation structure is taken as hij = (1, hij1, hij2, hij3)

�

with (hij1, hij2, hij3)
� being generated from a multivari-

ate normal distribution with mean zero, marginal vari-
ance 1 and three dimensional exchange correlation struc-
ture with ρ = 0.5. The true log innovation parameters
λ = (−0.5, 0.5,−0.3, 0.1)�. Each subject is measured mi

times with mi ∼ Binomial(10, 0.8) and the measurement
time tij ’s are independently generated from U(0, 1). Hence,
the repeated measurements for each subject are observed at
irregular and unbalanced time points. For each setting, we
generate 1000 datasets.

Study 1

The purpose of the first study is to compare the per-
formances of CML with those of MCDF when the working
log innovation variance structure is either correct or less
specified. Here, three candidate MCDF covariance models
all employ the same auto-regression model φijk = z�ijkγ,

but model ln(σ2
ij) as λ0 +

∑J
k=1 hijkλk, J = 1, 2, 3, respec-

tively.
With mean xT

i β and the covariance structure being one
of the three aforementioned candidate models, the maxi-
mum likelihood estimates of the mean regression parameter
β are obtained based on multivariate normal distribution,
respectively. The CML estimator of β is conducted based
on the three candidate MCDF models. We also report the
GEE and QIF estimators in each simulation study for com-
parison. We consider n = 100, 200, 400 and summarized the
simulation results in the Table 2.

For each method, we calculate the mean of the 1,000 ab-
solute bias (|β̂k−βk|, k = 0, 1, 2) (MAB) and the bias norm

of the mean (‖μ̂d‖ = 1
n

∑n
i=1 ‖x�

i (β̂ − β)‖). We calculate

the sample standard deviation (SD) of 1,000 parameter es-
timates and the sample average of 1,000 estimated standard
errors (SE). The 95% estimated confidence interval for βk

is calculated by β̂k ± 1.96SE(βk), k = 0, 1, 2. The coverage
probability is also reported.

Study 2

We note that the statistical interpretations for φijk and
ln(σ2

ij) are different for the three dynamic covariance models
(e.g., MCDF, MACF and HSCF). However, we use the same
models φijk = z�ijkγ and ln(σ2

ij) = h�
ijλ for different covari-

ance structure models in this study. Using Equation (5) with
φijk and ln(σ2

ij) in the covariance structure, the datasets
are generated from the MCDF covariance model, MACF co-
variance model, HSCF covariance model, respectively. With
the covariance structure being the MCDF model, MACF
model and HSCF model respectively, we obtain the max-
imum likelihood estimates of β based on the multivariate
normal distribution. The CML estimates of β are obtained
based on the three aforementioned covariance models. The
sample size is set to be n = 200 and the performances of
different methods are summarized in the Table 3.

Study 3

In this study, we demonstrate the flexibility of CML esti-
mation for the non-normal data. The datasets are generated
from a mixture of three same mean multivariate normal dis-
tributions:

π1N(μi,Σ
(MCDF )
i ) + π2N(μi,Σ

(MACF )
i )

+ π3N(μi,Σ
(HSCF )
i )

based on different ratios π1 : π2 : π3 with
∑3

i=1 πi = 1,

where μi = (xi1, . . . ,ximi)
Tβ. Here, Σ

(MCDF )
i , Σ

(MACF )
i

and Σ
(MCDF )
i denote the covariance matrices for subject i

when theMCDF covariance model,MACF covariance model
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Table 2. Study 1. The MABs, SEs, SDs and ‖μd‖ based on 1000 parameter estimates. (all the results are multiplied by a
factor 102)

Sample Size

(n = 100)) (n = 200) (n = 400)

Working Model MAB SE SD CP MAB SE SD CP MAB SE SD CP

β0 2.90 3.28 3.65 91.9% 2.09 2.31 2.63 91.5% 1.53 1.64 1.90 90.9%

ln(σ2
ij) =

∑1
k=0 hijkλk β1 2.15 2.53 2.66 93.5% 1.57 1.79 1.97 93.1% 1.06 1.27 1.33 94.3%

(less-specified model β2 1.97 2.53 2.50 95.3% 1.42 1.79 1.76 96.4% 1.03 1.27 1.31 94.0%

‖μ̂d‖ 0.234 0.121 0.062

β0 2.85 3.20 3.57 91.7% 2.04 2.26 2.57 91.6% 1.50 1.60 1.87 90.4%

ln(σ2
ij) =

∑2
k=0 hijkλk β1 2.10 2.47 2.61 93.8% 1.54 1.75 1.92 92.8% 1.04 1.24 1.30 93.9%

(less-specified model) β2 1.94 2.47 2.47 94.1% 1.38 1.75 1.72 96.1% 1.02 1.24 1.29 93.8%

‖μ̂d‖ 0.224 0.115 0.060

β0 2.85 3.19 3.56 92.2% 2.03 2.25 2.56 91.9% 1.49 1.59 1.86 90.3%

ln(σ2
ij) =

∑3
k=0 hijkλk β1 2.10 2.46 2.62 93.9% 1.54 1.74 1.92 92.8% 1.04 1.23 1.30 93.7%

(correct model) β2 1.95 2.46 2.47 94.1% 1.39 1.74 1.72 96.0% 1.02 1.23 1.29 93.5%

‖μ̂d‖ 0.223 0.114 0.059

CML

β0 2.88 3.34 3.59 92.0% 2.03 2.43 2.56 93.5% 1.49 1.75 1.86 93.4%

β1 2.11 2.42 2.63 93.3% 1.54 1.75 1.92 93.2% 1.04 1.25 1.30 94.7%

β2 1.95 2.40 2.49 92.8% 1.38 1.75 1.71 96.3% 1.02 1.25 1.29 94.6%

‖μ̂d‖ 0.227 0.114 0.059

GEE.Ind

β0 8.43 4.35 10.53 58.4% 5.77 3.10 7.33 59.3% 4.01 2.19 5.05 60.2%

β1 4.12 5.03 5.13 93.5% 2.85 3.58 3.58 95.4% 2.02 2.53 2.54 94.4%

β2 3.99 5.03 5.03 94.8% 2.83 3.58 3.54 95.7% 2.06 2.53 2.57 94.5%

‖μ̂d‖ 1.486 0.727 0.352

GEE.AR(1)

β0 8.85 7.78 11.05 82.4% 6.08 5.55 7.73 84.8% 4.25 3.94 5.34 85.1%

β1 2.65 3.46 3.32 96.5% 1.92 2.45 2.40 95.1% 1.33 1.73 1.66 96.6%

β2 2.59 3.46 3.24 97.2% 1.82 2.45 2.27 96.5% 1.31 1.73 1.66 95.5%

‖μ̂d‖ 1.383 0.681 0.327

GEE.Exch

β0 8.02 10.24 10.01 95.1% 5.49 7.31 6.96 95.0% 3.83 5.18 4.83 96.2%

β1 2.96 3.68 3.71 95.0% 2.17 2.61 2.73 93.6% 1.50 1.84 1.88 94.2%

β2 2.88 3.68 3.65 95.3% 2.03 2.61 2.54 94.7% 1.48 1.84 1.84 95.0%

‖μ̂d‖ 1.209 0.590 0.285

QIF

β0 6.90 8.81 8.78 93.0% 4.78 5.91 5.99 93.8% 3.38 4.23 4.21 95.6%

β1 2.80 3.22 3.51 92.8% 1.99 2.35 2.50 93.9% 1.40 1.69 1.73 95.4%

β2 2.69 3.22 3.38 93.1% 1.88 2.35 2.36 94.9% 1.38 1.69 1.73 93.8%

‖μ̂d‖ 0.953 0.447 0.222

and HSCF covariance model are employed, respectively. The
estimates of β using the CML approach are obtained based
on the three candidate covariance models. The sample size
is set to be n = 200 and the Table 4 lists the corresponding
simulation results.

We have the following observations from Tables 2–4:

1). Covariance structure has remarkable impact on the
estimation efficiency of the mean regression parameters. In
general, the closer the candidate working covariance struc-
ture to the correct working covariance structure, the smaller
the MAB, SD or ‖μd‖ is.

2). As expected, the most efficient estimators can be ob-

tained when the correct working covariance model is spec-

ified. The regressive efficiency of the estimated β by CML

estimation is better than the MLE based on incorrect co-

variance models. However, our proposed CML estimation is

only slightly inferior to the MLE based on correct working

covariance structures.

3). If the datasets are generated from a mixture of differ-

ent dynamic covariance matrices models, CML estimation is

more efficient and flexible than the other regression methods

since the MABs, SDs and ‖μds‖ for the CML estimation
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Table 3. Study 2. The MABs, SEs, SDs and ‖μd‖ based on 1000 parameter estimates (all the results are multiplied by a
factor 102)

True Model

MCDF MACF HSCF

Working Model MAB SE SD CP MAB SE SD CP MAB SE SD CP

MCDF

β0 2.03 2.25 2.56 91.9% 2.98 3.24 3.84 89.8% 4.14 1.78 5.13 90.4%

β1 1.54 1.74 1.92 92.8% 1.51 1.85 1.89 94.2% 0.70 0.99 0.87 97.1%

β2 1.39 1.74 1.72 96.0% 1.53 1.85 1.93 94.0% 0.70 0.99 0.88 97.3%

‖μ̂d‖ 0.114 0.201 0.275

MACF

β0 2.61 2.98 3.29 92.5% 2.80 3.65 3.62 95.1% 4.08 2.16 5.06 58.4%

β1 1.64 1.82 2.03 93.7% 1.47 1.80 1.85 94.3% 0.52 0.71 0.65 96.7%

β2 1.48 1.82 1.84 96.5% 1.50 1.80 1.88 94.0% 0.55 0.71 0.69 95.6%

‖μ̂d‖ 0.165 0.182 0.263

HSCF

β0 5.29 5.68 6.65 91.4% 3.12 3.57 3.95 92.2% 0.06 0.04 0.08 63.7%

β1 1.86 2.25 2.33 93.7% 1.52 1.90 1.89 94.7% 0.02 0.01 0.02 64.1%

β2 1.74 2.25 2.15 96.5% 1.55 1.90 1.96 94.3% 0.02 0.01 0.02 64.8%

‖μ̂d‖ 0.518 0.210 0.001

CML

β0 2.02 2.33 2.52 92.6% 2.86 3.52 3.69 94.3% 0.06 0.06 0.08 85.3%

β1 1.56 1.74 1.94 91.5% 1.52 1.76 1.92 92.6% 0.02 0.02 0.02 85.2%

β2 1.40 1.74 1.75 95.1% 1.53 1.76 1.93 93.0% 0.02 0.02 0.02 87.2%

‖μ̂d‖ 0.115 0.191 0.001

GEE.Ind

β0 5.77 3.10 7.33 59.3% 3.47 2.17 4.44 66.1% 4.63 1.86 5.79 45.9%

β1 2.85 3.58 3.58 95.4% 1.94 2.50 2.45 95.3% 1.63 2.15 2.05 95.9%

β2 2.83 3.58 3.54 95.7% 2.04 2.50 2.58 94.6% 1.76 2.15 2.19 94.3%

‖μ̂d‖ 0.727 0.292 0.401

GEE.AR(1)

β0 6.08 5.88 7.73 84.8% 3.47 3.22 4.41 84.7% 4.69 5.17 5.79 93.0%

β1 1.92 2.45 2.40 95.1% 1.70 2.09 2.14 94.8% 0.50 0.55 0.63 92.2%

β2 1.82 2.45 2.27 96.5% 1.76 2.09 2.22 93.7% 0.53 0.55 0.64 91.5%

‖μ̂d‖ 0.681 0.265 0.342

GEE.Exch

β0 5.49 7.73 6.96 95.0% 3.42 4.45 4.36 95.5% 4.63 5.65 5.76 95.2%

β1 2.17 2.61 2.73 93.6% 1.66 2.08 2.09 95.1% 0.43 0.57 0.54 94.4%

β2 2.03 2.61 2.54 94.7% 1.67 2.08 2.13 93.9% 0.45 0.57 0.56 95.4%

‖μ̂d‖ 0.590 0.256 0.337

QIF

β0 4.78 5.90 5.99 93.8% 3.50 4.30 4.46 93.6% 4.76 5.44 5.93 92.5%

β1 1.99 2.35 2.50 93.9% 1.65 2.01 2.10 93.4% 0.46 0.59 0.57 94.4%

β2 1.88 2.35 2.36 94.9% 1.69 2.01 2.13 93.6% 0.50 0.59 0.61 95.4%

‖μ̂d‖ 0.447 0.266 0.356

are generally the smallest. This is due to the fact that our
CML estimation combines the advantages of all the candi-
date covariance models.

4). The dynamic covariance modelings (e.g., MCDF ,
MACF , HSCF and CML) are more efficient and flexi-
ble than GEE or QIF when the within-subject covariation
pattern is dynamic.

4. DISCUSSION

The MCDF, MACF and HSCF are the commonly used
dynamic covariance models for longitudinal data. The ad-
vantages of the three covariance models are combined for
estimating the mean regression parameters of longitudinal
data by our proposed method. The proposed method gen-

erally yields efficient estimators.
We give several directions for future study. First, we can

take into account the advantages of the nonparametric and
semiparametric covariance modeling (Fan and Wu, 2008;
Yin et al., 2010; Chen and Leng, 2016). Second, we are also
interested in estimating parameters efficiently for binary lon-
gitudinal data by combining different dynamical log odds-
ratio models (Carey et al., 1993; Fitzmaurice and Laird,
1993; Chen et al., 2011a). Third, it is necessary to pursue
the variable selection problem and new method for missing
data under our proposed framework. Finally, for the given
candidate static correlation structures, the empirical like-
lihood based estimator and the QIF estimator (Qu et al.,
2000) have the same asymptotic normal distribution and
both can achieve an optimal linear combination of the given
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Table 4. Study 3. The MABs, SEs, SDs and ‖μd‖ based on 1000 parameter estimates (all the results are multiplied by a
factor 102)

Mixture Distribution: π1 : π2 : π3

50%:25%:25% 25%:50%:25% 25%:25%:50%

Working Model MAB SE SD CP MAB SE SD CP MAB SE SD CP

MCDF

β0 3.37 3.00 4.29 82.7% 3.25 3.11 4.13 85.3% 3.66 2.90 4.61 78.9%

β1 1.44 1.74 1.80 93.9% 1.40 1.71 1.76 94.9% 1.28 1.58 1.61 95.0%

β2 1.48 1.74 1.84 93.7% 1.39 1.71 1.74 94.2% 1.29 1.58 1.63 93.8%

‖μ̂d‖ 0.234 0.216 0.252

MACF

β0 3.77 4.32 4.70 92.1% 3.60 4.41 4.53 94.4% 3.55 4.21 4.42 94.1%

β1 1.40 1.66 1.76 94.1% 1.38 1.63 1.79 94.2% 1.22 1.44 1.53 93.6%

β2 1.50 1.66 1.87 92.5% 1.43 1.63 1.79 91.7% 1.25 1.44 1.58 93.2%

‖μ̂d‖ 0.271 0.252 0.232

HSCF

β0 4.35 4.55 5.47 90.2% 3.74 3.92 4.70 90.4% 3.67 3.63 4.60 88.2%

β1 1.55 1.94 1.93 95.7% 1.44 1.82 1.81 95.0% 1.24 1.55 1.57 94.4%

β2 1.55 1.94 1.94 95.2% 1.45 1.82 1.81 92.9% 1.25 1.55 1.59 94.7%

‖μ̂d‖ 0.356 0.270 0.249

CML

β0 3.24 3.60 4.21 92.1% 3.15 3.64 4.00 92.9% 3.40 3.73 4.30 91.1%

β1 1.37 1.62 1.72 93.0% 1.34 1.58 1.69 92.4% 1.21 1.38 1.51 93.4%

β2 1.46 1.62 1.80 91.8% 1.36 1.58 1.71 92.5% 1.21 1.38 1.52 91.5%

‖μ̂d‖ 0.225 0.203 0.220

GEE.Ind

β0 5.25 2.80 6.74 60.2% 4.73 2.54 6.05 61.0% 5.12 2.46 6.43 55.3%

β1 2.56 3.23 3.20 94.4% 2.33 2.93 2.92 94.7% 2.27 2.85 2.83 95.1%

β2 2.58 3.23 3.25 94.0% 2.29 2.93 2.89 95.8% 2.30 2.85 2.90 94.7%

‖μ̂d‖ 0.613 0.494 0.537

GEE.AR(1)

β0 5.41 5.01 6.94 83.9% 4.80 4.36 6.13 84.1% 5.25 4.63 6.57 83.5%

β1 1.75 2.22 2.16 96.3% 1.70 2.11 2.14 94.4% 1.51 1.83 1.89 94.5%

β2 1.76 2.22 2.22 95.3% 1.70 2.11 2.16 94.0% 1.54 1.83 1.93 93.9%

‖μ̂d‖ 0.556 0.446 0.488

GEE.Exch

β0 5.05 6.70 6.45 95.6% 4.57 5.94 5.85 94.9% 4.97 6.18 6.22 95.1%

β1 1.88 2.31 2.36 94.4% 1.74 2.16 2.15 96.0% 1.56 1.89 1.93 94.6%

β2 1.87 2.31 2.36 94.4% 1.68 2.16 2.13 94.5% 1.54 1.89 1.94 94.2%

‖μ̂d‖ 0.502 0.412 0.444

QIF

β0 4.85 5.94 6.17 93.5% 4.53 5.52 5.78 93.5% 4.89 5.75 6.08 93.1%

β1 1.79 2.12 2.23 95.0% 1.67 2.02 2.10 94.4% 1.47 1.76 1.84 93.6%

β2 1.77 2.13 2.23 93.1% 1.66 2.02 2.09 93.5% 1.47 1.76 1.85 92.6%

‖μ̂d‖ 0.457 0.401 0.422

estimating functions (Li and Pan, 2013). It is of interest to
investigate the properties of QIF method in the framework
of dynamic covariance structures.
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