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Semiparametric Bayesian analysis of
transformation spatial mixed models for large
datasets∗
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†
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In spatial mixed models (SMMs), it is commonly assumed
that stationary spatial process and random errors indepen-
dently follow the Gassian distribution. However, in some
applications, this assumption may be inappropriate. To this
end, this paper proposes a transformation spatial mixed
models (TSMMs) to accommodate large dataset that follows
the non-Gaussian distribution. With the help of Gibbs sam-
pler algorithm, a semiparametric Bayesian approach is de-
veloped to make inference on TSMMs by using Bayesian P-
splines to approximate transformation function, and a fixed
number of known but not necessarily orthogonal spatial ba-
sis functions with multi-resolution analysis method to ap-
proximate nonstationary spatial process. Instead of Wishart
distribution assumption for the prior of precision matrix of
random effects, we consider Cholesky decomposition of the
precision matrix, and specify the priors for unknown com-
ponents in low unit triangular matrix and diagonal matrix.
Simulation studies and an example are used to illustrate the
proposed methodologies.
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1. INTRODUCTION

In much economical, social, physical and epidemiological
research, substantive theory and practice usually involve the
analysis of spatial data (e.g., Cressie [3], Anselin and Bera
[4], Anselin and Syabri [12]). Various statistical models, the-
ories and methods have been developed to analyze spatial
data over the past years (e.g., Bai [5], Cai [9], Chan [10]).
In particular, SMMs are widely adopted to capture spatial
structures of spatial and spatial-temporal datasets from very
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fine to very large scales by incorporating random effects in
the analysis of spatial data. For example, see Cressie and Jo-
hannesson [12] for the analysis of very large datasets, Kang
and Cressie [23] for Bayesian inference, Nychka, Wikle and
Royle [32], Nychka et al. [31] and Katzfuss [25] for multi-
resolution analysis based on the W-wavelet theories (e.g.,
Kwong and Tang [26]).

At present, there are more than a dozen spatial data anal-
ysis software packages to adapt to strong demand in vari-
ous fields, for example, see SpaceStat package [1], GeoDa
[2], spdep and DCluster on the open source Comprehen-
sive R Archive Network, and ArcGIS 10.7. However, these
packages cannot deal with non-normal spatial datasets. In
particular, they cannot deal with binary/poisson data with
a binomial/poisson distribution, which is often encountered
in economical, social and epidemiological studies. For ex-
ample, a remote sensing dataset, which was retrieved by
the Multi-angle Imaging SpectroRadiometer (MISR) instru-
ment on NASA’s Terra and Aqua satellite, was collected
monthly at a spatial resolution, which was converted to
3-degrees dataset (e.g., 1.0×1.0, 0.5×0.5, 0.25×0.25). The
MISR instrument is one of the key instruments on board
that were widely used to collect the global atmosphere in-
formation such as the aerosol optical depth (AOD), Water
Vapor (WV), Net Radiation (NR) and Carbon Monoxide
(CM). The histograms of the 2-degrees AOD, WV, NR and
CM datasets during May 2016 between longitudes -179.75
and +179.75, and between latitudes -89.75 and +89.75 (e.g.,
Figure 6) show that the AOD, WV, NR and CM data are
non-normal. Hence, the large scale dataset motivates con-
sidering the transformation spatial mixed models.

Considerable work has been focused on approaches to re-
lax the normality assumption in spatial models over the past
years. For example, see De Oliveira et al. [15], Genton and
Zhang [19], Zhang and EI-Shaarawi [41], and Zareifard and
Khahedi [40]. The aforementioned literature has been de-
veloped under the skewed distributional assumption of spa-
tial data by utilizing the Box-Cox family of power trans-
formations or a scale mixing of a unified skew Gaussian
process. However, for transformation linear mixed models
rather than spatial mixed models, Gurka [21] demonstrated
that estimating transformation parameter in the Box-Cox
family of power transformations may yield biased estimation
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of variance components, and maximum likelihood estimator
of transformation parameter is not consistent. To address
these issues, various transformation models have been de-
veloped in a Bayesian framework. In particular, Bayesian
P-splines approach has been used to handle transforma-
tion models. For example, Song and Lu [36] presented a
semiparametric transformation model with P-splines; Song
and Liu [35] considered a transformation structure equation
model with highly non-normal and incomplete data with
P-splines; Tang, Wu and Chen [37] extended to a transfor-
mation linear mixed model based on the truncated centered
Dirichlet Process prior approximation to the distribution
of random effects. However, to our knowledge, little work
has been done on TSMMs based on the idea of Bayesian
P-splines in a Bayesian framework.

The main contributions of this paper include as follows.
First, the P-splines is employed to approximate transfor-
mation functions because of its good properties, such as
allowing for simultaneous estimation of smooth functions
and smoothing parameters, allowing the smoothing param-
eters to be locally adaptive, and the flexibility of imple-
menting Bayesian analysis via the R program. Second, the
multi-resolution analysis technique with a fixed number of
known but not necessarily orthogonal spatial basis functions
is adopted to approximate nonstationary spatial process.
Third, a Markov chain Monte Carlo (MCMC) algorithm is
developed to to simultaneously obtain Bayesian estimations
of unknown parameters, random effects and transformation
functions by combining the Gibbs sampler and W-wavelet
theories. Fourth, instead of traditional Wishart distribution
assumption for the prior of precision matrix of random ef-
fects, we consider Cholesky decomposition of the precision
matrix for random effects, and then specify the priors for
unknown components in low unit triangular matrix and di-
agonal matrix, which largely reduce the number of unknown
parameters and improve the convergence rate of MCMC al-
gorithm. Fifth, we investigate the identifiability of the con-
sidered model. Sixth, we present a Bayesian model compar-
ison approach by utilizing Bayes factor and Path sampling
method, and discuss the goodness-of-fit assessment problem
via the posterior predictive (PP) p-value.

The rest of this paper is organized as follows. Section 2
introduces TSMMs including the selection of the W-wavelet
matrix, Bayesian P-splines approach to approximate the
transformation function. Bayesian inference including pa-
rameter estimation, model comparison and goodness-of-fit
statistic are given in Section 3. Simulation studies and an
example are illustrated in Section 4. Technical details are
presented in the Appendix.

2. TRANSFORMATION SPATIAL MIXED
MODELS

2.1 Models and notation

Let {Y (s) : s ∈ S ⊂ Rd} be a real-valued spatial pro-
cess. Our main interest is to make statistical inference on

the Y -process on the basis of the actually observed non-
normal dataset {Z(s) : s ∈ S}. To this end, we consider the
following measurement error model

(1) f(Z(s)) = Y (s) + ε(s), s ∈ S,

where {ε(s) : s ∈ S} is an independent Gaussian pro-
cess that is independent of Y (·) and has mean zero and
var{ε(s)} = σ2

ε . It is assumed that the process Z(·) is
known only at a finite number of spatial locations, e.g.,
{s1, . . . , sN}. Let Z ≡ {Z(s1), . . . , Z(sN )} be the available
data, f(·) be an unknown smooth transformation function
for Z(s), and denote Z∗(s) = f(Z(s)). Suppose that f(·) is
strictly monotone and differentiable. Following Cressie and
Johannesson [12] and Kang and Cressie [23], we consider the
following spatial mixed models (SMMs):

(2)

{
Y (s) = X(s)�γ + ν(s) + ξ(s),
ν(s) = W (s)�η, s ∈ S,

where X(·) = (X1(·), . . . , Xp(·))� is a p× 1 vector of covari-
ate processes, γ is a p×1 vector of coefficients corresponding
to the fixed effects, X(·)�γ describes the large-scale spatial
variation, ν(·) represents the smooth small-scale spatial vari-
ation, ξ(·) is the residual term, η is a q×1 vector of random
effects, η and ξ(·) define an SMM that can handle spatial
variability for small and fine scales, W (·) is a q × 1 vec-
tor of q deterministic, known and multi-resolutional spatial
basis functions that are not necessarily orthogonal of each
other, i.e., W (·) = (w1(·), . . . ,wq(·))�. It is assumed that
ξ(·) is independent of η, η is distributed as the multivari-
ate Gaussian distribution with mean zero and cov(η) = Σ,
i.e., η ∼ Nq(0,Σ), and ξ(·) follows the Gaussian distribu-
tion N (0, σ2

ξ ). Thus, Equations (1) and (2) define a trans-
formation spatial mixed models (TSMMs). From the defi-
nition of the TSMMs, it is easily seen that Z(s) is non-
normal dataset, but Z∗(s) is normally distributed utilizing
the transformation function f(·).

2.2 Generating multiresolutional spatial
basis functions via W wavelet

In model (2), W (·) is usually unknown. To this end, fol-
lowing Kwong and Tang [26], Nychka, Wikle and Royle [32]
and Katzfuss [25], we generate a spatial basis using the re-
peated translations and scalings of several fixed functions, it
is called discrete wavelet transform. To generate W wavelet,
we first choose a B-splines as the fixed function, and then
use the repeated W translations and scalings of B-splines to
obtain two templates (e.g., mother and father), and finally
determine the number of W wavelets at different resolutions
in the same domain. As an illustration, we consider wavelets
defined in the interval [0, 1], and a coarsest level of resolu-
tion (e.g., say L). The W wavelets used here are plotted in
Figure 1, and a basis of 32 functions for L = 3 is displayed
in Figure 2. The first 3 resolution basis functions are similar
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Figure 1. Continuous versions of the father and mother
W-transform wavelets.

Figure 2. Family of 32 basis functions, (a) is the first 4
functions based on translations of the father wavelet; (b) is

the same translated functions for the mother; (c) is 8
translations of the mother wavelet reduced by a factor of two;

(d) is 16 translations of the reduced mother wavelet.

to the father wavelet translated in equally spaced locations
(e.g., see Figure 2(a)). The first 3 resolution basis functions
are the mother wavelet translated by the same manner, and
are shown in Figure 2(b). The next generation of basis func-
tions has twice as the resolution, and is similar to a scaling
and translation of the mother wavelet. Figure 2(c) shows
this generation. This cascade continues with the number
of members in each subsequent generation, and the reso-
lution increasing by a factor of two. Figure 2(d) completes
the basis of size 32. The relationship between W -matrix and
W -wavelet is given in Appendix.

2.3 P-splines approximation of
transformation function

Due to the unknown form of function f(·), it is impos-
sible to make statistical inference on γ and Σ via models
(1) and (2). To this end, we here adopt the widely used
Bayesian P-splines method to approximate f(·). Following
Lang and Brezger [27], f(Z(s)) can be approximated by
the linear combination of the finite B-splines (e.g., De Boor

[14]). That is, f(Z(s)) ≈
∑K

k=1 βkBk(Z(s)), where K is the
number of B-splines determined by the number of knots in

the support of Z(s) and the degrees of B-splines, βk’s are
unknown coefficients, and Bk(Z(s)) is the kth B-splines for
Z(s). Thus, based on the above approximation of f(Z(s)),
for any s ∈ S, (1) and (2) can be written as the following
unified form

(3)

K∑
k=1

βkBk(Z(s)) ≈ X(s)�γ +W (s)�η + ξ(s) + ε(s).

To control unknown function f(·) via penalizing the coef-
ficients of the adjacent B-splines, we consider a random walk
prior to βk. In particular, we consider the following fist and
second order random walks for βk:

(4)
βk = βk−1 + uk, for k = 2, . . . ,K,

βk = 2βk−1 − βk−2 + uk, for k = 3, . . . ,K,

respectively, where uk ∼ N (0, τ2/ϕk). It is assumed that
β1 follows a diffuse prior, i.e., β1 ∝ constant for the fist-
order random walk, and β1 ∝ constant and β2 ∝ con-
stant for the second-order random walk. Here τ2 can be
regarded as an inverse smoothing parameter that controls
the smoothness of the resulting function f(·), and ϕk’s are
treated as local smoothing parameters, which are employed
to control the local smoothness of a function with signif-
icantly different curvatures at different Z(s)’s. The above
defined prior distribution for β = (β1, . . . , βK)� can be writ-
ten as

p(β) ∼ (
1√
2πτ

)K−d exp

{
− 1

2τ2
β�M(ϕ)β

}
×I(β1 < . . . < βK ,Qβ = 0),

where M(ϕ) = D�diag(ϕ)D, D = Dd−1Dd−2 · · ·D1D0,
ϕ = (ϕd+1, . . . , ϕK)T , Dh is a (K−h−1)× (K−h) matrix
and is defined as

Dh =

⎛
⎜⎜⎜⎝
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 . . . −1 1

⎞
⎟⎟⎟⎠

for h = 0, . . . , d− 1 with d = 1 and 2, and d is the order of
the random walk.

There are two kinds of approaches to select K. The first
one is to fix K at some fixed value, and the other one is
to regard K as a random variable that is selected by using
the reversible jump MCMC algorithm or Birth-and-Death
method. Lang and Brezger [27] compared the above men-
tioned two methods, and found that the former performed
better for functions with moderate curvature, whilst the lat-
ter performed better for highly oscillating functions. When
the transformation function is monotonic, it is more likely
to be a function with the moderate curvature, so we fix K
in some applications. More discussions on the selection of K
can refer to Lang and Brezger [27].
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2.4 Identification

For the above considered TSMMs, it is assumed that
the transformation function f(Z(s)) =

∑K
k=1 βkBk(Z(s)) is

strictly monotone increasing, and βk’s satisfy the following
constraints β1 < β2 < . . . < βK , which is widely adopted to
make the estimation of the monotone transformation func-
tion easier even if this condition is sufficient but not neces-
sary.

Note that the above considered TSMMs is unidentifiable
because (βk, μ) and (βk + c, μ+ c) have the same likelihood
function for any constant c due to the following fact that∑K

k=1 βkBk(Z(s)) − μ =
∑K

k=1(βk + c)Bk(Z(s)) − (μ + c)
for any constant c, which is obtained by the property of the
B-spline:

∑K
k=1 Bk(·) = 1.

For identifiability, we assume that σ2
ε = 1, the func-

tion f(·) has zero mean, i.e.,
∑

s∈S

∑K
k=1 βkBk(Z(s)) = 0,

which is equivalent to Qβ = 0, where Q = (B∗
1, . . . ,B

∗
K)

in which B∗
k =

∑
s∈S

Bk(Z(s)) for k = 1, . . . ,K, and

β = (β1, . . . , βK)�.

3. BAYESIAN INFERENCE

3.1 Prior distribution

Following Kang and Cressie [23] and Song and Lu [36],
we consider the following priors for γ, τ−2, ϕk, σξ and β:

p(γ) ∼ Np(μγ0, σ
2
γ0Ip), p(τ−2) ∼ Γ(e1, e2),

p(ϕk) ∼ Γ(b/2, b/2), p(σξ) ∼ U(0, κξ),

where Γ(·, ·) represents the gamma distribution, U(·, ·) is
the uniform distribution; μγ0, σ

2
γ0, e1, e2, b and κξ are the

pre-given hyperparameters.
To present the prior of Σ associated with η, following

Chan and Jeliazkov [10], we consider the following Cholesky
decomposition of Σ−1:

(5) Σ−1 = A�Λ−1A,

where A is a lower unit triangular matrix, and Λ =
diag(λ1, . . . , λq) in which λj > 0 for j = 1, . . . , q. For sim-
plicity, let aij (1 ≤ j < i ≤ q) denote the free elements of
lower unitriangular matrix A, i.e.

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
a21 1 0 . . . 0 0
a31 a32 1 . . . 0 0
...

. . .
. . .

. . .
. . .

...
aq1 aq2 . . . . . . aq,q−1 1

⎞
⎟⎟⎟⎟⎟⎠ .

Also, denote λ = (λ1, . . . , λq)
�, ai = (ai1, . . . , ai,i−1)

� for
i = 2, . . . , q, and a = (a�2, . . . ,a

�
q)
�. Based on the above

parameterization, we consider the following priors for λi and
aj (i = 1, . . . , q, j = 2, . . . , q):

λ−1
i ∼ Γ

(v0i
2
,
u0i

2

)
, aj ∼ Nj−1(aj0,Aj0)

where v0i, u0i, aj0 and Aj0 are the pre-given hyperparam-
eters.

3.2 Gibbs sampler

To avoid the high-dimensional integral involved in mak-
ing statistical inference via the marginal probability den-
sity function p(Z), the Gibbs sample is adopted to draw
a sequence of random observations from the joint con-
ditional distribution p(γ,η,β, σ−2

ξ , τ−2,ϕ,a,λ|D), where
D = {Z,X,W }. The Gibbs sampler is implemented by
iteratively drawing observations from the following con-
ditional distributions: (a) p(γ|η, σ−2

ξ ,β,D), (b) p(η|ξ,γ,
β,a,λ,D), (c) p(ξ|γ,η, σ−2

ξ ,β,D), (d) p(β|γ,η, σ−2
ξ ,ϕ,D),

(e) p(σ−2
ξ |γ,η,β,D), (f) p(τ−2|β,ϕ), (g) p(ϕ|β, τ−2) (h)

p(a|η,λ), (i) p(λ|η,a).
The conditional distributions required in implementing

the aforementioned Gibbs sampler are presented in the Ap-
pendix. Convergence of the above presented Gibbs sampler
algorithm can be monitored by the estimated potential scale
reduction (EPSR) value evaluated from several parallel se-
quences of observations as the runs proceed [17]. Conver-
gence is claimed if all the EPSR values of unknown param-
eters are less than 1.2.

3.3 Bayesian estimates

Let {(γ(m),η(m),β(m),θ(m)
η ) : m = 1, . . . ,M} be the ob-

servations of (γ,η,β,θη) simulated from the joint condi-
tional distribution p(γ,η,β, σ−2

ζ , τ−2,ϕ,θη|D) via the pre-
ceding presented MCMC algorithm after the MCMC algo-
rithm converges, where θη is a set of unknown parameters
associated with the distribution of random effects. Thus,
Bayesian estimates of θη,β,γ and η can be evaluated by

θ̂η =
1

M

M∑
m=1

θ
(m)
ηξ , β̂ =

1

M

M∑
m=1

β(m),

γ̂ =
1

M

M∑
m=1

γ(m), η̂ =
1

M

M∑
m=1

η(m),

respectively. The function f(Z) can be estimated by f̂(Z) =∑K
k=1 β̂kBk(Z), where β̂k is the kth component of β̂. Simi-

larly, the consistent estimates of covariance matrices of θ̂η,

β̂, γ̂ and η̂ can be obtained by using their corresponding
sample covariance matrices of the simulated observations
{(θ(m)

η ,β(m),γ(m),η(m)) : m = 1, . . . ,M}. For example,

v̂ar(β̂) = {M − 1}−1
∑M

m=1(β
(m) − β̂)(β(m) − β̂)�. Then,

the standard errors for the components of β̂ can be obtained
by using the square roots of their corresponding diagonal el-
ements of v̂ar(β̂).

3.4 Bayesian model comparison

Bayes factor is an important statistic for comparing sev-
eral competing models in a Bayesian framework, and is
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widely used to make model comparison in various statistical
models. But it is rather difficult to calculate Bayes factor
because of the high-dimensional integral involved. To ad-
dress the issue, some methods such as bridge sampling (e.g.,
Meng and Wong [30]) and path sampling (e.g., Gelman and
Meng [18]) have been developed. Here, the path sampling
method is used to calculate Bayes factor for comparing two
competing models H1 and H0:

B10 =
p(Z∗,X,W |H1)

p(Z∗,X,W |H0)
,

where p(Z∗,X,W |Ht) is the marginal probability density
of (Z∗,X,W ) under Ht, Z

∗ = f(Z), p(Z∗,X,W |Ht) =∫
p(Z∗,η,X,W |ϑt,Ht)p(ϑt|Ht)dηdϑt, ϑt = {γ,β, σ−2

ζ ,a,

λ,ϕ, τ−2} is the set of parameters under Ht for t = 0 and 1.
Similar to Lee and Song [28] and Lee and Tang [29], for a
continuous parameter t ∈ [0, 1], we consider the following
class of probability density functions

F (t) =

∫
p(Z∗,η,X,W , t|ϑt)p(ϑt)dηdϑt,

where p(Z∗,η,X,W , t|ϑt) is the joint probability density
function of (Z∗,η,X,W ) under Ht that links H0 and H1

with the continuous parameter t such that Ht = H0 if t = 0,
and Ht = H1 if t = 1. Following Gelman and Meng [18], we
have

logB10 = log
F (1)

F (0)
=

∫ 1

0

E{H(Z∗,η,X,W ,ϑt, t)}dt,

where E represents the expectation taken with respect to the
joint conditional probability density p(Z∗,η,ϑt|X,W , t),
H(Z∗,η,X,W ,ϑt, t) = d log p(Z∗,η,X,W , t|ϑt)/dt.
Then, logB10 can be estimated by

̂logB10 =
1

2

�∑
�=0

(t(�+1) − t(�))(H̄(�+1) + H̄(�)),

where 0 = t(0) < t(1) < · · · < t(�) < t(�+1) = 1,

H̄(�) = M−1
∑M

m=1 H(Z∗,η(m),ϑ
(m)
t(�)

, t(�),X,W ) and

{(η(m),ϑ
(m)
t(�)

) : m = 1, . . . ,M} are the observations gener-

ated from the joint conditional probability density p(Z∗,η,
ϑt|X,W , t(�)) via the preceding presented Gibbs sampler.

3.5 Goodness-of-fit statistic

To assess the plausibility of the posited model, the poste-
rior predictive (PP) p-value [43] is here adopted. Following
Gelman, Meng and Stern [43], the PP p-value is defined as

pB = P{D(Zrep|Θ) ≥ D(Z|Θ)|X,W , H0},

where Zrep denotes a replication of Z, H0 represents the
plausibility of the above considered model, D(·|·) is a dis-
crepancy variable, and Θ = {γ,η, σ−2

ζ , τ−2,ϕ,β,a,λ}. For

our considered model H0, we take the discrepancy variable
as

D(Zrep|Θ) =
∑
s∈S

{
f(Zrep(s))−X(s)�γ −W (s)�η − ξ(s)

}2
/σ2

ε ,

which is asymptotically distributed as the chi-squared dis-
tribution with N degrees of freedom. Thus, the PP p-value
can be rewritten as

pB =

∫
P (χ2(N) ≥ D(Z|Θ))p(Θ|X,W )dΘ.

It is rather challenging to evaluate the above integral. To
solve the issue, the commonly used Monte Carlo method is
adopted to approximate pB , i.e.,

p̂B =
1

M

M∑
m=1

P
(
χ2(N) ≥ D(Z|Θ(m))

)
,

where the observations {Θ(m) : m = 1, . . . ,M} are gener-
ated from the joint probability density p(γ,η,β, σ−2

ζ , τ−2,
ϕ,a,λ|Z,X,W ) via the preceding presented Gibbs sam-
pler. Following Lee and Tang [29], the model is plausible if
p̂B is not far from 0.5 (e.g., within the interval (0.3, 0.7)).

4. NUMERICAL EXAMPLE

4.1 Simulation studies

To investigate the performance of the proposed
Bayesian estimation procedure, we conducted the first
simulation study. In this simulation study, the dataset
{Z∗(s),X(s),W (s) : s ∈ S} was generated from the
TSMMs defined in Equations (3). Here, covariate X =
(X1, X2, X3)

� was generated by sampling X1 from the uni-
form distribution Uniform(-2,2), X2 and X3 from the stan-
dard normal distribution; we took L = 2 resolution W-
wavelets W (·)q=12 as the spatial basis functions; η was gen-
erated from the multivariate normal distribution N (0,Σ),
ξ was sampled from the normal distribution N (0, σ2

ξ ); ε was

sampled from the normal distribution N (0, σ2
ε); and we took

S = {s : s = 1, . . . , N} with N = longitude× latitude, where
longitude and latitude were taken as 20, respectively. The
true values of parameters γ, σ2

ξ , σ
2
ε and Σ were taken as

γ = (−0.5, 0.5, 0.5)�, σ2
ξ = 0.001, σ2

ε = 1 and Σ = gΣ0,

respectively, where g = N(1− σ2
ξ )/tr(W

�Σ0W ), and Σ0 =

R−1Q�Δ0QR−� in which Δ0 = (δ0ij) was a N ×N station-

ary covariance matrix with δ0ij = (1− σ2
ξ ) exp(−|i− j|/25),

and Q and R were the QR decompositions of matrix W
(i.e., W = QR).

To investigate the effect of different transformation func-
tions on Bayesian estimations of parameters of interest, we
considered the following three types of functions for f(Z(s)):

Type A. f−1(Z∗(s)) = exp(0.5Z∗(s) − 1.0)/(1.0 +
exp(0.5Z∗(s)− 1.0)) leading to highly skewed data;
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Table 1. Performance of Bayesian estimates for different
transformation functions (TFs) in the first simulation study

γ1 γ2 γ3
TF Bias RMS Bias RMS Bias RMS

A PS -0.017 0.100 0.013 0.118 0.024 0.102
BCO 0.367 0.370 -0.365 0.368 -0.365 0.369
BC1 0.451 0.452 -0.451 0.452 -0.453 0.454

B PS 0.002 0.074 0.000 0.084 0.002 0.082
BCO 0.302 0.308 -0.303 0.311 -0.302 0.310
BC1 0.403 0.403 -0.404 0.404 -0.407 0.405

C PS -0.017 0.078 0.019 0.095 0.013 0.080
BCO 0.387 0.391 -0.386 0.392 -0.384 0.390
BC1 0.387 0.391 -0.386 0.392 -0.383 0.390

Note: ‘PS’ represents estimation obtained with P-splines
method, ‘BCO’ denotes estimation obtained with Box-Cox
transformation at the optimal value of ρ, and ‘BC1’ is
estimation obtained with Box-Cox transformation at ρ = 1.0.

Table 2. MSPEs of Y for different transformation functions
(TFs) in the first simulation study

TF P-splines Box-Cox

A 0.113 1.056
B 0.066 0.812
C 0.079 1.221

Type B. f−1(Z∗(s)) = argtan{exp(Z∗(s))+0.5} yielding
non-symmetrically U-shaped data;

Type C. f−1(Z∗(s)) = Z∗(s)/5+sin((Z∗(s)−5)/20)+2
leading to bimodal data.

Based on the above generated dataset, the preceding pre-
sented MCMC algorithm was adopted to calculate Bayesian
estimates of parameters and M = 5000 observations af-
ter 5000 burn-in iterations. For the P-splines approxima-
tion of f(Z(s)), we fixed the total number of knots to be
n = n0 + 2n1 + 1 = 30, where n0 is the number of intervals
for dividing the domain of xmin and xmax into n0 intervals,
n1 = 3 is the degree of B-splines. Thus, the number of B-
splines K was taken to be K = n0 + n1 = 26. We selected
the second order random walk (i.e., d = 2) for specifying the
prior of βk’s. The selection of the hyperparameters was given
in Appendix. For comparison, we also calculated Bayesian
estimates of parameters via the Box-Cox transformation,
i.e., f(Z) = (Zρ − 1)/ρ for ρ �= 0 and f(Z) = log(Z) for
ρ = 0, under the following two cases: (i) ρ = 1.0 and (ii) the
optimal value of ρ, which is 0.303, 0.343 and 0.788 for Types
A, B and C, respectively. Results for 100 replications were
given in Table 1, where “Bias” was the difference between
the true value and the mean of the estimates based on 100
replications, and “RMS” was the root mean square between
the estimates based on 100 replications and its true value.
The average mean squared prediction errors (MSPEs) of Y
for 100 replications via P-splines and Box-Cox transforma-
tion with the optimal value of ρ were presented in Table 2.

Figure 3. The histogram of Z (upper panel), estimated
transformation function via P-spline of f(Z) (lower panel) for

type A (left), type B (middle) and type C (right) for a
randomly selected replication in the first simulation study.

Examination of Tables 1 and 2 indicated that the above pro-
posed Bayesian estimation procedure performed better than
the Box-Cox transformation method, and Box-Cox transfor-
mation method with the optimal value of ρ was better than
that with a particular value for ρ.

Figure 3 plotted the true and estimated curves of f(Z),
Figure 4 plotted the true process of Y and its predicted pro-
cesses via the P-splines, and Figure 5 plotted the true and
estimated covariance matrices of η for a randomly selected
replication. Inspection of Figures 3 and 4 implied that the
preceding proposed Bayesian P-splines method was an effec-
tive non-parameter method for estimating unknown trans-
formation function. Examination of Figure 5 showed that
the above presented Bayesian method behaved well in esti-
mating covariance matrix of η.

To illustrate the presented goodness-of-fit statistic, we
calculated PP p-value for Types A, B and C, which were
0.435, 0.448 and 0.358 for a randomly selected replication,
respectively, which showed that the considered model can
fit the generated data well as expected.

To illustrate Bayes factor for comparing two competing
spatial mixed models associated with random effects, we
conducted the second simulation study. In this simulation
study, we considered the following two competing models:

H0 : f(Z(s)) = X(s)�γ + ν(s) + ε(s),
H1 : f(Z(s)) = X(s)�γ + ν(s) + ξ(s) + ε(s).
We simulated the dataset on the basis of the same setting

as given in the first simulation study. Thus, H1 represented
the true model. Similar to Lee and Tang [29], H0 and H1

was linked by Ht01: f(Z(s)) = X(s)�γ+ν(s)+ tξ(s)+ε(s),
where t ∈ [0, 1]. Clearly, Ht01 was equal to H0 when t = 0,
andHt01 was equal toH1 when t = 1. To calculate logarithm
Bayes factor via the path sampling procedure, we took � =
10 and M = 5000 after 5000 burn-in iterations in evaluating
T̄(�) for � = 0, 1, . . . , � + 1. The estimated logarithm Bayes
factors corresponding to three transformation functions (i.e.,

Types A, B and C) were ̂logB10=10.186, 4.949, and 3.939,
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Figure 4. True process of Y (left), predicted process of Ŷ
with P-spline (middle) and predicted bias of Y (right) for

type A (upper), type B (middle) and type C (lower panel) for
a randomly selected replication in the first simulation study.

Figure 5. True covariance matrix K of η (left), estimated K̂
(middle) and predicted bias of K (right) for type A (upper),

type B (middle) and type C (lower panel) in the first
simulation study.

respectively. Following Kass and Raftery [24], the true model
H1 was selected regardless of transformation functions as
expected, which implied that the preceding proposed model
comparison procedure is quite effective.

To illustrate Bayes factor in selecting the number of spa-
tial basis functions or the number of resolution levels, we
conducted the third simulation study. In this simulation
study, we considered the following two competing models:
Hw0 : f(Z(s)) = X(s)�γ +W (1)(s)�η(1) +W (2)(s)�η(2) +

ξ(s)+ε(s),Hw1 : f(Z(s)) = X(s)�γ+W (1)(s)�η(1)+ξ(s)+

ε(s), where W (1)(s) = (w1(s), . . . ,w4(s))
�, W (2)(s) =

(w5(s), . . . ,w12(s))
�, η(1) = (η1, . . . , η4)

�, and η(2) =
(η5, . . . , η12)

�. Thus, Hw0 was the true model. Similarly,
Hw0 and Hw1 was linked by Htw01: f(Z(s)) = X(s)�γ +

W (1)(s)�η(1) + (1 − t)W (2)(s)�η(2) + ξ(s) + ε(s), where
t ∈ [0, 1]. Clearly, Htw01 was equal to Hw0 when t = 0,
and Htw01 was equal to Hw1 when t = 1. We generated
the dataset from the model Hw0 on the basis of the same
setting as given in the first simulation study. The preced-
ing presented path sampling approach with � = 10 and
M = 5000 after 5000 burn-in iterations was employed to cal-
culate Bayes factors for each of three transformation func-
tions: Types A, B and C. The estimated logarithm Bayes
factors corresponding to Types A, B and C transformation

functions were ̂logB10=-202.892, -180.995 and -152.184, re-
spectively, which showed that the true model Hw0 was se-
lected regardless of transformation functions as expected.

4.2 An example

In this subsection, the remote sensing dataset described
in Introduction was used to illustrate the above presented
TSMMs together with Bayesian method. As an illustration,
we only fitted a small study region S between longitudes
+30.25 and +15.75, and between latitudes -30.25 and -15.75
to the considered TSMMs. There were some missing data
in S, whose missing proportion was 2.56%. For simplicity,
we deleted these missing data. We selected three covariates
WV, NR and CM to construct a TSMMs for AOD, i.e.,
in the considered TSMMs, Z(s) = AOD(s), and X(s) =
(CM(s),NR(s),WV(s)). Because the units of covariates and
response were inconsistent, the raw data were standardized
on the basis of the fully observed data. In this case, N =
30× 30 = 900 in S.

The above developed Bayes factor together with the
path sampling method was used to select the number of
the spatial basis functions. Thus, we considered the follow-
ing two competing models: Hw0 : f(Z(s)) = X(s)�γ +

W (1)(s)�η(1)+W (2)(s)�η(2)+ξ(s)+ε(s), Hw1 : f(Z(s)) =

X(s)�γ +W (1)(s)�η(1) + ξ(s) + ε(s), where η(1) and η(2)

are 4 × 1 and 8 × 1 vectors of random effects correspond-
ing to multi-resolutional spatial basis functions W (1)(s)

and W (2)(s), respectively. Similarly, Hw0 and Hw1 was

linked by Htw01: f(Z(s)) = X(s)�γ +W (1)(s)�η(1) + (1−
t)W (2)(s)�η(2) + ξ(s) + ε(s), where t ∈ [0, 1]. In this case,
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Figure 6. Images of AOD, CM, NR and WV datasets in
which the studied datasets are showed in red region.

Figure 7. The hist of Z (first), estimated transformation

function via P-spline of f (second),predicted process of Ŷ
with P-spline (third), estimated covariance matrix K of η

(fourth).

Htw01 reduced to Hw0 when t = 0, and Htw01 was Hw1

when t = 1. Similar to the third simulation study, we took
L = 2, � = 10 and M = 5000 observations after 5000 burn-
in iterations in computing ̄(�) for � = 0, 1, . . . , � + 1. The

estimated logarithm Bayes factor was ̂logB10 = −12.741,
which showed that we should select the model Hw0 to fit
the considered dataset, i.e., q = 12.

Based on the selected model Hw0, we obtained Bayesian
estimates of γ: γ̂ = (−0.2006,−0.183, 0.248), which showed
that CM and NR had a negative effect on AOD, while WV
had a positive effect on AOD. Also, the PP p-values was
0.312, which showed that the selected model fitted the data
well. Figure 7 showed that the histogram of the considered
dataset, the estimated transformation function of f(Z), the

predicted process of Ŷ , and the estimated covariance matrix
K of η.

APPENDIX A

A.1 Specification of hyperparameters

Generally, one takes e2 = 1 and a small value of e1 such as
e1 = 0.005 leading to an almost diffuse prior for τ2. Also, we

set b = 1. Following Kang and Cressie [23],we take μγ0 = 0
and σ2

γ0 = 0.25, σ̂2
ζ as an initial estimate of σ2

ζ , κζ = ςσ̂2
ζ in

which ς = 8 in simulation studies and an example analysis.
For the prior of Σ, we choose v0i = 8, u0i = 1,aj0 = 1,
Aj0 = 0.25I in which I is an identity matrix.

A.2 MCMC algorithm

Step (a). The conditional distribution for γ is given by

p(γ|ξ,η, σ−2
ξ ,β,D) ∼ Np(μγ ,Σγ),

where μγ = Σγ [σ
−2
ε X�{

∑K
k=1 βkBk(Z) −

Wη − ξ} + σ−2
γ0 μγ0], Σγ = (X�X/σ2

ε +

σ−2
γ0 Ip)

−1, X = (X(s1), . . . ,X(sN ))�, Bk(Z) =

(Bk(Z(s1)), . . . , Bk(Z(sN )))�, and W = (W (s1),
. . . ,W (sN ))�.

Step (b). The conditional distribution for η is given by

p(η|γ, ξ,β,a,λ,D) ∼ Nq(μη,Ση),

where μη = ΣηW {
∑K

k=1 βkBk(Z)−Xγ−ξ}/σ2
ε , and Ση =

(σ−2
ε WW�+Σ−1)−1.
Step (c). The conditional distribution for ξ is given by

p(ξ|γ,η, σ−2
ξ ,β,D) ∼ N (μξ,Σξ),

where μξ = Σξ{
∑K

k=1 βkBk(Z)−Xγ−Wη}/σ2
ε , and Σξ =

(σ−2
ε + σ−2

ξ )−1I.
Step (d). It is easily shown from the prior distribution

of β and the distribution of Z(s) that the full conditional
distribution β can be expressed as

p(β|γ,η, σ−2
ζ ,ϕ,D) ∝ exp

{
−1

2 (β −m)�P (β −m)
}

×
K∏

k=2

I(βk ≥ βk−1)I(Qβ = 0),

where P = BB�/σ2
ζ + M(ϕ)/τ2 with σ2

ζ = σ2
ε + σ2

ξ ,

B = (B1(Z), . . ., BK(Z))�, and m = P−1B(Xγ + Wη).
Clearly, the conditional distribution p(β|·) is not a familiar
distribution. Thus, it is impossible to directly sample obser-
vation from the conditional distribution p(β|·). To this end,
the Gibbs sampler is again adopted to sample each compo-
nent βk of β as follows.

For t = 0, 1, 2, . . ., at the current value β(t) = (β
(t)
1 ,

. . . , β
(t)
K )� of β with the constrained conditions β

(t)
k ≥ β

(t)
k−1

for k = 2, . . . ,K, the observations β
(t+1)
1 , . . . , β

(t+1)
K are it-

eratively drawn by

(1) sampling β
(t+1)
1 from TN(μβ1 , ϕ

2
β1
,−∞, β

(t)
2 ),

(2) sampling β
(t+1)
2 from TN(μβ2 , ϕ

2
β2
, β

(t+1)
1 , β

(t)
3 ),

(3) sampling β
(t+1)
3 from TN(μβ3 , ϕ

2
β3
, β

(t+1)
2 , β

(t)
4 ),

...
(K) sampling β

(t+1)
K from TN(μβK

, ϕ2
βK

, β
(t+1)
K−1 ,∞),

where TN(μd, ϕ
2
d, d1, d2) represents the one-dimensional
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interval truncated Gaussian distribution in the interval
(d1, d2) with mean μd and variance ϕ2

d, μβk
= mk +

P�
[k]P

−1
(k)(β

(t)
[k] − m[k]) and ϕ2

βk
= Pkk − P�

[k]P
−1
(k)P [k] for

k = 1, . . . ,K, where Pkk is the kth diagonal element of ma-
trix P , P (k) is a (K − 1)× (K − 1) submatrix of matrix P
with the components corresponding to the kth row and the
kth column of matrix P deleted, and P [k] is a (K − 1)× 1
vector with the kth component in the kth column of matrix
P deleted, m[k] and β[k] are the (K−1)×1 vectors with the
kth components of vectors m and β deleted, respectively.
For identifiability, the function f(·) satisfies the following
restriction condition: Qβ = 0, which can be implemented
by centering the function f(·) on its mean at each of iter-
ations of the Gibbs sampler when evaluating estimates of
parameters via the above presented MCMC.

Step (e). The conditional distribution for σ2
ξ is given by

p(σ2
ξ |γ,η,β,D) ∼ IG(aσ2

ξ
, bσ2

ξ
)I{σξ ∈ (0, κξ)},

where aσ2
ξ
= (N − 1)/2, bσ2

ξ
= (B�β −Xγ −Wη)�(B�β −

Xγ − Wη)/2, and IG(·, ·) represents the inverse-gamma
distribution.

Step(f). The conditional distribution p(τ−2|β,ϕ) is
given by

p(τ−2|β,ϕ) ∼ Γ

(
e1 +

K − d

2
, e2 +

1

2
β�M(ϕ)β

)
,

where d is the order of random walk.

Step(g). The conditional distribution p(ϕk|β, τ−2) is
given by

p(ϕk|β, τ−2) ∼ Γ

(
b+ 1

2
,
b+ u2

k/τ
2

2

)
,

where uk is equal to βk − βk−1 and βk − 2βk−1 + βk−2 for
the fist and second order random walk, respectively.

Step (h). To obtain conditional distribution of λ, it fol-
lows from ω = Aη and |Σ|−1 = |A|�|Λ|−1|A| = |Λ−1| =∏q

i=1 λ
−1
i that the likelihood can be written as

�(η|Σ) ∝ |Σ|−1/2 exp

{
−1

2
η�Σ−1η

}
=

q∏
i=1

λ
−1/2
i exp

{
−1

2
ω�Λ−1ω

}
=

q∏
i=1

λ
−1/2
i exp

{
−1

2
tr(Λ−1ωω�)

}
=

q∏
i=1

λ
−1/2
i exp

{
− si
2λi

}

The conditional distribution for the ith component of λ is
given by

p(λ−1
i |η,a) ∼ Γ

(
v0i + 1

2
,
u0i + si

2

)
,

where si is the ith diagonal element of matrix ωω� for i =
1, . . . , q.

Step (i). Consider the conditional distribution of a. Note
that

(6)

Aη =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
a21 1 0 . . . 0 0
a31 a32 1 . . . 0 0
...

. . .
. . .

. . .
. . .

...
aq1 aq2 . . . . . . aq,q−1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

η1
η2
η3
...
ηq

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

η1
η2 + a21η1

η3 + a31η1 + a32η2
...

ηq +
∑q−1

i=1 aqiηi

⎞
⎟⎟⎟⎟⎟⎠ .

Thus, we can rewrite the likelihood function as

�(η|Σ) ∝
q∏

i=1

λ
−1/2
i exp{−1

2 (Aη)�Λ−1(Aη)}

=
q∏

i=1

λ
−1/2
i exp{− η2

1

2λ1
} exp{− (η2+a21η1)

2

2λ2
}

× exp{− (ηq +
∑q−1

i=1 aqiηi)
2

2λq
},

which leads to

�(η|Σ) ∝
q∏

i=1

λ
−1/2
i exp{−1

2
(η −∇a)�Λ−1(η −∇a)},

where

∇ = −

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
η1 0 0 . . . 0 0
0 η1 η2 . . . 0 0
...

. . .
. . .

. . .
. . .

...
0 0 . . . η1 . . . ηq−1

⎞
⎟⎟⎟⎟⎟⎠ .

Therefore, the conditional distribution for a is given by

p(a|η,Λ) ∼ N (μa,Σa),

where Σa = (A−1
0 + ∇Λ−1∇)−1, and μa = Σa(A

−1
0 a0 +

∇Λ−1η). Because Λ is a diagonal matrix, when A0 is also
a diagonal or block-diagonal matrix corresponding to rows
of A, the derivations are simplified and the elements of a
can be updated in a series of independent steps

p(ai|η,Λi) ∼ N (μai,Σai),

where Σai = (A−1
i0 + λ−1

i Ω�
iΩi)

−1, μai = Σai(A
−1
i0 ai0 −

λ−1
i Ω�

iηi), Ωi = (η1, . . . , ηi−1) for i = 2, . . . , q. Note that
Ai0 may depend on λi. Given the posterior draws a and λ,
a posterior draw of Σ can be obtained by Σ = A−1ΛA−�.

The conditional distributions corresponding to steps (a)-
(i) are some familiar distributions, thus sampling observa-
tions form these distributions is straightforward.

Semiparametric Bayesian analysis of transformation spatial models 557



A.3 W-matrix

A W-matrix with even order has the form of

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 −1
2 −3 1

−1 3 3 −1
−1 3 −3 1

. . .

−1 3 3 −1
−1 3 −3 1

−1 3 2
−1 3 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A W-matrix with odd order has the form of

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 −1
2 −3 1

−1 3 3 −1
−1 3 −3 1

. . .

−1 3 3 −1
−1 3 −3 1

−1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Although the inverse matrix W−1 has a structure similar to
that of W , it is more appropriate to think of W−1 as be-
ing built by columns instead of rows. The building blocks of
W−1 are the ḡ-vector (1, 3, 3, 1) and h̄-vector (1, 3,−3,−1),
which are dual to the g- and h-vectors of W , respectively.
The columns of the matrix come in pairs, made up of the
transpose of the above two basic vectors; successive pairs
of columns are shifted two positions downwards. Follow-
ing Kwong and Tang [26], the W-matrix is associated with
the wavelet theory. In particular, the following propositions
hold.

Proposition 1. If there is a scaling function φ(·) corre-
sponding to a W-matrix, φ(·) satisfies the dilation equation

φ(x) = 2

n∑
i=1

ω̄iφ(2x− i+ 1),

where ω̄i = ḡi/
∑n

j=1 ḡj , ḡ = (ḡ1, . . . , ḡn)
� is the first basis

vector of the inverse W-matrix. In particular, φ can be taken
as the classical quadratic spline.

Proposition 2. For h̄-vector, we have

φ(x) = C
∑

h̄iφ(2x− i+ 1),

where h̄ = (h̄1, . . . , h̄n)
� is the second basis vector of the

inverse W-matrix, and C is some scaling constant.
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