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Destructive power series long-term survival model
with complex activation schemes
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A new destructive cure rate model is introduced based on
a family of power series distribution for the number of con-
current causes related to the event of interest. A mixture
of first and last activation schemes is considered. For pa-
rameter estimation a classical approach based on maximum
likelihood methodology is implemented. The performance
of estimation procedure is evaluated based on a small scale
simulation study. The model is also considered on a real data
example, involving congestive heart failure patients.
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1. INTRODUCTION

Cure rate models have become the ad-hoc choice when
the event of interest may not be attainable for a fraction of
individuals in the population. A possible way to deal with
this situation is to consider that there are a random num-
ber M of possible concurrent causes of failure, with cor-
responding latent times given by continuous non-negative
random variables W1, . . . ,WM . Conditionally on M = m,
these quantities are assumed to be independent and iden-
tically distributed (iid) so that the failure time T is given
by

T =

{
min(W1, . . . ,WM ), if M > 0;
∞, if M = 0.

Different distributions for M and Wj have been ex-
tensively considered by several authors. The seminal
work by Berkson and Gage [1] assumed the combination
Bernoulli/Exponential models. Several decades later, Chen
et al. [2] considered a Poisson/Weibull structure for the
problem. Based on the same Weibull distribution for the la-
tent times, Rodrigues et al. [3], [4] proposed a more flexible
framework assuming, respectively, Negative Binomial and
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COM-Poisson distributions for M . Cancho et al. [5] con-
sidered Geometric/Birnbaum-Saunders models and, later
on, Cancho et al. [6] studied the combination Power se-
ries/Weibull. Negative Binomial/Generalized Gamma and
Power series/Beta-Weibull models were considered by Or-
tega et al. [7], [8]. Cordeiro et al. [9] examined the Neg-
ative Binomial/Birnbaum-Saunders combination and re-
cently Gallardo et al. [10] developed the model based on
the Yule-Simon/Weibull distributions.

Rodrigues et al. [11] elaborated a more general model.
Assuming the availability of some intervention, they con-
sidered that out of M original risk factors, only a number
D(≤ M) remains in effect. For instance, in oncological stud-
ies,M usually represents the number of carcinogenic cells for
a patient that has some evidence of cancer. After an initial
treatment, D of such cells would remain active. Therefore,
considering the cure as M = 0 (i.e. the patient would not
have any remaining carcinogenic cells) would be contradic-
tory. In such a case, cure will be achieved when D = 0.
In their initial proposal, Rodrigues et al. [11] imposed the
weighted Poisson distribution for M , with Poisson and Neg-
ative Binomial distributions as special cases. Conditionally
on M = m, the random variable D is assumed to have a
Binomial distribution with size m and success probability
p, i.e., each initial concurrent causes can be independently
activated with probability p. Under the constraint D ≤ M ,
one has the destructive structure. Other possibilities have
been considered elsewhere (see, e.g., Yang and Chen [12]).

Let W1, . . . ,WD be activation times related to non-
destroyed causes, assumed to be conditionally independent
(given D = d) and identically distributed. The correspond-
ing failure time is then given by T = min(W1, . . . ,WD) for
D > 0 and T = ∞ for D = 0. This representation is known
in the literature as first activation scheme (FA). In Cooner
et al. [13] one can find a more general activation scheme.
Specifically, they assume that it is necessary to have acti-
vation of a random number of underlying causes, say R, to
have the event of interest. Under their definition, R = 1
would correspond to the FA scheme. It is conceivable then
to consider situations where, instead of the minimum, it
would be required to have the maximum among all concur-
rent times (R = M or R = D in the non-destructive and
destructive models, respectively). This scheme is known as
the last activation scheme (LA). In addition, Cooner et al.
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Figure 1. Activation scheme for cured and susceptible individuals.

[13] also propose the so-called random activation scheme
(RA), assuming discrete uniform distribution for R, similar
to the mixture model of Berkson and Gage [1]. The authors
also consider a mixture activation scheme (mix) which con-
siders that, for each individual, the FA and LA schemes
appear with probabilities π and 1 − π, respectively. In the
non-destructive context, Cancho et al. [14] deal with three
of the above mentioned activation schemes (FA, LA and
RA) and the power series distribution for the concurrent
causes whereas Cancho et al. [15] use the same idea in the
destructive framework, which was extended in Gallardo et
al. [16] in a random effects model context. From our knowl-
edge, the different activation schemes considered by Cooner
et al. [13] have not been applied to destructive models so far.
Moreover, our motivation to introduce different activation
schemes in a destructive cure rate model context is given
by a real data set application related to congestive heart
failure (CHF) patients. Specifically, we are interested in in-
troduce the mixture activation scheme in this context. The
physicians dealing with subjects under this condition expect
survivals no longer than a certain time, say 5 years. How-
ever, they have identified patients with an unusually long
term follow-up, some of them with lifetimes similar to the
general (non-CHF) individuals. It seems reasonable, then,
to consider the population of CHF under a 3-fold stratifi-
cation: patients with lifetime under the 5 year period (FA
scheme), subjects with a long-term survival though inferior
to the non-CHF individuals (LA scheme) and patients with
lifetime following a pattern similar to the general population
(“cured” subjects). Figure 1 describes a diagram with this
situation. Also, given the possibility of a long follow-up and
the active research in the development of new drugs, it is

reasonable to consider that the initial number M of activa-
tion times may be reduced, as is the case in the destructive
model considered in this paper.

Since FA and LA schemes are particular cases for π = 1
and π = 0, respectively, we may implement statistical based
procedures to decide between them. We propose a new class
of destructive cure rate models based on the power series dis-
tribution, considering FA, LA and a mixture between those
two schemes.

The remaining of this paper is organized as follows. In
Section 2, we formulate the new model and special cases
are presented. In Section 3, we discuss maximum likelihood
estimation. In Section 4, the CHF dataset is considered as
an illustration for our proposed model. A simulation study
to evaluate the model is presented in Section 5. Finally, in
Section 6, main results are discussed.

2. MODEL FORMULATION

The destructive model introduced in Rodrigues et al. [11]
considers M as a (unobservable) random variable denoting
the initial number of concurrent causes that can produce the
event of interest with probability mass function (pmf) given
by

(1) P (M = m; θ, φ) =
w(m;φ)p∗(m; θ)

Eθ[w(M ;φ)]
, m = 0, 1, 2, . . . ,

where w(·;φ) is a non-negative weight function indexed by
the parameter φ, p∗(·; θ) is the pmf of the Poisson distri-
bution with mean θ > 0. The notation Eθ[·] indicates that
the expectation is taken with respect to the variable M fol-
lowing a Poisson distribution with mean θ. Given M = m,
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Table 1. Special cases of the PS(θ,A(θ)) distribution, θ ∈ Θ. For Binomial and Negative Binomial distributions q is
considered known

Distribution am A(θ) A′(θ) Θ

Poisson(θ) (m!)−1 eθ eθ (0,∞)

Logarithmic(θ) (m+ 1)−1 − log(1−θ)
θ

(1−θ) log(1−θ)+θ

θ2(1−θ)
(0, 1)

Negative Binomial(q, θ)
(
m+q−1

m

)
(1− θ)−q q(1− θ)−(q+1) (0, 1)

Binomial(q, θ)
(
q
m

)
(1 + θ)q q(1 + θ)q−1 (0,∞)

let �j , j = 1, 2, . . . ,m, be independent and identically dis-
tributed Bernoulli random variables. If the j-th cause pro-
duces the event, �j = 1; otherwise, �j = 0. Therefore, for
P (�j = 1) = p, the traditional models of Berkson and Gage
[1] and Chen et al. [2] can be seen as particular cases of
p = 1 (which implies M = D).

The unobserved quantity

D =

{
�1 + · · ·+ �M , if M > 0,
0, if M = 0,

with D ≤ M , is the total concurrent causes not destroyed.
Clearly, D | M = m ∼ Bin(m, p) if m > 0 and P (D = 0 |
M = 0) = 1. Also,

P (D = d; θ, p, φ) =
e−θp(θp)d

d!Eθ[w(M ;φ)]
Eθ(1−p)[w(M + d;φ)].

Differently from the authors, we propose to assume for M
a different class of discrete models called the power series
distribution (Noack [17]) with pmf given by

P (M = m; θ) =
amθm

A(θ)
, m = 0, 1, 2, . . . ,(2)

where am ≥ 0, θ > 0 and A(θ) =
∑∞

m=0 amθm is the series
function. We denote the distribution in (2) as PS(θ,A(θ)).
The main reasons for the choice of this class of models are:
(i) up to this moment, in this context the PS distribution has
not been considered; (ii) many popular distributions belong
to this class, such as Poisson, logarithmic, negative binomial,
among others and; (iii) the probability generating function
(pgf) of the model have a closer form, which is very relevant
for the computation of the population survival function as
we will see in a future section.

The first moment for this distribution is E(M) =

θ ∂ logA(θ)
∂θ and the k-th moment can be computed using the

recursive formula

E(Mk+1) = θ
∂E(Mk)

∂θ
+ E(M)E(Mk), k = 1, 2, . . . .

Depending on am, some popular distributions are ob-
tained, as shown in Table 1.

Considering D | M = m ∼ Bin(m, p) if m > 0 with
P (D = 0 | M = 0) = 1, the corresponding marginal distri-
bution is given by the following proposition.

Proposition 1. For the initial number of causes M , statis-
tically described by the distribution in (2), the total number
D of actual concurrent causes will have pmf

(3) P (D = d; θ, p) =
(θp)d

d!A(θ)

∂d[A(u)]

∂ud

∣∣∣
u=θ(1−p)

.

Proof. By the law of total probability,

P (D = d; θ, p) =

∞∑
m=d

P (D = d | M = m; p)P (M = m; θ)

=
∞∑

m=d

(
m

d

)
pd(1− p)m−d amθm

A(θ)

=
(θp)d

d!A(θ)

∞∑
m=d

m!

(m− d)!
am[θ(1− p)]m−d.

Note that A(u) =
∑∞

m=0 amum, so differentiating d

times with respect to u, we have that ∂dA(u)
∂ud =∑∞

m=d
m!

(m−d)!amum−d. The result follows considering u =

θ(1− p).

It is straightforward to prove that E(D) = θp∂ logA(θ)
∂θ . In

long-term survival models, the pgf has a very important role,
because the population survival function can be expressed in
terms of that function Rodrigues et al. [3]. It can be verified
that the pgf for D is given by

(4) ψD(s) =
A(θ(1− p(1− s)))

A(θ)
, s ∈ (0, 1).

Similar to Rodrigues et al. [11], we further assume that
Wa, a = 1, . . . , D have common survival function given by
S(·;λ) = 1−F (·;λ). In addition, if W1, . . . ,WD are indepen-
dent of D, it follows that the (population) survival function
based on the FA scheme is SFA

pop(t) = ψD(S(t;λ)) whereas,

for the LA scheme, SLA
pop(t) = 1 + ψD(0)− ψD(F (t;λ)). The
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Table 2. Population survival and density functions for the three considered schemes

Scheme Spop(t) fpop(t)

FA A(θ(1−pF (t;λ)))
A(θ)

A′(θ(1−pF (t;λ)))
A(θ)

θpf(t;λ)

LA 1 + A(θ(1−p))
A(θ)

− A(θ(1−pS(t;λ)))
A(θ)

A′(θ(1−pS(t;λ)))
A(θ)

θpf(t;λ)

Mix πSFA
pop(t) + (1− π)SLA

pop(t) πfFA
pop (t) + (1− π)fLA

pop(t)

Table 3. Survival and density functions related to susceptible individuals for each activation scheme

Scheme Ssus(t) fsus(t)

FA A(θ(1−pF (t;λ)))−A(θ(1−p))
A(θ)−A(θ(1−p))

A′(θ(1−pF (t;λ)))
A(θ)−A(θ(1−p))

θpf(t;λ)

LA A(θ)−A(θ(1−pS(t;λ)))
A(θ)−A(θ(1−p))

A′(θ(1−pS(t;λ)))
A(θ)−A(θ(1−p))

θpf(t;λ)

Mix πSFA
sus(t) + (1− π)SLA

sus(t) πfFA
sus (t) + (1− π)fLA

sus(t)

mixture between FA and LA schemes will have survival func-
tion given by

SMix
pop (t) = πSFA

pop(t) + (1− π)SLA
pop(t),

with 0 ≤ π ≤ 1. Table 2 shows population survival and den-
sity functions (Spop and fpop, respectively) for the proposed
model.

Henceforth, we call our model destructive power series
(DPS) cure rate model and, for each particular activation
schemes in Table 2, we denote DPS-FA, DPS-LA and DPS-
Mix, respectively. When using a specific distribution belong-
ing to the power series model, we denote the models as DP
(Destructive Poisson), DL (Destructive logarithmic), DNB
(Destructive Negative binomial) and DBin (Destructive bi-
nomial), appending the corresponding activation scheme.
For instance, DP-FA, DL-LA, DNB-Mix, etc.

Note that the cure probabilities for the models in Table 2
are all equal to

q0 = A(θ(1− p))/A(θ).

As for the distribution of latent times Wa, one can as-
sume any parametric model. In this paper, we will consider
the Weibull distribution, given its widespread use and suit-
ability in many biological problems; however, other models
could be considered. The survival function for Wa is then
given by S(t;λ) = exp{−eαtν}, where λ = (α, ν), α ∈ R

and ν, t > 0. The survival and density functions for suscep-
tible individuals (when D ≥ 1) will be denoted by Ssus(t)
and fsus(t), respectively, and are presented in Table 3. It is
straightforward to show that they are proper survival func-
tions, as expected.

3. ESTIMATION

Subject to right censoring, the actual observable data
will be associated to random variables Ti = min(T ∗

i , Ci)
and δi = I(T ∗

i ≤ Ci), i = 1, . . . , n, where T ∗
i and Ci de-

note failure and censoring times, respectively, and δi corre-
sponds to the failure indicator. In addition, we associate
to the i-th individual, i = 1, . . . , n, a set of covariates
z1i = (1, z1i1, . . . , z1ir1 ) related to the initial number of
causes and z2i = (1, z2i1, . . . , z2ir2 ) related to the activation
probabilities for non-destroyed cells in such a way that

log θi = z�1iβ1 and log

(
pi

1− pi

)
= z�2iβ2,

where β1 and β2 are vectors of unknown parameters with di-
mensions (r1+1) and (r2+1), respectively. In order to avoid
identifiability issues in the sense of Li et al. [18], we have to
consider z1 and z2 as not sharing common elements. Specif-
ically for the NB model, it is needed not to have the inter-
cept in one of the term parameter vectors. From a practical
point of view, it seems more appropriate to take β2 without
intercept, as this will imply that, for an individual with all
covariates equal to zero, the probability of activation for the
initial cells is 0.5, which seems natural if the covariates are
centered (for the continuous case, for instance).

Maximum likelihood estimators for ψ, say ψ̂, are ob-
tained by maximizing the log-likelihood function for ψ =
(β1, β2, λ, π), given by

(ψ) =

n∑
i=1

[δi log fpop(ti) + (1− δi) logSpop(ti)] ,(5)
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Figure 2. Kaplan-Meier estimates for each covariate in the CHF dataset.

where fpop(·) and Spop(·) are given in Table 2 and δi denotes
the failure indicator for the i-th individual, i = 1, . . . , n.
Standard errors are estimated based on the Hessian matrix.

In practice, the selection of covariates for θ and p may
be a problem. Up to now very few procedures have been
proposed to deal with this issue. [11] consider all possible
combinations of covariates and select the model which pro-
vides a smaller AIC. However, in their problem the data
set has only 2 covariates, producing a reasonable number of
combinations. Our CHF dataset, which is actually a sub-
set of the original data, we have 5 covariates, considerably
increasing the number of combinations, even when the in-
tercept is included in θ. At the end, we considered the AIC
criteria based on 180 model combinations.

4. APPLICATION TO HEART FAILURE
DATA

In this section, we apply the destructive power series
model to the CHF dataset. A total of 2,128 patients treated
in the Heart Institute from the Medical School of the Uni-
versity of São Paulo, Brazil were followed from July 2003
to April 2015. The time to failure is defined as the num-
ber of years from enrolment in the hospital’s protocol until
death, loss of follow-up or end of study. The mean and me-
dian follow-up times were 5.23 and 4.84 years, respectively

(sd=3.44). The following subset of the original covariates
were selected for this illustration:

• age: age of the patient, in years, at the time of enrol-
ment in the study (mean = 56.86, median=57, sd =
3.44);

• eti : dummy variable indicating if the cause of CHF was
associated to ischemic cardiomyopathy or Chagas dis-
ease (1); or other causes (0) (n = 644 and n = 969,
respectively);

• fcl : dummy variable indicating if patient was in func-
tional classes of more (1), or less (0) impairment related
to the CHF (n = 695 and n = 918, respectively);

• ejf : left ventricle ejection fraction (in %, mean=33.47,
median=30, sd=11.30);

• cre: level of serum creatinine at the enrolment time (in
mg/dL, mean=1.21, median=1.1, sd=0.85).

Covariates age, cre and ejf were centered at 57 years,
1.1 mg/dL and 30%, respectively. Those values correspond
to the respective median values. The data is characterized
by a considerable amount of missing data. For this illustra-
tion, we considered only subjects with complete data for all
described covariates, resulting in 1,613 patients, with 900
of them presenting to censored times (56% of total). An
initial analysis suggested the combination of etiologies de-
scribed above. Despite the long follow-up time, the Kaplan-
Meier estimators (KM) for each covariate in Figure 2 show
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Table 4. Models with lowest AIC among all combinations under identifiability for the CHF dataset

Distribution Scheme Covariates Covariates Number of
of M activation in z1 in z2 Log-likelihood parameters AIC

Poisson Mix age, eti, fcl, ejf cre -2378.152 9 4774.304
Poisson Mix age, fcl, ejf eti, cre -2379.479 9 4776.958
Poisson LA age, eti, fcl, ejf cre -2380.231 8 4776.462

NB (q = 3) Mix age, eti, fcl, ejf cre -2379.867 9 4776.734
NB (q = 2) LA age, eti, fcl, ejf cre -2380.416 8 4776.832

Table 5. Estimated parameters for DP-Mix model in the heart failure dataset

Confidence interval 95%
Parameter Estimate s.e. Lower limit Upper limit exp(Estimate) p-value

β0 1.2211 0.3384 0.5578 1.8844 – 0.0003
β1age 0.0182 0.0036 0.0111 0.0253 1.0184 <0.0001
β1eti 0.4954 0.0933 0.3125 0.6783 1.6412 <0.0001
β1fcl 0.5404 0.0942 0.3557 0.7251 1.7166 <0.0001
β1ejf -0.0228 0.0043 -0.0312 -0.0144 0.9774 <0.0001
β2cre 1.8664 0.3587 1.1634 2.5693 – <0.0001
π 0.8791 0.0416 0.7976 0.9607 – –
α -3.4727 0.3293 -4.1182 -2.8273 – –
ν 1.1949 0.0507 1.0955 1.2943 – –

a somewhat large proportion of censored patients, with a
plateau towards the end of the study. This feature suggests
the presence of long-term survivors, with lifetimes greater
than expected, eventually similar to the general (non-CHF)
population.

The DPS model considering the three activation schemes
discussed in Section 2 were fitted. All combinations of the
covariates age, etiology, functional class, creatinine and ejec-
tion fraction were included. If any problem related to iden-
tifiability was detected, the corresponding combination was
discarded. Models with smaller AIC are presented in Ta-
ble 4, where we can conclude that age, etiology, functional
class and ejection fraction are related to the number of ini-
tial concurrent causes whereas creatinine is related to the
activation probability p. The Poisson distribution in com-
bination with the mixture activation scheme seems to have
the best performance. Estimates related to this model are
presented in Table 5. Note that, considering a 5% level of
significance for the Wald test, all covariates are statistically
significant. Figure 3 illustrates the influence of each covari-
ate on the estimated survival function. Finally, since the
parameter θi = exp

(
z�1iβ

)
in the Poisson model represents

the mean of number of initial causes, we may conclude the
following:

• For each additional year of age at enrolment, the num-
ber of initial causes of death increases, in average, by
1.9% [95% confidence interval = (1.1%-2.6%)].

• The number of initial causes of death for CHF pa-
tients with ischemic cardiomyopathy or Chagas disease
is, in average, 64.1% larger than for patients with CHF
caused by other conditions [95% CI=(36.7%-97.1%)].

• The expected number of initial causes related to the
heart failure in patients with more impairment is in-
creased by 71.7% when compared to less impairment
patients [95% CI=(42.7%-106.5%)].

• Increasing the ejection fraction in 1% decreases the ex-
pected number of causes of death related to the heart
failure in 2.3% [95% CI = (1.5%-3.2%)].

• The activation probabilities pi are estimated as 0.72,
0.89 and 0.98 for patients with creatinine levels equal
to 0.5, 1.1 and 2.0 mg/dL, respectively.

• Estimate from the mixing coefficient π shows that
87.91% [95% CI=(79.76%-96.07%)] have a survival ex-
perience in the lifespan for CHF patients whereas
12.09% [95% CI = (3.93%-20.24%)] of them would have
a longer than expected survival time (though inferior to
the general non-CHF population).

• Figure 4 shows the behaviour of estimates for the pro-
portion of long-term patients, considering different ages
and values of ejection fraction. As expected, it is less
likely to have long-term patients (similar to the gen-
eral population) as age increases. The reverse effect is
observed for ejection fraction.

5. SIMULATION STUDIES

In this section we present two simulation studies. The first
is related to verify the performance of the mle in DP-FA,
DP-LA, DP-mix, DNB-FA, DNB-LA and DNB-mix models
in finite sample when the model is well specified. The second
is devoted to study the performance of the mle estimators
in DP-mix and DNB-mix when the model is misspecified.
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Figure 3. Estimated survival function for DP-mix model in the CHF dataset. When not varying, covariates were taken as:
age= 57 years old, etiology= Other, functional class= Less impairment, ejection fraction= 30% and creatinine= 1.1 mg/dL.

Figure 4. Proportion of long-term patients and corresponding 95% pointwise confidence interval for: (a) patients with etiology
other than Chagas/ischaemia, less impairment, creatinine equals to 0.8 mg/dL and ejection fraction of 40% and different ages
(left panel) and (b) 60 year old patients, with Chagas disease, more impairment, creatinine equals to 2 mg/dL and different

levels of ejection fraction (right panel).
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Table 6. Simulation study for DP-mix and DNB-mix models with different sample sizes

DP-Mix DNB-Mix
n Parameter Bias MSE CP (95%) Bias MSE CP (95%)

β1age 0.003 0.000 0.918 0.005 0.001 0.936
β1eti 0.056 0.237 0.917 0.071 0.309 0.940

100 β1fcl 0.055 0.230 0.918 0.135 0.317 0.940
β1ejf -0.002 0.000 0.909 -0.007 0.001 0.938
β2cre 0.205 0.576 0.942 0.254 0.853 0.944
α 0.235 0.310 0.912 0.264 0.349 0.923
ν 0.198 0.412 0.920 0.207 0.361 0.919
π -0.004 0.020 0.526 -0.019 0.011 0.321

β1age 0.001 0.000 0.936 0.004 0.000 0.939
β1eti 0.016 0.067 0.938 0.063 0.090 0.949

250 β1fcl 0.016 0.067 0.941 0.085 0.094 0.944
β1ejf -0.001 0.000 0.934 -0.004 0.000 0.944
β2cre 0.072 0.151 0.946 0.136 0.252 0.947
α 0.031 0.085 0.935 0.035 0.089 0.938
ν 0.021 0.101 0.929 0.027 0.075 0.938
π 0.009 0.010 0.740 0.019 0.002 0.619

β1age 0.000 0.000 0.947 0.003 0.000 0.939
β1eti 0.005 0.031 0.944 0.054 0.043 0.949

500 β1fcl 0.009 0.030 0.947 0.067 0.047 0.944
β1ejf -0.000 0.000 0.945 -0.004 0.000 0.928
β2cre 0.026 0.066 0.950 0.084 0.114 0.946
α 0.010 0.042 0.942 0.012 0.035 0.940
ν 0.008 0.039 0.939 0.015 0.042 0.941
π 0.010 0.005 0.863 0.018 0.001 0.847

β1age 0.000 0.000 0.948 0.003 0.000 0.944
β1eti 0.004 0.015 0.949 0.018 0.022 0.950

1000 β1fcl 0.006 0.015 0.950 0.048 0.026 0.949
β1ejf -0.000 0.000 0.948 -0.004 0.000 0.917
β2cre 0.014 0.031 0.950 0.039 0.066 0.948
α 0.009 0.021 0.947 0.014 0.030 0.948
ν 0.005 0.015 0.948 0.015 0.025 0.947
π 0.006 0.003 0.929 0.012 0.001 0.914

5.1 Recovery parameters

In this section we present a simulation study to assess
the performance of the estimation procedure of Section 3.
We follow a similar structure for the covariates motivated
by the CHF dataset. Continuous covariates were also cen-
tered. For the concurrent causes, we consider the Poisson
and negative binomial models. We also consider the three
activation schemes (FA, LA and mix) discussed in the pre-
vious sections.

Given the highly skewed nature of age, this covariate was
drawn from the skew-normal distribution. Creatinine was
drawn from normal distribution and ejection fraction was
drawn from a uniform distribution. The values for the binary
covariates etiology and functional class were drawn from
Bernoulli distributions with success probabilities 0.60 and
0.57, respectively. The mean, variance and shape parameters
for the skew-normal model was chosen based on the sample
values observed for the variables age and creatinine in the
CHF dataset, i.e., skew-normal(−0.125, 12.895, 0.951) (see

Fernández and Steel [19] for details about the parametriza-
tion used for the skew-normal model). Similarly, the mean
and variance for creatinine and parameters related to the
uniform distribution for ejection fraction were computed
based on sample values observed in CHF the dataset. Same
procedure, based on the Bernoulli distribution, was adopted
in the allocation of subjects for each etiology and functional
class.

For each patient, we considered the same combination of
covariates associated to z1 and z2 (see Table 4). Mi was
drawn from the Poisson or NB model depending on the
particular case. For Mi = 0, we defined Di = 0. Given
Mi > 0, we simulated Di from the conditional Binomial
distribution with parameters Mi and pi. If Di = 0, we as-
signed the respective failure time as +∞; otherwise, we sim-
ulated lifetimes W1, . . . ,WDi from a Weibull distribution.
For the FA and LA schemes, failure times are considered
as the minimum or the maximum among those times, re-
spectively; for the mix scheme, the failure time is consid-
ered as a convex combination of the minimum or maximum
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Table 7. Sensitivity analysis for DP-mix and DNB-mix models (FA is the true activation scheme)

DP-FA DNB-FA
n Parameter Bias MSE CP (95%) Bias MSE CP (95%)

β1age 0.005 0.007 0.924 0.013 0.003 0.936
β1eti 0.061 0.254 0.919 0.067 0.309 0.939
β1fcl 0.049 0.221 0.908 0.128 0.315 0.934

100 β1ejf -0.011 0.003 0.914 -0.010 0.000 0.943
β2cre 0.146 0.599 0.970 0.156 0.830 0.931
α 0.181 0.333 0.866 0.271 0.410 0.929
ν 0.228 0.375 0.957 0.224 0.336 0.928
π -0.072 0.028 0.529 -0.023 0.012 0.329

β1age -0.004 0.003 0.941 0.008 0.002 0.939
β1eti 0.016 0.068 0.927 0.066 0.088 0.942
β1fcl 0.028 0.069 0.927 0.087 0.088 0.937

250 β1ejf -0.001 0.003 0.936 -0.008 0.005 0.946
β2cre 0.071 0.173 0.963 0.131 0.233 0.939
α 0.034 0.062 0.931 0.051 0.135 0.935
ν 0.033 0.120 0.955 0.029 0.102 0.939
π -0.050 0.010 0.741 -0.022 0.006 0.621

β1age -0.004 0.001 0.952 0.005 0.002 0.941
β1eti 0.011 0.028 0.952 0.046 0.044 0.948
β1fcl 0.004 0.031 0.941 0.070 0.040 0.945

500 β1ejf 0.002 0.001 0.944 -0.004 0.001 0.947
β2cre 0.027 0.111 0.959 0.091 0.154 0.941
α 0.016 0.047 0.936 0.024 0.024 0.941
ν 0.007 0.027 0.951 -0.005 0.024 0.941
π -0.038 0.008 0.867 -0.021 0.002 0.852

β1age 0.002 0.001 0.950 0.002 0.001 0.945
β1eti 0.002 0.011 0.949 0.022 0.023 0.949
β1fcl 0.003 0.012 0.946 0.047 0.025 0.947

1000 β1ejf 0.000 0.000 0.946 -0.002 0.002 0.949
β2cre 0.026 0.020 0.954 0.026 0.054 0.958
α 0.004 0.036 0.960 0.009 0.013 0.946
ν 0.002 0.013 0.950 0.025 0.030 0.947
π -0.016 0.005 0.931 -0.013 0.002 0.926

values, with coefficients π and 1−π, respectively. Addition-
ally, the lifetimes were censored at a value c simulated from
uniform(0, 11.2), i.e., based on the maximum time observed
in the CHF dataset. The percentage of censoring ranged
from 49% to 75% (average of 62%).

In order to assess the behaviour of the estimators in finite
samples we also considered four sample sizes (100, 250, 500,
1000). Each case was replicated 1,000 times. Bias, mean
squared error (MSE) and the 95%-coverage probability (CP)
for the mix activation scheme are shown in Table 6.

Note that for both models, the bias and the MSE related
to the covariates decrease as the sample size increases. More-
over, the coverage probabilities (CP) are closer to the nom-
inal value for larger values of n. These results suggest that
the estimator for β coefficients and the estimators related
to the time-to-event α and ν are asymptotically consistent;
indeed, they are well estimated even when the sample sizes
are moderate (e.g., n = 250). The CP’s related to π per-
formed fairly well for the case n = 1,000, suggesting that
to construct a reasonable confidence interval for π it may

be necessary a large sample size, as is the case for the CHF
dataset. Similar results were obtained for the FA and LA
activation schemes, but we omit such tables here.

5.2 Misspecification of the activation
scheme

This simulation study is devoted to study the perfor-
mance of the mle in the DNB-mix model if the activation
scheme is FA or LA. We consider the same structure to draw
the data and the same values for parameters considered in
last study, except for π, where we consider π = 1 and π = 0
for FA and LA schemes, respectively. We also consider sam-
ple size of 100, 250, 500 and 1,000. Results summarized using
the bias, MSE and coverage probabilities are presented in
Tables 7 and 8. Note that conclusions for the mle of the com-
ponents of the vector β, α and ν are similar than last study,
i.e., such behaviour is reasonable in terms of bias, MSE and
CP. On the other hand, the bias of the estimator of π can
be considerable for not so large sample sizes, but more se-
rious is, again, confidence intervals covering less times that
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Table 8. Sensitivity analysis for DP-mix and DNB-mix models (LA is the true activation scheme)

DP-LA DNB-LA
n Parameter Bias MSE CP (95%) Bias MSE CP (95%)

β1age 0.012 0.009 0.916 -0.004 0.005 0.938
β1eti 0.070 0.247 0.932 0.086 0.308 0.936
β1fcl 0.073 0.218 0.918 0.133 0.323 0.935

100 β1ejf 0.015 0.015 0.912 -0.009 0.005 0.926
β2cre 0.284 0.580 0.973 0.173 0.929 0.978
α 0.289 0.254 0.913 0.316 0.408 0.918
ν 0.185 0.433 0.919 0.249 0.359 0.935
π 0.021 0.028 0.531 0.029 0.017 0.324

β1age 0.008 0.008 0.929 -0.001 0.005 0.939
β1eti 0.011 0.056 0.938 0.062 0.082 0.939
β1fcl 0.024 0.063 0.938 0.098 0.109 0.939

250 β1ejf 0.009 0.007 0.930 -0.008 0.004 0.938
β2cre 0.046 0.210 0.961 0.130 0.233 0.881
α 0.019 0.077 0.934 0.066 0.065 0.929
ν 0.042 0.072 0.921 0.060 0.087 0.936
π 0.015 0.013 0.747 0.023 0.006 0.619

β1age 0.005 0.004 0.948 0.001 0.004 0.942
β1eti 0.009 0.022 0.943 0.059 0.039 0.941
β1fcl 0.017 0.036 0.944 0.069 0.048 0.942

500 β1ejf 0.005 0.003 0.949 -0.005 0.002 0.940
β2cre 0.038 0.083 0.957 0.055 0.139 0.983
α 0.012 0.010 0.943 0.025 0.067 0.935
ν 0.012 0.037 0.935 0.034 0.060 0.941
π 0.012 0.009 0.863 0.020 0.006 0.849

β1age 0.001 0.002 0.948 0.002 0.002 0.945
β1eti 0.002 0.017 0.945 0.020 0.021 0.949
β1fcl 0.005 0.013 0.948 0.050 0.025 0.947

1000 β1ejf 0.002 0.001 0.948 -0.002 0.001 0.945
β2cre 0.006 0.055 0.952 0.040 0.067 0.940
α 0.009 0.006 0.949 0.012 0.023 0.945
ν 0.004 0.004 0.945 0.025 0.018 0.946
π 0.008 0.004 0.931 0.014 0.001 0.915

expected the true value of π. Our recommendation is con-
sider, to obtain a reliable estimator to this parameter, a
large sample size (say n ≥ 1000).

6. FINAL DISCUSSION

We proposed a new cure rate model, motivated by a real
data set related to patients with congestive heart failure.
The model considers that a fraction of patients may have
the same lifetime pattern as the general population, i.e.,
subjects without the disease or cured. Also incorporates the
possibility that, among susceptible individuals, there may
exist a proportion (say π) of them living more than expected.
The particular cases π = 1 and π = 0 lead to schemes known
as first and last activation schemes.

Estimation is easily performed based on the maximum
likelihood method, as long as some care is taken with re-
spect to identifiability. Simulation studies shows that es-
timation of parameters in the new model has, in general,
good performance for finite samples, except for the param-

eter π, when a larger sample size (n > 1000 for our consid-
ered cases) may be needed to achieve reasonable coverage
probability, although bias and mean square error perfor-
mance behave fairly well. However, since the cure proba-
bility does not depend on π, it will always be adequately
estimated, regardless the sample size. When choosing the
probabilistic model for the number of latent factors, it is im-
portant to take into consideration the available sample size,
as shown in the simulation: the Negative binomial model
requires a larger number of subjects when compared to the
Poisson model. Results observed in a read data set applica-
tion were consistent with what is observed in daily medical
practice.
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