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Adaptive LASSO regression against
heteroscedastic idiosyncratic factors
in the covariates

Kaimeng Zhang and Chi Tim Ng

Recent studies suggest that by including the principal
components of the covariates, LASSO regression achieves
certain consistency properties when the idiosyncratic fac-
tors are homoscedastic. In this paper, it is shown that if
the principal components are replaced by the common fac-
tors obtained based on the maximum likelihood estimation
of factor model and the covariates are replaced by the esti-
mated idiosyncratic factors, selection consistency holds even
in the heteroscedestic cases. The new results hold for both
LASSO and adaptive LASSO under the high-dimensional
settings with p → ∞ but p = o(n), where p and n are the
number of components of the covariates and the number
of observations respectively. Simulation studies suggest that
when the idiosyncratic factors are heteroscedastic, penalized
regression based on factor analysis outperforms that based
on principal component analysis. To illustrate the ideas, real
data examples of international economic input-output data
and international stock indexes data are studied in particu-
lar.
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1. INTRODUCTION

Penalized least square estimation methods has been ex-
tensively studied for variable selection since the introduction
of least absolute shrinkage and selection operator (LASSO)
in [20] and the subsequent work of adaptive LASSO in [24].
Going beyond LASSO, a number of alternative penalties are
proposed, for example, [5], [11], [22], [13], and [18] propose
alternative penalties to LASSO. The selection consistency
of the penalized regression methods widely studied in the
literature, to name a few, [5], [9], [6], [14], [15], [16], and
[18].

In spite of the remarkable attention among the statisti-
cians on the topic of penalized regression, serious discussion
on the impacts of the dependence structure of the covari-
ates on the variable selection is limited. An exception is the

work of [10] that introduce the so-called augmented model
by including common factors on top of the covariates in the
regression models. Here, the common factors are estimated
as the principal components of the covariates. Decomposing
the covariate into common factors and idiosyncratic factors
allow one to perform variable selection under a more gen-
eral situation where the response is generated from a linear
model involving common factors and idiosyncratic factors.
This encompasses the usual regression model against the
covariates as a special case. In the usual regression settings
without factor analysis, selection consistency of LASSO es-
timation is established in [23] under the so-called “irrep-
resentable condition” and similarly for adaptive LASSO in
[24]. The crucial idea is that the dependence between the
relevant covariates and the irrelevant covariates cannot be
too strong. If the regression model is used without consider-
ing common and idiosyncratic factors, the “irrepresentable
condition” can be too stringent in many practical situations.
Fortunately, common and idiosyncratic factors are indepen-
dent of each other. Roughly speaking, if the estimation error
in the factor model is small, selection consistency can be sat-
isfied easily.

Common factors and idiosyncratic factors can be ob-
tained by either principal component analysis or maximum
likelihood estimation of the factor model. As noted in [1],
estimation based on principal component analysis entails
homoscedasticity of the idiosyncratic factors that is restric-
tive to hold. Therefore, the results of [10] are applicable in
the homoscedasticity cases only. To allow heteroscedastic-
ity of the idiosyncratic factor, the principal components are
replaced by the common factors obtained based on the max-
imum likelihood estimation of factor model and the covari-
ates are replaced by the estimated idiosyncratic factors. In
this paper, selection consistency, see [5] and [23] is formally
established under the heteroscedasticity settings. In addi-
tion, new definition of “irrepresentable condition” is pro-
vided so as to take the estimation error into account. It is
also illustrated through simulation that the K-fold cross val-
idation (see [7]) can be used to select the tuning parameter
in the LASSO penalty.

This paper is organized as follows. In section 2, the model
and assumptions are presented. The penalized regression
method against idiosyncratic factors (PRAIF ) is described.
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The selection consistency of PRAIF is established in sec-
tion 3. In section 4, simulation studies are given. Though
the idiosyncratic factors can be obtained from the principal
components of the covariates as suggested in [10], it is il-
lustrated that under the strong heteroscedasticity settings
on the idiosyncratic factors, the PRAIF performs better if
the idiosyncratic factors are estimated based on maximum
likelihood estimation of the factor model instead. Section 5
presents empirical data examples of international economic
input/output and global financial data of stock indexes. In
particular, we study the impacts of foreign capital and labor
inputs on the domestic economic output, that is the gross
domestic production. Here, the capital and labor inputs of
all foreign countries can be correlated to each other due to
global systematic factors. Concluding remarks are given in
section 6.

2. PENALIZED REGRESSION AGAINST
IDIOSYNCRATIC FACTORS

In this section, the factor model for the covariates is de-
scribed. The response is regressed against the common fac-
tors and idiosyncratic factors estimated based on maximum
likelihood estimation of factor model.

2.1 Modeling covariates with factor model

For t = 1, 2, . . . , n and j = 1, 2, . . . , p, let yt be the re-
sponse and xt = (x1t, x2t, . . . , xpt)

T be the p × 1 vector of
observed covariates. Consider the model

yt = bTf t + γTηt + εt,(1)

xt = Λf t + ηt ,(2)

where the common factors f t1, ...,f tm are independent
N(0, Im) random variables and the idiosyncratic factors
ηt are independent N(0,Φ) random vectors with Φ =
diag

(
σ2
1 , σ

2
2 , · · · , σ2

p

)
and C−1 ≤ σ2

j ≤ C for all j =
1, 2, . . . , p for some sufficiently large positive constant C.
The errors εt = (ε1t, ε2t, . . . , εpt)

T are N(0, σ2) random vari-
ables. For all t = 1, 2, . . . , n, f t, ηt, and εt are independent.
The factor loading Λ is a p × m matrix. For model iden-
tification, Λ is rotated so that 1

nΛ
TΦ−1Λ is diagonal. In

addition, suppose that all conditions as described in [1] for
the “average consistency” of the maximum likelihood esti-
mations of Λ and Φ hold. b and γ = (γ1, γ2, . . . , γp) are
the coefficients vectors against the common factors and the
idiosyncratic factors respectively.

It is interesting to note that when bT = γTΛ, the model
(1)-(2) reduces to the usual linear regression model that the
response is regressed against the covariates, otherwise, the
usual linear regression model is misspecified. Under such a
misspecification case, the optimal predictor as defined in [16]
is the conditional expectation

E (yt|xt)

= γTxt +
(
bT − γTΛ

)
E(ft|xt)

= γTxt

+
(
bT − γTΛ

)(
Im +ΛTΦ−1Λ

)−1

ΛTΦ−1xt

= xT
t

[
γ +Φ−1Λ

(
Im +ΛTΦ−1Λ

)−1

(b−Λγ)

]
= xT

t γ
† .

It can be seen that when bT �= γTΛ, the sets {i =

1, 2, . . . , p : γi = 0} and {i = 1, 2, . . . , p : γ†
i = 0} are

different in general.

2.2 Penalized likelihood estimation

Let f̂ t and η̂t, t = 1, 2, . . . , n be the estimated common
factors and idiosyncratic factors obtained by the expecta-
tion maximization algorithm described in Appendix C. The
adaptive LASSO estimator is defined as(

b̂, γ̂
)
=

argmin
b,γ

⎧⎨⎩ 1

n

n∑
t=1

(
yt − bT f̂ t + γT η̂t

)2

+ λ

p∑
j=1

ωj |γj |

⎫⎬⎭ ,(3)

where ω̂ is a weight vector. When ω̂ = (1, 1, . . . , 1)T is
chosen, the adaptive LASSO estimation reduces to the
LASSO estimation. Alternatively, one can choose ω̂ =(
1/γ̂∗

1 , 1/γ̂
∗
2 , . . . , 1/γ̂

∗
p

)T
. Here, for j = 1, 2, . . . , p, γ̂∗

j is an
estimator of γj , for example, the ordinary least squares es-
timator or LASSO estimator.

The number of factors m is chosen so that the first m
factors explains 95% of the total variation in the covariates.

The tuning parameter λ can be chosen based on the K-
fold cross-validation method as described below. Let K be
an integer. The sample I = {1, 2, . . . , n} is randomly parti-
tioned into K equal-sized subsamples Ik, k ∈ 1, . . . ,K. Let
nk = |Ik| be the size of the subset Ik. Define(

b̂−k(λ), γ̂−k(λ)
)
= argmin

b,γ⎧⎨⎩ 1

n− nk

∑
t/∈Ik

(
yt − bT f̂ t + γT η̂t

)2

+ λ

p∑
j=1

ωj |γj |

⎫⎬⎭ .(4)

Then, λ is chosen by minimizing

(5)

K∑
k=1

∑
t∈Ik

(
yt − b̂

T

−k(λ)f̂ t + γ̂T
−k(λ)η̂t

)2

.

3. MAIN RESULTS

The theory of selection consistency under the het-
eroscedasticity assumptions on the idiosyncratic factors is
established in this section.
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3.1 Notation

Some notations are introduced here. Define p× n design
matrix X = (x1,x2, . . . ,xn)

T and n × 1 response vector
Y = (y1, y2, . . . , yn)

T . Let F and E be m×n and p×n ma-
trices containing f t and ηt, t = 1, 2, . . . , n. Let G = (F ,E)

and α = (b,γ)T . Denote by F̂ , Ê, and Ĝ the estimated
values of F , E, and G.

The true coefficient vector γ is allowed to be sparse and
d is the number of relevant covariates. Let I0 be the sub-
set of indexes corresponding to the non-zero coefficients
for {1, 2, · · · , d} and the Ic be the compliment set of I0
which includes {d+ 1, d+ 2, · · · , p}. The sub-matrices XI0

and XIc contain the columns of X corresponding to rele-
vant and irrelevant covariates respectively. Similarly, define
EI0 , EIc , ÊI0 , and ÊIc . Set GI0 = (F ,EI0), GIc = EIc ,
αI0 = (b,γI0), and αIc = γIc .

3.2 Revised irrepresentable conditions

There is a huge literature devoted to studying the statis-
tical properties of the adaptive LASSO method. Selection
consistency of the adaptive LASSO estimation can be estab-
lished under the so-called “strong irrepresentable condition”
and some regularity conditions as described in [9], [23], and
[24]. “Strong irrepresentable condition” means that

(6)
∥∥∥XT

IcXI0(X
T
I0XI0)

−1sign(βI0)
∥∥∥
∞

� ζ ,

where ζ is a positive constant and 0 < ζ < 1. The crucial
idea is to restrict the dependence between the relevant co-
variates and irrelevant covariates. Under the following con-
ditions,

(A1) p = o(n) and p → ∞,
(A2) d = o(p),
(A3) λ = o(d−1) and (2n−1 log(d))1/2 = op(λminj∈Ic |ωj |),
(A4) m = O(1).

For the penalized regression against the idiosyncratic fac-
tors, we establish the following proposition.

Proposition 1. Let H = ĜI0(Ĝ
T

I0ĜI0)
−1Ĝ

T

I0 be the hat
matrix. Under Conditions (A1) to (A4), the selection con-
sistency holds if the following conditions are satisfied,

(IR1) ‖ĜIcĜ
T

I0(Ĝ
T

I0ĜI0)
−1sign(αI0)‖∞ � v for some con-

stant 0 < v < 1,

(IR2) the equation ∂f(α)
∂αI0

= 0 admits a solution α̂I0 =

(b̂, γ̂I0) so that all entries are non-zero and sign(γ̂I0) =
sign(γI0), where f(·) is the penalized sum-of-squares func-
tion,

(IR3) ‖ĜT

Ic(I −H)ε‖∞ = o(nλminj∈Ic |ωj |), and
(IR4) ‖ĜT

Ic(I −H)GI0αI0‖∞ = o(nλminj∈Ic |ωj |).

Condition (IR1) is similar to the “irrepresentable condi-
tion” (6) excepted that the covariates X are replaced by the
estimated idiosyncratic factors E and common factors F .
The intuition is that if the estimation error in G = (F ,EI0)

is negligible, the new covariates ĜI0 and ĜIc are less corre-
lated than the original covariates XI0 and XIc . As a result,
(IR1) is easier to satisfy than the strong irrepresentable con-
dition (6). Condition (IR2) are needed to guarantee selection
consistency even in the usual regression cases. Conditions
(IR3)-(IR4) are new conditions used to guarantee that the
error in the factor analysis is negligible.

The validity of the revised irrepresentable conditions are
discussed in the following theorem.

Theorem 3.1. Suppose that (A1) to (A4) hold. Then,
(IR1) to (IR4) holds with probability going to one.

4. SIMULATION STUDIES

Table 1. Simulation results comparing LASSO and PRAIF
method

LASSO PRAIFlasso

n p d FN FP FN FP

500 50 5 0.12 3.98 0 8.86
1000 0.16 4.05 0.03 4.48
1500 0.13 3.82 0.02 2.19
2000 0.08 4.21 0.01 1.65

500 100 10 0.48 10.89 0.09 7.67
1000 0.52 10.74 0.09 6.47
1500 0.50 11.11 0.08 2.37
2000 0.36 10.53 0.06 0.84

500 150 15 0.89 17.2 0.16 1.06
1000 1.02 17.35 0.27 1.85
1500 1.01 16.19 0.19 0.65
2000 0.93 16.22 0.22 0.23

Table 2. Simulation results comparing adaptive LASSO and
PRAIF with adaptive LASSO method

adaLASSO PRAIFada

n p d FN FP FN FP

500 50 5 0.73 0 0.15 0
1000 0.69 0 0.21 0
1500 0.57 0 0.21 0
2000 0.72 0 0.14 0

500 100 10 2.28 0 0.31 0
1000 2.2 0 0.44 0
1500 2.48 0 0.38 0
2000 2.34 0 0.39 0

500 150 15 4.08 0 0.59 0
1000 4.08 0 0.51 0
1500 4.06 0 0.67 0
2000 4.03 0 0.48 0
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Table 3. Simulation results comparing PCA-LASSO and PRAIF method on different heteroscedasticity

LC PRAIF LC PRAIF

s = 10 s = 20

n p d FN FP FN FP FN FP FN FP

500 50 5 0.05 2.67 0.02 4.59 0.13 2.56 0.05 1.09
1000 0.09 2.84 0.01 2.41 0.11 2.32 0.08 0.43
1500 0.06 2.75 0.01 0.7 0.09 2.25 0.09 0.22
2000 0.14 2.87 0.02 0.68 0.08 2.2 0.06 0.26

500 100 10 0.29 8.26 0.11 1.25 0.3 6.59 0.12 0.01
1000 0.37 7.41 0.09 0.79 0.35 6.65 0.23 0.18
1500 0.3 7.37 0.11 0.29 0.28 6.17 0.18 0.06
2000 0.32 7.44 0.1 0.29 0.27 6.28 0.16 0

500 150 15 0.72 12.12 0.18 0.44 0.74 11.07 0.28 0
1000 0.82 12.07 0.29 0.02 0.61 10.36 0.31 0
1500 0.65 12.08 0.17 0 0.6 10.14 0.26 0
2000 0.83 11.67 0.27 0 0.67 10.75 0.28 0

In this section, the finite-sample properties of the follow-
ing methods are compared regarding the correct identifica-
tion of relevant covariates,

1. LASSO: LASSO regression,
2. adaLASSO: adaptive LASSO regression,
3. LC: LASSO regression against covariates and principal

components in [10],
4. ALC: adaptive LASSO regression against covariates

and principal components,
5. PRAIF: PRAIF with LASSO, and
6. PRAIFada: PRAIF with adaptive LASSO.

In the simulation, the number of factors is chosen as
m = 2. The d non-zero elements in γ is chosen at ran-
dom. The sizes of the non-zero coefficients in γ are gener-
ated randomly from Unif(0, 10). The non-zero entries of
Λ and Φ are chosen independently from Unif(2, 6) and
Unif(2, 2+ s). Here, s is used to describe the heteroscedas-
ticity of the idiosyncratic factors. The upper triangle of Λ
is first set to zero. Then, Λ is rotated so as to fulfill the
model identification condition. The error variance σ2 = 1
is chosen. The common factors f t and idiosyncratic factors
ηt are generated from Normal distributions N(0, Im) and
N(0,Φ) respectively. The covariates xt are then generated
from f t and ηt using Equation (2).

All computer programs are implemented in R language.
To estimate the coefficients, the R package named “parcor”
[12] is used. Here, the optimal value of the tuning parameter
λ is selected via 10-fold cross validation. For the methods
involving “adaptive” LASSO, the LASSO counterparts are
first obtained and the weights are set as the reciprocals of
the LASSO estimators.

To evaluate the performances of different methods, the
following measures are used. False negative refers to a des-
elected relevant covariate that is not chosen; similarly, false
positive refers to a selected irrelevant covariate. The false
positive rate (FP) and false negative rate (FN) are obtained
from 100 replicates.

To compare the performance of PRAIF and LASSO,
consider the model with b = 0. In this example, bT �= γTΛ.
Therefore, the usual linear regression model yt = βTxt+εt is
misspecified. The simulation results of the two methods are
shown in Table 1. It can be seen that PRAIF method tends
to give smaller FN and FP than LASSO excepting the case
of (n = 500, p = 50) and (n = 1000, p = 50). Table 2 shows
the FN and FP of adaptive LASSO and PRAIFada. PRAIF
method gives smaller FN than adaptive lasso and PRAIF
method performs better as p and d increases. Comparing
Tables 1 and 2, PARIF with adaptive LASSO method in
general has smaller FP but larger FN values than PARIF
method. FP are all zero in Table 2, so, the PRAIFada per-
forms better than PRAIF .

Table 3 compares LC and PRAIF under different het-
eroscedasticity settings. The model with b = 0 is considered.
In both settings with heteroscedasticity s = 10 and s = 20,
PRAIF has smaller FN and FP than LC. The performance
of PRAIFada and ALC are shown in Table 4. PRAIFada

has smaller FN and FP in both s = 10 and s = 20 cases.
Comparing Tables 3 and 4, PARIFada has smaller FP but
larger FN than PARIF .

To study the effects of dependence strengths between
the relevant covariates and the irrelevant covariates, con-
sider the communality ρ, that means the ratio between
the contributions of the common factors and idiosyncratic
factors to the variance of the covariates. In the simula-
tion, Λ is generated as before and Φii are determined by
Φii = (1− ρ)−1ρΛT

i Λi, where Λi is the i-th row of Λ. The
model with b = 0 is considered. Table 5 compares ALC and
PRAIF with Adaptive LASSO under different communality
setting with ρ = 0.1 and ρ = 0.35. In both cases, PRAIFada

has smaller FN and FP than ALC.
To conclude, as shown in the above simulation results,

PRAIFada method outperforms other methods in general,
particularly in the presence of strong heteroscedasticity and
communality in the idiosyncratic factors.
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Table 4. Simulation results comparing PCA-adaLASSO and PRAIF with Adaptive LASSO method on different
heteroscedasticity

ALC PRAIFada ALC PRAIFada

s = 10 s = 20

n p d FN FP FN FP FN FP FN FP

500 50 5 0.5 0 0.21 0 0.48 0 0.24 0
1000 0.41 0 0.17 0 0.48 0 0.17 0
1500 0.55 0 0.14 0 0.52 0 0.12 0
2000 0.64 0 0.22 0 0.5 0 0.2 0

500 100 10 1.68 0 0.3 0 1.47 0 0.62 0
1000 1.56 0 0.32 0 1.39 0 0.44 0
1500 1.57 0 0.39 0 1.35 0 0.41 0
2000 1.72 0 0.44 0 1.48 0 0.46 0

500 150 15 3.23 0 0.69 0 2.83 0 0.74 0
1000 3.17 0 0.66 0 2.58 0 0.88 0
1500 3.06 0 0.71 0 2.7 0 0.86 0
2000 3.35 0 0.89 0 2.65 0 0.81 0

Table 5. Simulation results comparing PCA-adaLASSO and PRAIF with Adaptive LASSO method on different communality

ALC PRAIFada ALC PRAIFada

ρ = 0.1 ρ = 0.35

n p d FN FP FN FP FN FP FN FP

500 50 5 0.54 0 0.26 0 0.44 0 0.25 0
1000 0.67 0 0.23 0 0.42 0 0.20 0
1500 0.60 0 0.13 0 0.43 0 0.17 0
2000 0.57 0 0.19 0 0.37 0 0.25 0

500 100 10 2.29 0 0.42 0 1.47 0 0.31 0
1000 2.13 0 0.32 0 1.18 0 0.52 0
1500 2.10 0 0.43 0 1.29 0 0.47 0
2000 2.17 0 0.40 0 0.98 0 0.47 0

500 150 15 4.02 0 0.74 0 2.54 0 0.71 0
1000 3.87 0 0.55 0 2.37 0 0.64 0
1500 3.95 0 0.52 0 2.20 0 0.68 0
2000 3.91 0 0.52 0 2.21 0 0.77 0

5. EMPIRICAL DATA EXAMPLES

In this section, two real econometric data examples are
studied, namely international economic input/output data
and global stock index data. Both datasets are strongly af-
fected by common systematic factors due to the globaliza-
tion. The number of factors m is chosen so that the cu-
mulative proportion of variance explained by the common
systematic factors is higher than 97%.

5.1 International economic input/output
data

It is common to study the relationship between the eco-
nomic inputs and outputs (measured as gross domestic pro-
duction, GDP) of a country via the Cobb-Douglas model.
Due to the globalisation, all economies in the world become
unprecedentedly closely tied to each other. As more regional
cooperation organisations are found, and more economic co-
operation agreements are signed, domestic economic output

is increasingly influenced by both domestic and international
economic inputs.

To study the international impacts on the domestic econ-
omy, we consider the data from the The World Bank web-
site (http://www.worldbank.org/). The dataset contains the
capital inputs, labor inputs, and nominal gross domestic pro-
duction of 79 countries and regions over the period from
1990 to 2017. For each country or region, both GDP and
the capital input are measured using the current prices (in
millions of domestic currency) in each year. The labor input
is measured regarding thousands of persons. Before analyz-
ing the data, the monetary unit of both GDP and capital
inputs are standardized to US dollars.

When only one country is studied, the Cobb-Douglas pro-
duction function [4] widely used among economists is

Y = AKαLβ ,(7)

where Y is the GDP of the country, K is the capital input,
and L is labor input. In addition, α and β are the unknown
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Figure 1. Boxplot of variance distribution of idiosyncratic
factors in GDP dataset.

coefficients. A is a constant describing the technology of a
country. Equivalently, the model can be written as

log Y = logA+ α · logK + β · logL .(8)

To allow international impacts on the domestic economy,
take log Y0 as the response and

(logK0, logK1, · · · , logKn, logL0, logL1, · · · , logLn)

as the covariates, where Y0 is the GDP of a country, K0

and L0 are the capital and labour input of the country.
K1, · · · ,Kn are the capital inputs of countries 1, · · · , n and
L1, · · · , Ln are the labour inputs of countries 1, · · · , n.

In this example, Canada is the country labeled zero. The
GDP of Canada is analyzed using the adaptive LASSO,
ALC and PRAIFada methods. The distribution variance of
the idiosyncratic factors diag(Φ) is plotted in Figure 1. The
box-plot shows heteroscedasticity.

To study the prediction performances, choose the obser-
vations of the first 20 years as the training dataset and that
of the remaining 8 years as the testing dataset. The adap-
tive LASSO, ALC and PRAIFada methods are applied to
the training dataset and predictions are made on the GDP
of Canada in the testing dataset. The performance is then
evaluated via the relative root mean square error (RRMSE),

(9) RRMSE =

√√√√1

7

28∑
t=21

(
ŷt − yt

yt

)2

,

where ŷt is the predicted value and yt is the realized value
of log Y0 in the t-th Year. Table 6 shows that the RRMSE
values of predicted and real GDP values by using adaptive
LASSO, ALC and PRAIFada. From Table 6, PRAIFada

gives the smallest RRMSE among the three model selection
methods.

Table 6. The average RRMSE comparing original adaptive
LASSO, PCA-adaLASSO and PRAIF with Adaptive LASSO

method of global GDP dataset

adaLasso ALC PRAIFada

RRMSE 2.684 0.0387 0.0191

Figure 2. Box-plot of variance distribution of idiosyncratic
factors in global technology services sector stock price

dataset.

5.2 Stock return data in global technology
services sector

The PRAIF method can be used to study the interac-

tions between stocks in the financial market. Due to the

systematic risk factors, the stock returns of all companies

are correlated.

To demonstrate the benefits of using PRAIFada in the

financial data, we study the interactions between Intel Cor-

poration and other 21 companies in the technology services

sectors from 6 different countries. The data is obtained from

Yahoo Finance website (https://finance.yahoo.com/), cov-

ering the period of 1296 trading days from 11/04/2014 to

11/04/2019. The stock prices are standardized so that the

monetary unit is in US dollars. Figure 2 shows the het-

eroscedasticity in the idiosyncratic factors.

Take the rate of return of Intel company as the response

and the rates of return of the remaining 21 companies as the

covariates. Choose the observations of the first 1000 trading

days as the training dataset and that of the remaining as the

testing dataset. The adaptive LASSO, ALC and PRAIFada

methods are applied to the training dataset and predictions

are made on the rate of return of Intel Corporation. Ta-

ble 7 shows the RRMSE of the adaptive LASSO, ALC and

PRAIFada variable selection methods. PRAIFada outper-

forms other two methods.
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Table 7. The average RRMSE comparing original adaptive
LASSO, PCA-adaLASSO and PRAIF with Adaptive LASSO

method of stock price dataset

adaLasso ALC PRAIFada

RRMSE 2.879 3.657 1.459

6. CONCLUSION

As shown in Theorem 3.1, penalized regression against
idiosyncratic factors allows selection consistency even under
the factor model assumptions on the covariates. Compar-
ing to the existing work of [10], the new results allow het-
eroscedasticity of the idiosyncratic factors. The theoretical
results are well-supported from the simulation examples.

APPENDIX A. PROOFS OF MAIN RESULTS

Proof of Proposition 1. Let

sign(αI0) =

(
0

sign(γI0)

)
.(10)

Suppose that (IR2) holds. With a little bit abuse of notation,
we write ωI0sign(αI0) = (0, ωjsign(γj))j∈I0

. Choose

α̂I0 = (ĜI0

T
ĜI0)

−1(Ĝ
T

I0Y + nλωI0sign(αI0)) .(11)

Then, α̂ = (α̂I0 , 0) is a local solution if the following KKT
(Karush-Kuhn-Tucker) conditions are satisfied at α = α̂,

d
∥∥∥Y − ĜI0α̂I0

∥∥∥2
2

dα̂I0

= nλωI0sign(αI0) ,(12) ∣∣∣∣∣∣∣
d
∥∥∥Y − ĜI0α̂I0

∥∥∥2
2

dα̂j

∣∣∣∣∣∣∣ ≤ nλωj , for all j ∈ Ic .(13)

They are equivalent to

− Ĝ
T

I0(Y − ĜI0α̂I0) + nλωI0sign(αI0) = 0 ,(14)

and ∣∣∣−Ĝ
T

j (Y − ĜI0α̂I0)
∣∣∣ ≤ nλωj , for all j ∈ Ic .(15)

(14) holds trivially under condition (IR2). Substituting
(11) into (15) and rewriting Y = GI0αI0 + ε, inequality
(15) becomes

nλωj ≥
∣∣∣−Ĝ

T

j

(
GI0αI0 + ε− ĜI0(Ĝ

T

I0ĜI0)
−1(

Ĝ
T

I0(GI0αI0 + ε) + nλωI0sign(αI0)
))∣∣∣

=
∣∣∣−Ĝ

T

j (I −H)ε− Ĝ
T

Ic(I −H)GI0αI0

−nλĜ
T

j ĜI0(Ĝ
T

I0ĜI0)
−1ωI0sign(αI0)

∣∣∣ .(16)

Here, αI0 refer to the true values. (IR1), (IR3), and (IR4)
guarantee that (16) holds.

Proof of Theorem 3.1. By Proposition 1, it suffices to estab-
lish (IR1)-(IR4).

Proof of (IR1). Consider∥∥∥ĜT

IcĜI0(Ĝ
T

I0ĜI0)
−1sign(αI0)

∥∥∥
∞

≤ (m+ d)1/2
∥∥∥∥(ĜT

I0ĜI0

)−1
∥∥∥∥
2

· · ·
∥∥∥ĜT

IcĜI0

∥∥∥
∞

· ‖sign(αI0)‖∞ .(17)

Note that from Condition (A4), m + d = O(d). The term

Ĝ
T

I0ĜI0 can be handled using Lemma 5. The term Ĝ
T

IcĜI0

can be rewritten as∥∥∥ĜT

IcGI0

∥∥∥
∞

=
∥∥∥[ÊT

IcF̂ , Ê
T

IcÊI0

]∥∥∥
∞

≤
∥∥∥ÊT

IcF̂
∥∥∥
∞

+
∥∥∥ÊT

IcÊI0

∥∥∥
∞

.(18)

The second term on the right-hand-side of (18) can be
bounded using Lemma 1, 2, and 5,∥∥∥ÊT

IcÊI0

∥∥∥
∞

≤
∥∥∥∥(ÊIc −EIc

)T
∥∥∥∥
2

∥∥∥(ÊI0 −EI0

)∥∥∥
2

+

∥∥∥∥(ÊIc −EIc

)T
∥∥∥∥
2

‖EI0‖∞

+

∥∥∥∥(ÊI0 −EI0

)T
∥∥∥∥
2

‖EIc‖∞ +
∥∥∥ET

I0EIc

∥∥∥
∞

≤ Op

(
max

(
p+ n1/2, (np)1/2 + np−1/2

))
+Op

(
max

(
(n log n)1/2, (p log n)1/2

))
+

√∥∥∥ÊI0 −EI0

∥∥∥
2

(
max
i∈Ic

√
‖Ei‖2

)
+
∥∥∥ET

I0EIc

∥∥∥
∞

= Op

(
(np)1/2 + np−1/2

)
.(19)

Similar to (19), the first term on the right-hand-side of (18)
can be bounded as∥∥∥ÊT

IcF̂
∥∥∥
∞

≤
∥∥∥∥(ÊIc −EIc

)T
∥∥∥∥
2

∥∥∥(F̂ − F
)∥∥∥

2

+

∥∥∥∥(ÊIc −EIc

)T
∥∥∥∥
2

‖F ‖∞

Adaptive LASSO regression against heteroscedastic idiosyncratic factors 71



+

∥∥∥∥(F̂ − F
)T

∥∥∥∥
2

∥∥∥ÊIc

∥∥∥
∞

+
∥∥∥ET

IcF
∥∥∥
∞

≤ Op

(
np−1/2

)
.(20)

From (19), (20) and Lemma 3,∥∥∥ĜIcĜ
T

I0(Ĝ
T

I0ĜI0)
−1sign(αI0)

∥∥∥
∞

= Op

(
dp1/2n−1/2 + dp−1/2

)
.(21)

Under Condition A1 and A2 the irrepresentable condition
(IR1) holds.

Proof of (IR2). Define sign(αI0) as in (10). It suffices to
show that

α̂I0 = (b̂, γ̂I0) = (Ĝ
T

I0ĜI0)
−1

(
Ĝ

T

I0Y + nλωI0sign(αI0)
)

fulfills sign(α̂I0) = sign(αI0) with probability going to one,
where αI0 is the true value. Rewriting Y = GI0αI0 + ε, we
have

α̂I0 = (Ĝ
T

I0ĜI0)
−1Ĝ

T

I0(GI0αI0 + ε)

+nλ(Ĝ
T

I0ĜI0)
−1ωI0sign(αI0)

= αI0 + (Ĝ
T

I0ĜI0)
−1Ĝ

T

I0ε

+nλ(Ĝ
T

I0ĜI0)
−1ωI0sign(αI0)

+(Ĝ
T

I0ĜI0)
−1ĜI0(ĜI0 −GI0)αI0 .(22)

To guarantee that sign(α̂I0) = sign(αI0), the quantity
minj∈I0 |αj | must dominates

A = ‖α̂I0 − αI0‖∞
=
∥∥∥(ĜT

I0ĜI0)
−1Ĝ

T

I0ε+ nλ(Ĝ
T

I0ĜI0)
−1ωI0sign(αI0)

+(Ĝ
T

I0ĜI0)
−1Ĝ

T

I0(ĜI0 −GI0)αI0

∥∥∥
∞

.(23)

The quantity A can further be bounded as

A ≤
∥∥∥∥∥(ĜT

I0ĜI0)
−1

(
Ê

T

I0ε

F̂
T
ε

)∥∥∥∥∥
∞

+
∥∥∥nλ(ĜT

I0ĜI0)
−1ωI0sign(αI0)

∥∥∥
∞

+
∥∥∥(ĜT

I0ĜI0)
−1ĜI0(ĜI0 −GI0)αI0

∥∥∥
∞

= A1 +A2 +A3 .

Using Lemmas 1 and 4, we have∥∥∥ÊI0ε
∥∥∥
∞

≤
∥∥∥(ÊI0 −EI0)

T ε
∥∥∥
∞

+
∥∥∥ET

I0ε
∥∥∥
∞

≤
∥∥∥(Λ̂I0 −ΛI0)

TF ε+ Λ̂I0(F − F̂ )T ε
∥∥∥
∞

+
∥∥∥ET

I0ε
∥∥∥
∞

≤ Op(p
−1/2(n log n)1/2)(24)

and ∥∥∥F̂ T
ε
∥∥∥
∞

≤
∥∥∥F T ε

∥∥∥
∞

+
∥∥∥(F̂ − F )T ε

∥∥∥
∞

≤ Op((2n log p)1/2) .(25)

Then, A1 = Op(n
−1/2p−1/2(log n)1/2). Lemma 4 suggests

that A2 = Op(λd). The last term in (23) can be bounded as

A3 =
∥∥∥(ĜT

I0ĜI0)
−1ĜI0(ĜI0 −GI0)αI0

∥∥∥
∞

≤
∥∥∥(ĜT

I0ĜI0)
−1
∥∥∥
∞

·∥∥∥(ĜI0 −GI0)
T (ĜI0 −GI0)αI0

∥∥∥
∞

+
∥∥∥(ĜT

I0ĜI0)
−1
∥∥∥
∞

∥∥∥(ĜI0 −GI0)
TGI0αI0

∥∥∥
∞

≤ Op(dp
−1) .(26)

Under Condition A2 and A3, results (24) to (26) suggest
that sign(α̂I0) = sign(αI0).

Proof of (IR3) and (IR4). Note that H is idempotent and
the eigenvalues are either 0 or 1 with rank d+m. Then, H
can also be rewritten using orthogonal projections as PP T ,
where P is n × (d + m) matrix of orthogonal vectors. By
Condition A1 to A4, Lemma 2 and Lemma 3∥∥∥−Ĝ

T

Ic(I −H)ε
∥∥∥
∞

=
∥∥∥−GT

Ic(I −H)ε− (GIc − ĜIc)
THε+GT

Icε

+(GIc − ĜIc)ε
∥∥∥
∞

≤
∥∥∥GT

IcPP T ε
∥∥∥
∞

+
∥∥∥(GIc − ĜIc)

TPP T ε
∥∥∥
∞

+
∥∥∥(GIc − ĜIc)

T ε
∥∥∥
∞

+
∥∥∥GT

Icε
∥∥∥
∞

≤
∥∥∥GT

IcP
∥∥∥
∞

∥∥∥P T ε
∥∥∥
∞

+
∥∥∥(GIc − ĜIc)

TP
∥∥∥
∞

∥∥∥P T ε
∥∥∥
∞

+
∥∥∥(EIc − ÊIc)

T ε
∥∥∥
∞

+Op

(
(n log(p− d))1/2

)
= Op

(
max((p log d)1/2, (n log d)1/2)

)
+Op

(
d1/2d log(p+ d))1/2

)
+Op

(
max((plog n)1/2, (n log n)1/2)

)
+Op

(
(n log(p− d))1/2

)
= Op

(
(n log n)1/2

)
(27)

and ∥∥∥−Ĝ
T

Ic(I −H)GI0αI0

∥∥∥
∞
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≤
∥∥∥−Ĝ

T

IcP
∥∥∥
∞

·
∥∥∥P TGI0αI0

∥∥∥
∞

+
∥∥∥ĜT

IcGI0αI0

∥∥∥
∞

≤
(∥∥∥(GIc − ĜIc)

TP
∥∥∥
∞

+
∥∥∥GT

IcPαI0

∥∥∥
∞

)
+
(∥∥∥(ĜIc −GIc)

TGI0

∥∥∥
∞

+
∥∥∥GT

IcGI0

∥∥∥
∞

)
‖α‖∞

≤ Op(max(p1/2, n1/2))

+Op((2n log d)1/2) +
(∥∥∥(Λ− Λ̂)

∥∥∥
∞∥∥∥F TGI0

∥∥∥
∞

+
∥∥∥Λ̂∥∥∥

∞

∥∥∥(F − F̂ )GI0

∥∥∥
∞

)
‖αI0‖∞

≤ Op((2n log d)1/2) +
(∥∥∥(Λ− Λ̂)

∥∥∥
∞

∥∥∥F TGI0

∥∥∥
∞

)
·

‖αI0‖∞ +
∥∥∥Λ̂∥∥∥

∞

∥∥∥(F − F̂ )GI0

∥∥∥
∞

.(28)

The term
∥∥∥(F − F̂ )GI0

∥∥∥
∞

in (28) can be expanded as

∥∥∥(F − F̂ )GI0

∥∥∥
∞

≤
∥∥∥∥((Λ̂T

Φ̂
−1

Λ̂
)−1

Λ̂
T
Φ̂

−1
(
Λ− Λ̂

)T

)

∥∥∥∥
∞

·∥∥∥F TGI0

∥∥∥
∞

+

∥∥∥∥(Λ̂T
Φ̂

−1
Λ̂
)−1

∥∥∥∥
∞

∥∥∥Λ̂T

IcΦ̂
−1

Ic ET
IcGI0

∥∥∥
∞

+

∥∥∥∥(Λ̂T
Φ̂

−1
Λ̂
)−1

∥∥∥∥
∞

∥∥∥Λ̂T

I0Φ̂
−1

I0 ET
I0EI0

∥∥∥
∞

+

∥∥∥∥(Λ̂T
Φ̂

−1
Λ̂
)−1

∥∥∥∥
∞

∥∥∥Λ̂T

I0Φ̂
−1

I0 ET
I0F

∥∥∥
∞

≤ Op(p
−1n(log(p))1/2) .(29)

Substituting (29) into (28) yields∥∥∥−Ĝ
T

Ic(I −H)GI0αI0

∥∥∥
∞

≤ Op((2n log d)1/2)

+Op

(
p−1n(log(p))1/2

)
+
(∥∥∥(Λ− Λ̂)

∥∥∥
∞

∥∥∥F TGI0

∥∥∥
∞

)
‖αI0‖∞

≤ Op

(
(2n log d)1/2

)
.(30)

This completes the proof.

APPENDIX B. TECHNICAL LEMMAS

Lemma 1. (See Theorem 5.1 and Equation (A.8) of Bai
and Li [1].) We have∥∥∥Λ̂−Λ

∥∥∥
2
=
(
Op

(
n−1/2p1/2

))
and(

Λ̂
T
Φ̂Λ̂

)−1

= Op(p
−1) .

Lemma 2. (See Chow and Teugal, 1978.) Assume that
A1, A2, · · · , An are independent N(0, 1) random variables
and A = (A1, A2, · · · , An). Then,

‖A‖∞ = Op(log (n)
1/2

) .(31)

Lemma 3. (See Ng and Lee (2016) [18].) Assume that
B = (bij) is n × p matrix of independent N(0, 1) ran-
dom variables. v = (vt)t=1,2,··· ,n is a vector of independent
and identically distributed with mean zero and variance one.
Then, ∥∥∥BT v

∥∥∥
∞

= Op((2n log p)1/2) .(32)

Lemma 4. The following holds,

(a) ‖E‖2 = Op(n
1/2),

(b)
∥∥∥F̂ − F

∥∥∥
2
= Op(n

1/2p−1/2),

(c)
∥∥∥ÊI0 −EI0

∥∥∥
2
= Op(p

1/2) +Op(n
1/2p−1/2),

(d)
∥∥∥ÊIc −EIc

∥∥∥
2
= Op

(
max(n1/2, p1/2)

)
,

(e)
∥∥∥ĜI0 −GI0

∥∥∥
2
= Op(p

1/2) +Op(n
1/2p−1/2),

(f)
∥∥∥ĜIc −GIc

∥∥∥
2
= Op

(
max(n1/2, p1/2)

)
.

Proof. Result (a) is a direct consequence of random matrix
theory, see [2]. The bound of (b) can be obtained by Lemma
1 and Cauchy-Schwartz inequality as follows,∥∥∥F̂ − F

∥∥∥
2

=

∥∥∥∥(Λ̂T
Φ̂

−1
Λ̂
)−1

Λ̂
T
Φ̂

−1
(
Λ− Λ̂

)T

F+(
Λ̂

T
Φ̂

−1
Λ̂
)−1

Λ̂
T
Φ̂

−1
E

∥∥∥∥
2

=

∥∥∥∥(Λ̂T
Φ̂

−1
Λ̂
)−1

Λ̂
T
Φ̂

−1
(
Λ− Λ̂

)T

F

+

(
1

p
Λ̂

T
Φ̂

−1
Λ̂

)−1
1

p
Λ̂

T
Φ̂

−1
E

∥∥∥∥∥
2

≤
∥∥∥∥(Λ̂T

Φ̂
−1

Λ̂
)−1

∥∥∥∥
2

·√∥∥∥Λ̂T
Φ̂

−1
Λ̂
∥∥∥
2

∥∥∥∥(Λ− Λ̂
)T

Φ̂
−1

(
Λ− Λ̂

)∥∥∥∥
2

·

‖F ‖2 +
∥∥∥∥∥
(
1

p
Λ̂

T
Φ̂

−1
Λ̂

)−1
∥∥∥∥∥
2

∥∥∥∥1pΛ̂T
Φ̂

−1
E

∥∥∥∥
2

≤ Op(n
1/2p−1/2)(33)

Result (d) can be shown from results (a) and (b),∥∥∥ÊIc −EIc

∥∥∥
2

≤
∥∥∥Ê −E

∥∥∥
2

=

∥∥∥∥(Λ− Λ̂
)T

F − Λ̂
(
F − F̂

)∥∥∥∥
2
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≤ Op

(
max(p1/2, n1/2)

)
.(34)

Result (c) can be obtained similarly. The bounds of (e) and
(f) can be obtained from (b), (c), and (d),∥∥∥ĜI0 −GI0

∥∥∥
2

≤
∥∥∥ÊI0 −EI0

∥∥∥
2
+
∥∥∥F̂ − F

∥∥∥
2

≤ Op(n
1/2p−1/2)(35) ∥∥∥ĜIc −GIc

∥∥∥
2

≤
∥∥∥ÊIc −EIc

∥∥∥
2
+
∥∥∥F̂ − F

∥∥∥
2

≤ Op

(
max(p1/2, n1/2)

)
.(36)

Lemma 5. Let S = GT
I0GI0 and Ŝ = Ĝ

T

I0ĜI0 . Then,∥∥S−1
∥∥
2
= Op(n

−1) and
∥∥∥Ŝ−1

∥∥∥
2
= Op(n

−1) .

Proof. For sufficiently large n, choose a subset I1 of size zn
that includes I0, where z is an arbitrarily chosen constant
between 0 and 1. Using the results of limits of extreme eigen-
values in [2], it can be shown that

1

n
λmin

(
GT

I0GI0

)
≥ 1

n
λmin

(
GT

I1GI1

)
a.s.−−→

(
1−

√
z
)
.

Then,∥∥∥∥(GT
I0GI0

)−1
∥∥∥∥
2

=
1

λmin

(
GT

I0GI0

) a.s.−−→ 1

n (1−√
z)

which is Op

(
n−1

)
. Consider∥∥∥Ŝ−1

∥∥∥
2

=
∥∥∥Ŝ−1 − S−1 + S−1

∥∥∥
2

=
∥∥∥Ŝ−1 − S−1

∥∥∥
2
+
∥∥S−1

∥∥
2

=
∥∥∥Ŝ−1

(Ŝ − S)S−1
∥∥∥
2
+
∥∥S−1

∥∥
2
.(37)

Using Lemma 4 and Cauchy-Schwarz inequality, the terms

Ŝ−S and Ŝ
−1

on the right-hand-side of (37) can be bounded
as ∥∥∥Ŝ − S

∥∥∥
2

=
∥∥∥ĜT

I0ĜI0 −GT
I0GI0

∥∥∥
2

=
∥∥∥(ĜI0 −GI0)

TGI0 + (ĜI0 −GI0)
T (ĜI0 −GI0)

+GT
I0(ĜI0 −GI0)

∥∥∥
2

= Op(np
−1/2)(38)

and ∥∥∥Ŝ−1
∥∥∥
2

=
1

λmin(Ŝ − S + S)

≤ 1

λmin(Ŝ − S) + λmin(S)

≤ 1

λmin(S)− λmax(Ŝ − S)

≤ 1

λmin(S)−
∥∥∥Ŝ − S

∥∥∥
2

≤ Op(n
−1) .(39)

Here, we have used the fact that λmin(S) dominates

λmax(Ŝ − S). The lemma then follows immediately.

APPENDIX C. EM ALGORITHM FOR
FACTOR ANALYSIS

The maximum likelihood estimation of the factor model
can be implemented via the EM algorithm proposed by Bai
and Li [1]. Let θ = (Λ,Φ). For integer k, denote by θ(k) the
estimation obtained in the k-th iteration. Define Mxx =
1

n−1

∑n
t=1(xt − x̄)(xt − x̄)T and Ω = ΛΛT +Φ, where

x̄ =
1

n

n∑
t=1

xt .

Step 1. (Initial guess) Construct Λ(0) using the first
m eigenvectors of Mxx. Suitable rotation is applied for
model identification purpose. Then, compute diag(Φ(0)) =

diag(Mxx − (Λ(0))(Λ(0))T ).
Step 2. (Expectation-Maximization step)
The EM algorithm updates the unknown estimator ac-

cording to

Λ̂
(k+1)

=

[
1

n

n∑
t=1

E
(
xtf

T
t |xt,θ

k
)]

×

[
1

n

n∑
t=1

E
(
f tf

T
t |xt,θ

k
)]−1

,

Φ̂
(k+1)

= diag
(
Mxx − (Λ̂

k
)(Λ̂

k
)T (Ωk)−1Mxx

)
,

where

1

n

n∑
t=1

E
(
xtf

T
t |xt,θ

)
= ΛTΩ−1MxxΩ

−1Λ+ Im

−ΛTΩ−1Λ ,

1

n

n∑
t=1

E
(
f tf

T
t |xt,θ

)
= MxxΩ

−1Λ .

Step 3. Repeat Step 2 until coverages.
Step 4. The common factor f̂ t and the idiosyncratic

factors η̂t are then estimated as

f̂ t = E
(
f t|xt, Λ̂, Φ̂

)
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=
(
Λ̂

T
Φ̂

−1
Λ̂
)−1

Λ̂
T
Φ̂

−1
(xt − x̄) ,

η̂t = xt − Λ̂f̂ t − x̄ .
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