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Bayesian meta-regression model using
heavy-tailed random-effects with missing sample
sizes for self-thinning meta-data

Zhihua Ma, Ming-Hui Chen
∗
, and Yi Tang

Motivated by the self-thinning meta-data, a random-
effects meta-analysis model with unknown precision param-
eters is proposed with a truncated Poisson regression model
for missing sample sizes. The random effects are assumed to
follow a heavy-tailed distribution to accommodate outlying
aggregate values in the response variable. The logarithm of
the pseudo-marginal likelihood (LPML) is used for model
comparison. In addition, in order to determine which self-
thinning law is more supported by the meta-data, a measure
called “Plausibility Index (PI)” is developed. A simulation
study is conducted to examine empirical performance of the
proposed methodology. Finally, the proposed model and the
PI measure are applied to analyze a self-thinning meta-data
set in details.

Keywords and phrases:Outliers, Plausibility index, Self-
thinning law, Truncated Poisson model.

1. INTRODUCTION

Self-thinning refers to the phenomenon that population
density will decline with the increase in individual body
size, which is very common in plant populations, from short
shrubs to tall trees [10]. Ecologists have been seeking the
law that governs population self-thinning for a long time [9].
Generally, the relationship between population density and
individual biomass can be described using a power function,
which is known as the self-thinning power law. Two kinds
of power laws, −3/2 and −4/3 power laws, are proposed.
Yoda et al. [24] found that in the fully crowded pure pop-
ulations, the relationship between the average plant weight
(W ) and the population density (D) could be formulated
by the equation W = C ·D−3/2, named as the −3/2 power
law of self-thinning. Enquist et al. [5] noted that the average
plant size should be scaled as −4/3 power of maximum pop-
ulation density, based on the finding that rates of resource
use in individual plants were scaled as approximately 3/4
power of body mass [19]. Many researches, especially field
investigations [7, 12, 20, 18], were conducted on determining
the value of the power exponent. However, the value of the
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power exponent in the self-thinning law has not achieved a
consensus yet.

In order to determine the most suitable self-thinning law,
one effective approach is to conduct meta-analysis (MA) on
the collected meta-data on self-thinning. MA analytically
combines the results of individual studies to provide an over-
all estimate of the population treatment effects, which can
lead to higher statistical power and more robust point esti-
mates than single measures derived from individual studies.
One of the research goals in this paper is to develop a new
statistical methodology within the MA framework to de-
termine which self-thinning law is more supported by the
meta-data.

In the MA literature, it is common to assume that the
variances of the random errors are known and set to be the
squares of the SEs of the estimates from individual studies
[21]. This assumption has been relaxed so that the variances
are unknown and estimated using the information of the SEs
along with sample sizes from individual studies [22, 23]. In
some cases, such as the self-thinning data in our motivating
example, the sample sizes may be missing. Under the models
with known variances, missing sample sizes is not an issue.
However, missing sample sizes cannot be ignored under the
models with unknown variances since it will lead to a bi-
ased estimator if the missing data mechanism is not missing
completely at random (MCAR). Researches have been done
on missing data in MA, which primarily focus on dealing
with missing outcomes, SEs, or covariates [8, 14, 15, 13].
However, the literature on missing sample sizes in analyzing
aggregate MA data is still sparse. In this paper, we propose a
truncated Poisson regression model for missing sample sizes.

In the MA literature, random effects in MA are tradi-
tionally assumed to be normally distributed, which is not
necessarily appropriate in practice. The normality assump-
tion for random effects may lead to inappropriate inferences
under systematic departures from normality such as out-
liers or skewness [11]. Other distributions have been used
for modeling random effects, including non-parametric dis-
tributions [1] and the t distribution [11]. In this paper, since
there are outlying aggregate values in the self-thinning coef-
ficient of the motivating meta-data, the random effects are
assumed to follow a heavy-tailed distribution to flexibly deal
with outliers.
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To carry out Bayesian inference, we develop an efficient
Markov chain Monte Carlo (MCMC) sampling algorithm for
sampling from the posterior distributions and a new Monte
Carlo method for computing the Conditional Predictive Or-
dinate (CPO) for model comparison. Most importantly, in
order to address the determination of self-thinning law sup-
ported by the meta-data, we propose a new index, called
Plausibility Index (PI), to quantify the degree of plausibil-
ity of a self-thinning law. Furthermore, an efficient Monte
Carlo method is developed to compute the PI.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief introduction of our motivating exam-
ple. Section 3 presents the proposed heavy-tailed random-
effects MA model as well as the missing sample size model.
Bayesian inference procedure and a model selection crite-
rion, LPML, is developed in Section 4. In Section 5, Plau-
sibility Index, an index for measuring how a given value of
the self-thinning coefficient is supported by the data, is pro-
posed. A simulation study is conducted in Section 6. A de-
tailed analysis of the self-thinning meta-data is carried out
in Section 7. Finally we conclude the paper with a brief
discussion in Section 8.

2. MOTIVATING EXAMPLE

In the plant community, the mass-density scaling rela-
tionship describing the variation in population density with
body size can be written as

W = C ×Dμ,(1)

where C is a constant, and W and D represent the mean
biomass of individuals and population density, respectively,
both of which are positive real numbers. In Eq. (1), μ,
a real number representing the exponent of the scaling re-
lationship, is our study of interest. By applying a logarith-
mic transformation, Eq. (1) can be rewritten as log(W ) =
log(C)+μ×log(D), so the exponent self-thinning parameter
μ becomes a regression coefficient or a slope, which is also
called the “self-thinning coefficient” in the literature. The
reduced major axis regression (RMA) is one of the most
popular approaches for estimating the self-thinning coeffi-
cient μ, which minimizes the sum of the geometric means of
the squared deviations from the fitted line in each dimen-
sion in the two-variable case [16]. RMA has some desirable
properties such as handling measurement errors in both the
dependent and independent variables and unit invariance in
the corresponding fitted line.

In order to obtain a reliable estimate of the true un-
derlying self-thinning coefficient, individual estimates from
related studies are collected to form the meta-data. Jour-
nal articles published before April 2018 were searched us-
ing the Web of Science resource with terms “self-thinning”
and “plants”. The selection criteria include (i) field ex-
periment data; (ii) using RMA for estimation; (iii) es-
timates of the slope in self-thinning line; (iv) the SEs

or the 95% confidence intervals of the slope estimations;
and (v) the sample size and the types of plant popula-
tion. A total of N = 100 records were identified. Each
record contains an estimate of the self-thinning coefficient,
95% confidence interval (CI) and/or standard error (SE),
sample size, and plant type. Plant type is a categorical
variable, which has three levels: forest, herb, and shrub.
Some of the SEs, CIs, and sample sizes are missing in
the meta-data. The missing SEs and CIs can be obtained
by algebraically calculation from each other, but unfortu-
nately, the missing sample sizes cannot be obtained in the
same way. The complete meta-data with some remarks are
given in Sections S.1 and S.2 of the Supplementary Ma-
terials http://www.intlpress.com/site/pub/files/ supp/sii/
2020/0013/0004/SII-2020-0013-0004-s002.pdf.

For the self-thinning meta-data, there are a total of 100
records, and 4.00% of which have missing sample sizes. The
average of the remaining sample sizes is 32 with a standard
deviation of 45.09. Three plant types including forest, herb
and shrub are involved. A summary of the self-thinning co-
efficients of different plant types is given in Table 1 and the
violin-boxplots of the estimated self-thinning coefficients for
these plant types, respectively, are shown in Figure 1. For
the missing sample sizes, instead of omitting the missing
records, a model for the missing sample sizes will be de-
veloped. In addition, Figure 1 shows that there are some
outliers in the data, which motivates us to develop the meta-
analysis model with heavy-tailed random-effects.

Table 1. Summary of the self-thinning coefficients by plant
types

Plant types Count
Self-thinning coefficients

Mean (Minimum, Maximum)

Forest 66 −1.5230 (−2.9152,−0.8696)
Herb 28 −0.9835 (−1.9401, 0.8212)
Shrub 6 −1.1372 (−1.3480,−0.8114)

3. THE PROPOSED MODEL

Suppose that the meta-data are collected from a se-
ries of N independent studies with estimated self-thinning
coefficients Y1, . . . , YN , standard errors SE1, · · · , SEN and
sample sizes n1, · · · , nN , with some sample sizes that are
missing. According to the motivating example, we assume
p plant types and each of them has the corresponding
underlying self-thinning coefficient. Thus, we have μ =
(μtype1 , · · · , μtypep)

′. To account for heterogeneity among
studies, we assume the random-effects MA model for Yi is
given by

Yi = z′
iμ+ τi + εi,

τi ∼ N(0, ψ−1), εi ∼ N(0, φ−1
i ),
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Figure 1. Violin-boxplot of the self-thinning meta-data by
plant types.

where zi denotes the vector indicating which plant type the
ith study belongs to. For example, among the p plant types,
the ith study belongs to type-1, then zi = (1, 0, 0, · · · , 0).
ψ and φi are precisions of independent random variables τi
and εi, respectively. The above model can be rewritten as

Yi|τi, μ, φi ∼ N(z′
iμ+ τi, φ

−1
i ),(2)

where the random effects τi in the model capture hetero-
geneity among the studies. In the literature, φ−1

i is assumed
to be known and fixed to be the square of the correspond-
ing standard error SE2

i , see Whitehead [21] for example. In
order to provide precise estimates especially when sample
sizes are small, following Yao et al. [22] and Yao et al. [23],
we take φ−1

i = σ2
i /ni and further assume

ni(ni − 1)SE2
i ∼ σ2

i χ
2
ni−1,(3)

where χ2
ni−1 denotes the χ2-distribution with (ni − 1) de-

grees of freedom. In addition, according to Figure 1, a heavy-
tailed distribution for τi is built to deal with outliers. We
assume that

τi|λi, ψ ∼ N(0, (λiψ)
−1), λi ∼ Gamma(

v

2
,
2

v
),(4)

where v represents the degrees of freedom of the distribution,
which is determined according to model selection criteria.

It should be noted that there are missing values in the
sample sizes of the meta-data. One approach for dealing with
this kind of data in many studies is to exclude the missing
values and apply a complete case analysis (CC), which may
lead to lower power. In this paper, we assume the missing
data mechanism for the missing sample sizes is missing at
random (MAR), and a missing sample size model is built as

ni ∼ Poisson(ηi)1{m1,m2}, log(ηi) = X
′

iβ.(5)

Here we assume the missing sample sizes follow a truncated
Poisson distribution with a rate parameter ηi and lower and
upper bounds m1 and m2. 1{m1,m2} is the indicator func-
tion, which equals to 1 when ni ∈ (m1,m2) and 0 otherwise.
In (5), Xi is a p-dimensional aggregate covariate vector in
the ith study and β is the vector of corresponding coeffi-
cients.

4. BAYESIAN INFERENCE AND MODEL
SELECTION

4.1 Bayesian inference

In our model, the marginal density of random effects τi
is given as

f(τi|ψ) =
∫

f(τi, λi|ψ)dλi =

∫
f(τi|λi, ψ)f(λi)dλi

=
Γ(v+1

2 )

Γ(v2 )

ψ1/2

√
πv

(
1 +

1

v

(
τi

ψ−1/2

)2)− v+1
2

,

which is the density of a non-standardized Student’s t-
distribution tv(0, ψ

−1) with v degrees of freedom and a scale
parameter ψ.

Let D = (N,Y , SE, n) denote the complete data,
where Y = (Y1, · · · , YN )′, SE = (SE1, · · · , SEN )′, z =
(z1, · · · , zN )′ and n = (n1, · · · , nN )′. The complete data
likelihood function is given by

L(μ, ψ,σ,β|D) =

N∏
i=1

f(Yi|μ, τi, σi, ni)f(SEi|σi)f(τi|ψ)f(ni|β),

where σ = (σ1, · · · , σN )′. Our main interest lies in the pos-
terior inferences on μ and ψ based on the observed data.
Write n = (nmis,nobs), where nmis and nobs denote the
missing and observed components of sample sizes n, respec-
tively. Let Dobs = (N,Y ,SE, z,nobs) denote the observed
data. We assume the missing data mechanism of nmis is ig-
norable, then the likelihood function based on the observed
data is given by

Lo(μ, ψ,σ,β|Dobs) =

N∏
i=1

∑
nmis

[ ∫
f(Yi|μ, τi, σi,nmis)f(SEi|σi)f(τi|ψ)dτi

]

× f(nmis|β).
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Thus, the joint posterior density of the unknown parameters
is given by

π(μ, ψ,σ,β|Dobs) ∝ Lo(μ, ψ,σ,β|Dobs)π(μ, ψ,σ,β),

where π(μ, ψ,σ,β) denotes the joint prior distribution of
the unknown parameters. Here we assume that the prior dis-
tributions of these parameters are independent a priori, and
further specify the following prior distributions for these pa-
rameters: μ ∼ MVN(0,Σμ) with Σμ = diag(ψ−1

μ , . . . , ψ−1
μ ),

π(ψ) ∝ ψa0−1 exp(−b0ψ), π(σ
2
i ) ∝ exp(−b1/σ

2)/(σ2)a1+1,
and β� ∼ N(0, ψ−1

β�
), � = 1, · · · , p. Note that ψμ, a0, b0, a1,

b1, and ψβ�
are pre-specified hyperparameters. In this paper,

we use ψμ = ψβ�
= 0.001, a0 = b0 = 1, and a1 = b1 = 0.001.

Markov chain Monte Carlo (MCMC) sampling algo-
rithms are used to sample from the posterior distribu-
tions. It requires sampling the following parameters in
turn from their respective full conditional distributions:
(i) π(nmis|μ,σ, ψ,β, Dobs), (ii) π(μ|nmis,σ, ψ,β, Dobs),
(iii) π(σ|μ,nmis, ψ, β, Dobs), and (iv) π(β|μ,nmis,σ,
ψ,Dobs). Take μ as an example. The full conditional dis-
tribution of μ can be written as

π(μ|n,σ, ψ,β, Dobs) ∝
N∏
i=1

p(Yi|μ, τi, ni, σi)π(μ)

∝
N∏
i=1

exp

{
− (Yi − z′

iμ− τi)
2

2σ2
i /ni

}
exp

{
− 1

2
μ′Σ−1

μ μ

}

= exp

{
−

N∑
i=1

(Yi − z′
iμ− τi)

2

2σ2
i /ni

− 1

2
μ′Σ−1

μ μ

}
,

which implies

μ|n,σ, ψ,β, Dobs ∼(6)

MVN
(( N∑

i=1

ni/σ
2
i +Σ−1

μ

)−1
N∑
i=1

z′
i(Yi − τi)ni/σ

2
i ,

( N∑
i=1

ni/σ
2
i +Σ−1

μ

)−1)
.

Thus, sampling μ from π(μ|nmis,σ, ψ,β, Dobs) is straight-
forward.

4.2 Model selection

In order to determine the degrees of freedom v in our
model, we employ the Logarithm of the Pseudo-Marginal
Likelihood (LPML) for model selection. LPML can be cal-
culated via Conditional Predictive Ordinates (CPOs).

Let D
(−i)
obs = {Yj : j = 1, . . . , i − 1, i + 1, . . . , N} denote

the observed data with the ith study deleted. The CPO for
the ith study is defined as

CPOi =

∫
f(Yi|μ, ψ, σi)π(μ, ψ, σi|D(−i)

obs )d(μ, ψ, σi),(7)

where f(Yi|μ, ψ, σi) =
∫
f(Yi, τi|μ, ψ, σi)dτi denotes

the marginal distribution of Yi, f(Yi, τi|μ, ψ, σi) =
f(Yi|μ, τi, σi)f(τi|ψ) is the joint distribution of (Yi, τi),

π(μ|D(−i)
obs ) =

∏
j �=i f(Yj |μ, ψ, σj)π(μ, ψ, σj)

c(D
(−i)
obs )

,

and c(D
(−i)
obs ) is the normalizing constant.

The calculation of CPOi in (7) involves an integral over
the random effect τi, which is computationally extensive.
In order to circumvent this numerical integration issue, we
employ the new CPO identity proposed by Zhang et al. [25].
Letting wi(τi) be a normalized weight function such that∫
wi(τi)dτi = 1, we have

CPO−1
i =∫

wi(τi)

f(Yi, τi|μ, ψ, σi)
π(μ, ψ, σi, τi|Dobs)dτid(μ, ψ, σi).

Let {(μt, ψt, σit, τit) : i = 1, . . . , n; t = 1, . . . , T} denote a
Gibbs sample of (μ, ψ, σi, τi) from π(μ, ψ, σi, τi|Dobs). Using
the above new CPO identity, a Monte Carlo estimate of
CPO−1

i can be given as

̂CPO
−1

i =
1

T

T∑
t=1

wi(τit)

f(Yi, τit|μt, ψt, σit)
,

where f(Yi, τit|μt, ψt, σit) = f(Yi|τit,μt, σit)× f(τit|ψt),
and wi(τi) can be constructed as a normal distribution via
the Laplace approximation to the conditional distribution
of τi with the density proportional to f(Yi, τi|μ, ψ, σi). The
approximated normal distribution of wi(τi) can be written
as

wi(τi) ∼ N(τ̂i,H
−1),

H = − ∂2logf(Yi, τi|μ, ψ, σi)

∂τ2i

∣∣∣∣
τi=τ̂i

,

where τ̂i is the mode of τi. Then LPML based on the new
CPO identity can be obtained as

̂LPML =
n∑

i=1

log(̂CPOi).(8)

A greater value of LPML represents a better model.

5. PLAUSIBILITY INDEX

In order to determine which self-thinning law is preferred,
in this section we propose an index to quantify the degree
of plausibility of a given value of the self-thinning coefficient
for a given dataset, which is called “Plausibility Index (PI)”.
For simplicity, we assume that there is only one plant type.
Thus, the vector μ can be simplified as a scalar quantity μ.
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Suppose that a given value of μ is denoted by μ0, and let
π0 = π(μ = μ0|Dobs). The PI measure is defined as

PI(μ = μ0) =

∫
R

∫ π(μ|Dobs)∧π0

0

dδdμ.

Visually, the PI measure is the area under the marginal pos-
terior density curve δ = π(μ|Dobs) and below the horizontal
line δ = π0, which is represented by the colored area in
Figure 2. A larger value of the PI measure means a greater
plausibility that the given value is supported by the data.
See Section S.4 of the Supplementary Materials for a con-
nection between the PI and the classical p-value under a
very simple setting.

Figure 2. Visual plot of the PI measure.

Usually, the marginal posterior density of a parameter
does not have a closed form and is difficult to be calculated
directly. Here we use the conditional marginal density esti-
mator (CMDE) proposed by Gelfand et al. [6] to estimate
the marginal posterior density. Assuming that the analytical
form of the conditional posterior density π(μ|σi, ψ,Dobs) is
available, the marginal posterior density can be written as

π(μ0|Dobs) =∫
π(μ0|ψ,σ, Dobs)π(μ, ψ,σ|Dobs)d(μ, ψ,σ).

Then CMDE can be obtained as

π̂CMDE(μ0|Dobs) =
1

T

T∑
t=1

π(μ0|ψt,σt, Dobs).

It can be shown that under some mild regularity conditions,
π̂CMDE(μ0|Dobs) is an unbiased and consistent estimator of
the marginal posterior density.

In our case, the conditional posterior density
π(μ|ψ,σ, Dobs) is given by (6), so we can obtain the
CMDE of μ as discussed above. With CMDE as an esti-
mate of the marginal posterior density, the PI can also be
computed as

PI(μ0) =
1

T ∗

T∗∑
t∗=1

[
1
{
π(μt∗) ≤ π(μ0)

}
+

π(μ0)

π(μt∗)
1
{
π(μt∗) > π(μ0)

}]
,

where 1
{
π(μt∗) > π(μ0)

}
is the indicator function, which

equals to 1 when π(μt∗) > π(μ0) and 0 otherwise.

6. A SIMULATION STUDY

In this section, a simulation study is conducted to exam-
ine the empirical performance of LPML on model selection,
as well as the comparison between our proposed model and
some existing models under different simulation settings.

In order to examine the performance of LPML, we sim-
ulated a dataset with N = 100 individual records. For
i = 1, · · · , N , the response variable Yi was randomly gener-
ated according to (2) with μ = −4/3, σ2

i was generated from
Uniform(0, 1), the sample size ni was generated according to
(5) with m1 = 6,m2 = 1000, and the rate parameter ηi was
generated according to log(ηi) = β1+β2X1i+β3X2i, where
X1i and X2i were independently generated from the stan-
dard normal distribution, β1 = 2, β2 = −2 and β3 = −1.
We generated SEs according to (3).

Missing data for the sample size ni were generated with
an ignorable missing data mechanism. Specifically, let Ri =
1 if ni is observed and Ri = 0 if ni is missing. A logistic
regression model was built for the missing indicator Ri as

f(Ri|X1i, X2i,φ) =
exp(φ1 + φ2X1i + φ3X2i)

1 + exp(φ1 + φ2X1i + φ3X2i)
,

where φ1 = 0, φ2 = −1 and φ3 = −3. The average percent-
age of missing sample sizes in T = 100 simulations in this
study is about 20%.

The true distribution of τi is a non-standardized Stu-
dent’s t-distribution tv(0, ψ

−1), where ψ = 1 and v = 2. We
built our proposed model (2)–(5) with different values of v,
and applied LPML to conduct model selection. With the
thinning interval of 5, 8000 samples are kept for posterior
calculation after a burn-in of 2000 samples. Average LPML
results of different values of v are shown in Table 2. Box-
plots of the differences of LPML values between the selected
model and the other models are also shown in Figure 3.

From Table 2 and Figure 3 we can see that when τi
indeed follows a non-standardized Student’s t-distribution
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Table 2. Average LPML values for different values of v

v = 2 v = 4 v = 6

LPML −194.95 −198.51 −201.68

v = 8 v = 10 v = ∞
LPML −203.94 −205.17 −211.53

Figure 3. LPML differences with different values of v.

with v = 2, the LPML value of a model with v = 2 is the
largest, and decreases as v increases. These results show that
LPML performs well in selecting the best model under our
settings.

The average PI values of μ = −4/3 and μ = −3/2 are also
calculated, which turn out to be 0.99 and 0.49, respectively.
The corresponding boxplots are shown in Figure 4. This
result shows that the PI index can help quantify the degree
of plausibility of a given value and choose the one that is
more supported by the data.

For assessing the precision of the posterior estimates,
we employ the following assessment measures. Take param-
eter μ as an example: Bias = 1

T

∑T
t=1(μ̂t − μ0), SD =

1
T

∑T
t=1 sd(μ̂t), MSE = 1

T

∑T
t=1(μ̂t − μ0)2, and CP =

1
T

∑T
t=1 1(μ0 ∈ CI(μ̂t)), where μ̂t denotes the posterior es-

timation of μ in the tth iteration, μ0 denotes the true value
of parameter μ, sd(μ̂t) is the posterior standard deviation
of the estimate, and CI(μ̂t) is the estimated 95% credible
interval of μ̂ in the tth iteration.

For the simulated datasets, we fit the data using three
different models: the proposed model with v = 2 and the
normal random effects models with known and unknown

Figure 4. Boxplots of PI for the different values of μ in the
simulation study.

variances. We also carried out the CC analysis. The simula-
tion results under these three models and the CC analysis
are shown in Table 3.

When the true distribution of τi is actually a non-
standardized Student’s t-distribution with v = 2, from Ta-
ble 3 we can see that (i) estimates in the proposed model
have higher precision than the other alternative models; (ii)
the posterior SDs of parameter ψ under the models with
unknown variance are larger than those under the model
with known variance; (iii) simulation results of the normal
random-effects models with known and unknown variances
are similar except for larger SDs under the model with un-
known variance; and (iv) estimation biases under the CC
analysis are larger compared to those under the proposed
model due to a MAR missing data mechanism.

We also consider the situations with different values of
the precision parameter of the random effects. When the
true values of ψ are 0.1, 1 and 5, the simulation results
under the proposed model and the normal random effects
models with known and unknown parameters are shown in
Table 4.

The results in Table 4 indicate that (i) generally, the
posterior estimation biases under the proposed model are
smaller than those under the other two alternative models,
and the CPs of the parameters under the proposed model
are both greater than 0.92 while the CPs of ψ under the
normal random effects models are 0; (ii) as ψ gets larger,
the bias of ψ becomes larger, and the posterior SD of the
parameter μ becomes smaller while the posterior SD of ψ
gets larger for all of the three models; (iii) under the pro-
posed model, the posterior SD of μ is smaller than those
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Table 3. Simulation results under different models: True model with τi ∼ t2(0, 1
−1)

True
value

The proposed model Normal random-effects model
with v = 2 with unknown variance

Bias SD MSE CP Bias SD MSE CP

μ −4/3 −0.0012 0.1285 0.0198 0.95 0.0139 0.2288 0.0565 0.94
ψ 1 0.0725 0.3002 0.0573 0.96 −0.7843 0.0432 0.5923 0.00
β1 2 −0.0302 0.0306 0.0024 0.93 −0.0297 0.0363 0.0067 0.92
β2 −2 0.0172 0.0269 0.0014 0.92 0.0180 0.0270 0.0018 0.92
β3 −1 0.0295 0.0319 0.0027 0.93 −0.0308 0.0275 0.0024 0.92

True
value

Normal random-effects model
CC analysis

with known variance
Bias SD MSE CP Bias SD MSE CP

μ −4/3 −0.0131 0.2137 0.0471 0.93 0.0073 0.1475 0.0239 0.93
ψ 1 −0.8053 0.0279 0.6590 0.00 0.0803 0.2861 0.0828 0.94

Table 4. Simulation results of the proposed model and models with known and unknown variances under different true values
of ψ

The proposed model with Normal random effects model Normal random effects model
v = 2 with unknown variance with known variance

μ ψ μ ψ μ ψ

ψ = 0.1

Bias 0.0079 0.0125 −0.0392 −0.0783 −0.0431 −0.0796
SD 0.3861 0.0293 0.7366 0.0033 0.7112 0.0029
MSE 0.1003 0.0010 0.6874 0.0061 0.9126 0.0068
CP 0.93 0.94 0.90 0.00 0.88 0.00

ψ = 1

Bias −0.0012 0.0725 0.0139 −0.7843 −0.0131 −0.8053
SD 0.1285 0.3002 0.2288 0.0432 0.2137 0.0279
MSE 0.0198 0.0573 0.0565 0.5923 0.0471 0.6590
CP 0.95 0.96 0.94 0.00 0.93 0.00

ψ = 5

Bias 0.0017 −0.5933 −0.0121 −2.9532 −0.0119 −3.0182
SD 0.0719 0.9110 0.1145 0.2273 0.1185 0.2140
MSE 0.0041 0.9429 0.0113 12.7892 0.0122 13.0860
CP 0.96 0.97 0.98 0.00 0.96 0.00

under each of the other two models, while the posterior SD
of ψ is the largest among these models; and (iv) the esti-
mation results of the two normal random effects models are
similar, but the posterior SDs of the parameters under the
model with unknown variance are larger than those under
the model with known variance.

In order to demonstrate the impact of different percent-
ages of missing sample sizes on the performance of the pro-
posed model and the CC analysis, we simulated data with
20%, 30% and 40% missing sample sizes with the other simu-
lation settings unchanged. The simulation results are shown
in Table 5.

From Table 5, we can see that as the missing percent-
age increases, the biases and MSEs of the estimates under
the CC analysis increase. The differences between the esti-
mates under the proposed model and the CC analysis also
become larger with a larger missing percentage. The results
in Table 5 confirm that the CC analysis would yield biased
estimates under MAR missing data settings, and the bias
becomes larger with a higher missing percentage.

Table 5. Simulation results under the proposed model and
the CC analysis with different missing percentages

The proposed model CC analysis
μ ψ μ ψ

Bias −0.0012 0.0725 0.0073 0.0803
20% SD 0.1285 0.3002 0.1475 0.2861

missing MSE 0.0198 0.0573 0.0239 0.0828
CP 0.95 0.96 0.93 0.94

Bias −0.0037 0.0807 −0.0150 0.1086
30% SD 0.1325 0.2758 0.1752 0.3032

missing MSE 0.0203 0.0510 0.0360 0.0902
CP 0.95 0.94 0.92 0.93

Bias −0.0085 0.1023 0.0235 0.1203
40% SD 0.1331 0.2903 0.1742 0.3303

missing MSE 0.0156 0.0603 0.0437 0.1161
CP 0.94 0.96 0.90 0.93
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Table 6. LPML values for selecting v in the distribution of
the random effects

v 1 2 3 4 5

LPML −61.84 -54.64 −55.60 −57.01 −60.28

v 6 7 8 9 10

LPML −61.45 −61.32 −62.16 −65.43 −65.76

v 20 100 ∞
LPML −68.26 −71.24 −71.98

7. EMPIRICAL ANALYSIS

In this section, the proposed methodology is applied to
analyze the self-thinning meta-data introduced in Section 2.
For the missing sample sizes model (5), we set m1 = 3 and
m2 = 1000. Plant type is used as the covariate, and the rate
parameter ηi is built as log(ηi) = β0+I(herb)β1+I(shrub)β2.
We fit the self-thinning meta-data using the heavy-tailed
random effects model with unknown variance (2)–(4). In or-
der to see whether the self-thinning coefficients would vary
among different plant types, the model for Yi is Yi|μ, ψ, φi ∼
N(z′

iμ, ψ
−1 + φ−1

i ) with μ = (μforest, μherb, μshrub). The
priors for the parameters are specified in Section 4.1. The
MCMC sampling algorithms are implemented through an

R package nimble [4] and the nimble code can be found in
Section S.3 of the Supplementary Materials. With a thin-
ning interval of 5, 8000 samples are kept for calculating the
posterior estimates after a burn-in of 2000 samples. The con-
vergence of the MCMC sampling algorithm is checked using
several diagnostic procedure discussed in Cowles and Carlin
[3] and Chen et al. [2].

The model selection criterion defined in (8) is applied to
determine the value of v in the non-standardized Student’s
t-distribution of the random effects. In Table 6, the values
of LPML corresponding to different values of v are shown.
According to the results in Table 6, since the LPML value
under v = 2 is the largest among these models, the heavy-
tailed random effects model with the non-standardized t2-
distribution is selected as the best model for this meta-data
set. These results are empirically appealing since a heavy-
tailed non-standardized t2-distribution can better accommo-
date the outliers shown in Figure 1 than those lighter tailed
distributions including the normal distribution.

The posterior estimates of the parameters μ and ψ under
the chosen model are shown in Table 7. In the same table, we
also show the posterior estimates under the normal random
effects models with known and unknown variance, and the
CC analysis.

Table 7. Posterior estimates under the proposed model, the normal random effects models with known and unknown
variances, and the CC analysis

t-distributed random effects Normal random effects
with unknown variance with unknown variance

μforest

Estimate −1.4567 −1.4970
SD 0.0444 0.0645

95% HPD interval (−1.5414,−1.3725) (−1.6274,−1.3716)

μherb

Estimate −1.1678 −0.9188
SD 0.0885 0.1008

95% HPD interval (−1.3465,−0.9935) (−1.1134,−0.7208)

μshrub

Estimate −1.1677 −1.1358
SD 0.1311 0.2053

95% HPD interval (−1.4307,−0.9104) (−1.5251,−0.7551)

ψ
Estimate 12.4525 4.4971

SD 2.5166 0.8179
95% HPD interval (8.1507, 17.8941) (3.1116, 6.1799)

Normal random effects
CC analysis

with known variance

μforest

Estimate −1.5015 −1.4612
SD 0.0591 0.0463

95% HPD interval (−1.6170,−1.3869) (−1.5536,−1.3741)

μherb

Estimate −0.9182 −1.1690
SD 0.0958 0.0889

95% HPD interval (−1.1091,−0.7310) (−1.3413,−0.9910)

μshrub

Estimate −1.1525 −1.1673
SD 0.1992 0.1256

95% HPD interval (−1.5468,−0.7409) (−1.4050,−0.9052)

ψ
Estimate 4.8461 11.7985

SD 0.7578 2.3804
95% HPD interval (3.4243, 6.6061) (7.7116, 16.9585)
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Figure 5. PI of μ for different plant types under the proposed model.

From Table 7, we can see that (i) under our pro-
posed model, the posterior estimates of the underlying self-
thinning coefficients vary among different plant types; (ii)
estimates under the proposed model are different from those
under the normal random effects models, especially for the
precision parameter of the random effects; (iii) the poste-
rior SDs of the estimates under the normal random effects
model with unknown variance are larger than those under
the model with known variance; and (iii) since the percent-
age of missing sample size is quite small, the results of the
self-thinning coefficients under the CC analysis are not much
different than those under our proposed model.

Apart from obtaining estimates of the underlying self-
thinning coefficients for different plant types, we also want
to explore which self-thinning law is more supported by the

meta-data. The PI introduced in Section 5 is employed for
determination by calculating the PI values under μ0 = −4/3
and μ0 = −3/2 for each plant types. We first calculate
π̂CMDE(−4/3|Dobs) and π̂CMDE(−3/2|Dobs) as the respec-
tive estimates of the marginal posterior density of μ, and
then obtain the PI measures according to (6). The PI val-
ues of μ0 = −4/3 and μ0 = −3/2 under our proposed model
for different plant types are shown in Table 8. And visu-
ally, the PI values under our proposed model are shown in
Figure 5.

From Table 8 and Figure 5, we can see that for forest, the
PI values of μ0 = −3/2 are much larger than those of μ0 =
−4/3, indicating that the meta-data support more on the
“−3/2 self-thinning law” than the “−4/3 self-thinning law”
for forest plants. However, for plant types herb and shrub,
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Table 8. PI values of different plant types under the proposed model

Forest Herb Shrub
μ0 = −3/2 μ0 = −4/3 μ0 = −3/2 μ0 = −4/3 μ0 = −3/2 μ0 = −4/3

PI value 0.8143 0.0437 0.0028 0.3287 0.1178 0.6391

the meta-data support more on the “−4/3 self-thinning law”
instead since the degree of plausibility of the “−4/3 self-
thinning law” is much higher than the other for herb and
shrub in this case.

8. DISCUSSION

Motivated by the self-thinning meta-data with missing
sample sizes and outliers, in this paper we develop a heavy-
tailed random-effects model with a truncated Poisson miss-
ing sample size model to obtain estimates of the self-thinning
coefficient. A heavy-tailed distribution is assumed for the
random effects to account for outliers, and the variance of
the response variable is set to be unknown. Additionally,
an index measuring how a given value of the self-thinning
coefficient is supported by the data is proposed, so we can
employ the index to determine the degree of plausibility of
the self-thinning laws and figure out which self-thinning law
is more supported by the meta-data.

Some extensions can be considered for this study. In this
paper, a heavy-tailed distribution is assigned for the ran-
dom effects, which can be extended to skewed distribu-
tions or nonparametric distributions. Besides, the estima-
tion method in this paper is restricted to RMA, which can
be extended to multiple methods and take into account the
impact of different methods. In addition, it is necessary to
explore the properties of the PI measure and try to explore
hypothesis testings using this measure to decide whether the
differences among different PI values are significant or not.
Furthermore, in this paper, the missing data mechanism of
the sample sizes is assumed to be MAR and a truncated
Poisson model is employed for modeling. It is a possibility
to consider other models for the missing sample sizes and
extend the assumption for the missing data mechanism to
be missing not at random (MNAR).
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