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Statistical methods for quantifying between-study
heterogeneity in meta-analysis with focus on rare
binary events∗
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Meta-analysis, the statistical procedure for combining re-
sults from multiple independent studies, has been widely
used in medical research to evaluate intervention efficacy
and drug safety. In many practical situations, treatment
effects vary notably among the collected studies, and the
variation, often modeled by the between-study variance pa-
rameter τ2, can greatly affect the inference of the overall
effect size. In the past, comparative studies have been con-
ducted for both point and interval estimation of τ2. How-
ever, most are incomplete, only including a limited subset
of existing methods, and some are outdated. Further, none
of the studies covers descriptive measures for assessing the
level of heterogeneity. Nor are they focused on rare binary
events that require special attention. We summarize by far
the most comprehensive set including 11 descriptive mea-
sures, 23 estimators, and 16 confidence intervals. In addi-
tion to providing synthesized information, we further cat-
egorize these methods according to their key features. We
then evaluate their performance based on simulation stud-
ies that examine various realistic scenarios for rare binary
events, with an illustration using a data example of a ges-
tational diabetes meta-analysis. We conclude that there is
no uniformly “best” method. However, methods with con-
sistently better performance do exist in the context of rare
binary events, and we provide practical guidelines based on
numerical evidences.

Keywords and phrases: Bias, Confidence interval, Cov-
erage probability, DerSimonian and Laird, Fixed effect,
Odds ratio, Mean squared error, Q statistic, Random ef-
fects.

1. INTRODUCTION

Meta-analysis, the statistical procedure for synthesizing
information from multiple studies, has been widely used in
many research areas including social, psychological and es-
pecially medical sciences. Meta-analysis is a powerful tool
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in drug safety evaluation, where the number of cases (ad-
verse events) can be very limited in a single study. The
U.S. Food and Drug Administration (FDA) released a draft
guidance for industry titled “Meta-Analyses of Randomized
Controlled Clinical Trials to Evaluate the Safety of Human
Drugs or Biological Products” in November 2018, which
demonstrates the importance of meta-analysis in the de-
velopment of new drugs. Such meta-analysis often involves
binary outcomes of rare events, which are the focus of this
study.

The primary goal of a meta-analysis is usually to esti-
mate and infer the overall effect size, where the variability
in the effect estimates from component studies should be
properly accounted for. Besides the within-study sampling
errors, the variability may come from diverse characteris-
tics of individual studies such as disparities in trial pro-
tocols, subjects’ conditions, and population features, etc.
When the study-wise differences exist, we call these studies
(statistically) heterogeneous and the heterogeneity is typi-
cally measured by a between-study variance parameter τ2.
Also, descriptive measures have been widely used by clin-
icians to provide a more intuitive interpretation about the
heterogeneity for ease of understanding.

For point estimation of τ2, the DerSimonian and Laird
(DL) estimator [10], one of the most widely used meth-
ods, has been frequently challenged for its default use in
many software packages, largely due to its sizable negative
bias when the heterogeneity level is high [2, 34, 35, 39, 47].
Many modifications over the DL estimator have been sug-
gested based on the method of moments. Other approaches
such as likelihood-based and other nonparametric methods
can also be applied. For interval estimation of τ2, different
types of confidence intervals (CIs) have been constructed to
gauge the estimation uncertainty. However, nearly all these
methods were constructed without a special consideration
of dichotomous data and their performance remains unclear
in the context of rare binary events, in which some may
produce large bias or even fail to work.

Comparative studies and review papers for descriptive
measures, unlike for the point and interval estimation of τ2,
are scarce. For example, Veroniki et al. [46], Langan, Hig-
gins and Simmonds [28], Petropoulou and Mavridis [37] re-
viewed and compared most of the existing estimators of τ2,
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among which only Petropoulou and Mavridis [37] conducted
simulation studies to evaluate their performance. Previous
comparisons about CIs (e.g., [25, 45, 48]) were largely lim-
ited to several similar types of CIs. As detailed in Tables 3
and 5, none of these papers cover descriptive measures for
quantifying the level of heterogeneity. Nor do they focus on
rare binary events. Most of them are far from being com-
plete, some even outdated, which motivates us to conduct
this study to provide useful guidance to clinicians and bio-
statisticians.

The paper is organized as follows. In Section 2, we intro-
duce notation and frequently used terms in meta-analysis.
Section 3 reviews existing descriptive measures quantifying
the level of heterogeneity. In Section 4, we list estimators
for τ2 and briefly summarize two recently developed ones
that are not included in any of the existing review papers.
In Section 5, different types of confidence intervals for τ2 are
described and categorized. In Section 6, we compare the per-
formance, in terms of bias and mean squared error (MSE)
for point estimators and empirical coverage probability and
width for CIs, in a large collection of scenarios that are de-
signed to mimic practical situations. In Section 7, we re-
analyze the data from a meta-analysis of 20 trials of type
2 diabetes mellitus after gestational diabetes with focus on
the heterogeneity among the component studies[1]. The final
section provides recommendations in terms of choosing ap-
propriate estimators and CIs in meta-analysis of rare binary
events as well as a brief discussion.

2. NOTATION & FREQUENTLY USED
TERMS

Suppose a meta-analysis includes K independent stud-
ies and the kth study contains nk subjects (k = 1, ...,K). In
study k, let θk be the true but unknown treatment effect and
yk be the observed treatment effect such that E[yk|θk] = θk
and Var[yk|θk] = σ2

k, the within-study variance. Typically
s2k, an estimate of σ2

k, is reported along with yk in pub-
lished studies and it is often treated as a known quantity in
practice (i.e., indistinguishable from σ2

k). When the study-
specific effects θk’s are treated as random variables rather
than constants, we assume E[θk] = θ and Var[θk] = τ2,
where θ, a parameter of main interest in the meta-analysis,
represents the overall treatment effect across different stud-
ies, and τ2 measures the between-study heterogeneity. There
exist two main parametric models, namely Re (random ef-
fects) and Fe (fixed effect), to combine results from com-
ponent studies. The Re model assumes that yk = θk + εk,
where θk ∼ N(θ, τ2) and εk ∼ N(0, σ2

k). When τ2 = 0, it
is reduced to the Fe model yk = θ + εk, where a common
treatment effect θ is assumed for all component studies (i.e.,
θk ≡ θ). These models can be used with any effect measure,
as long as the assumed normality is (approximately) valid.

For binary responses, we denote the number of events
by xk0 (xk1) and the number of subjects by nk0 (nk1) in

the control (treatment) group. The probability of having
an event in the control (treatment) group is denoted by
pk0 (pk1). Effect measures for binary outcomes include risk
difference (RD, pk1−pk0), risk ratio (RR, pk1/pk0) and odds
ratio (OR, [pk1/(1 − pk1)]/[pk0/(1 − pk0)]). For rare binary
events, RR≈OR. A logarithm transformation of the odds
ratio (LOR) is often used in meta-analysis for a much faster
convergence to asymptotic normality, and the within-study
variance σ2

k is then estimated by s2k = 1
xk0

+ 1
nk0−xk0

+ 1
xk1

+
1

nk1−xk1
. Gart [13] added a continuity correction factor of

0.5 to all the cells so that

yk = log
xk1 + 0.5

nk1 − xk1 + 0.5
− log

xk0 + 0.5

nk0 − xk0 + 0.5
,

and σ2
k is estimated by

s2k=
1

xk0+0.5
+

1

nk0−xk0+0.5
+

1

xk1+0.5
+

1

nk1−xk1+0.5
,

which will be used in our numerical evaluation of rare binary
events.

Next, we introduce the (generalized) Q statistic [9] and
related terms, which will frequently appear in the paper.
For any parameter of interest, we use the corresponding let-
ter/symbol with a hat to denote its estimate. For example,

we use θ̂ to denote the estimate of the overall treatment
effect θ. The Q statistic is defined as the weighted sum of
squared deviations between the estimated overall treatment
effect and observed treatment effect in each individual study,
namely

(1) Q =
K∑

k=1

wk(yk − θ̂)2,

where wk is a positive weight assigned to study k, and
θ̂ =

∑K
k=1 wkyk/

∑K
k=1 wk, the weighted average of the es-

timated study-specific effects. A commonly used weighting
scheme is to set wk = [V̂ar(yk)]

−1, i.e., the inverse of the es-
timated variance of yk. Under this inverse-variance weighing
scheme, the variance of θ̂ can be given by 1/

∑K
k=1 wk if we

treat wk’s as known constants (i.e., indistinguishable from
[Var(yk)]

−1). Further, this scheme yields wk = 1/s2k for the
Fe model, and wk = 1/(s2k + τ̂2) for the Re model, where
τ̂2 can be any estimator discussed in Section 4. Under the
Fe (Re) model with the inverse-variance weights, we denote
the corresponding Q statistic by QFe (QRe) and the corre-

sponding θ̂ by θ̂Fe (θ̂Re) with variance vFe (vRe). Note that
QFe is also known as the DerSimonian and Laird’s Q test
statistic [10].

Throughout this paper, we use χ2
df to denote a chi-

squared distribution with df degrees of freedom, and use
χ2
df,α to denote its 100α-th percentile.
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3. DESCRIPTIVE MEASURES
QUANTIFYING BETWEEN-STUDY

HETEROGENEITY

As mentioned in the introduction, (statistical) hetero-
geneity exists when true effects being evaluated differ among
studies in a meta-analysis. Assessing the extent of hetero-
geneity is essential for validating model assumptions and
decision making. An obvious choice is by estimating the vari-
ance parameter τ2, as is typically done in a random-effects
meta-analysis. As pointed out by Higgins and Thompson
[19], this measure does not facilitate comparison of hetero-
geneity across meta-analyses of different types of outcomes
(e.g., the survival time can be either continuous or discrete).
Also, its scale is specific to a chosen effect metric and the
interpretation can be difficult. For example, odds ratio is
a commonly used effect measure for binary data. Still, the
variance of log-odds ratio is not easy to understand for many
non-statisticians. Alternatively, one may test the presence of
the between-study heterogeneity and use the corresponding
test statistic or p-value to indicate the extent of heterogene-
ity. However, such measures depend on the scale of effect
sizes or the number of component studies K. To overcome
these limitations, effort has been devoted to development of
various descriptive measures that can provide more intuitive
information about the heterogeneity.

Table 1 summarizes 11 descriptive heterogeneity mea-
sures in the literature. Note that all these measures are
general-purpose and none is specifically designed for binary
outcomes. Takkouche, Cadarso-Suarez and Spiegelman [42]
proposed two measures, RI and CVB, to quantify the level
of heterogeneity in five published meta-analyses. The statis-
tic RI was developed to estimate τ2/(τ2 + σ2), the propor-
tion of total variation in the effect estimates that is due to
between-study heterogeneity. This quantity is also known as
the intra-class correlation in the context of cluster sampling.
Here, the within-study variances σ2

k’s are assumed to be con-

stant, i.e., σ2
k ≡ σ2, which is estimated by 1/

∑K
k=1 1/s

2
k,

making RI = τ̂2

τ̂2+K/
∑K

k=1 1/s2k
. The other statistic CVB es-

timates the between-study coefficient of variation τ/|θ| by√
τ̂2/

∣∣θ̂∣∣. Obviously, CVB is affected by the overall treatment
effect θ and is undefined when θ = 0.

Under the assumption of a common within-study vari-
ance σ2, Higgins and Thompson [19] formulated a general
heterogeneity measure as a function of the overall treat-
ment effect θ, the between-study variance τ2, the within-
study variance σ2, and the number of component studies,
namely, f(θ, τ2, σ2,K). They proposed three criteria that
such a measure should satisfy in general in order to facilitate
its comparability and interpretability, including (i) depen-
dence on the extent of heterogeneity, (ii) scale invariance, i.e.
f(θ, τ2, σ2,K) = f(a+bθ, b2τ2, b2σ2,K) for any a and b, and
(iii) size invariance, i.e. f(θ, τ2, σ2,K1) = f(θ, τ2, σ2,K2)
for any positive integers K1 and K2. Criterion (i) implies

that the function f should increase monotonically with τ2.
Criterion (ii) implies that f should be a function of the

ratio ρ ≡ τ2

σ2 and that θ should not be involved. Crite-
rion (iii) implies that f does not depend on K. It can
be shown that any monotonically increasing function of ρ
satisfies the three criteria. Based on this, three statistics,
H2, R2 and I2 were proposed. The first, H2, estimates
the quantity ρ + 1 by equating the observed value of QFe

to its expectation so that H2 = QFe

K−1 can be interpreted
as relative excess in QFe over its expected value, the de-
grees of freedom K − 1. The second, R2, attempts to es-
timate ρ + 1 as well; but here, ρ + 1 is approximated by
vRe/vFe so that R2 = v̂Re/v̂Fe =

∑K
k=1

1
s2k
/
∑K

k=1
1

s2k+τ̂2 ,

which can be interpreted as the inflation in the confidence
interval for θ̂Re under the Re model compared with θ̂Fe

under the Fe model. Both H2 and R2 should be at least
1, where 1 means perfect homogeneity; and the larger the
value, the more heterogeneous the studies. In practice, the
authors suggested to use H and R because clinicians may
be more familiar with standard deviations than variances.
The third statistic, I2, estimates a different function of ρ,

i.e. ρ
1+ρ = τ2

τ2+σ2 , which represents the proportion of total
variance that is due to between-study variation. Higgins and
Thompson [19] suggested to compute I2 by I2HT = 1− K−1

QFe
,

which leads to a convenient relationship I2HT = 1 − 1
H2 .

Jackson, White and Riley [24] suggested to compute I2 by

I2R = 1 − v̂Fe

v̂Re
= 1 −

∑K
k=1

1
s2k+τ̂2 /

∑K
k=1

1
s2k
, which leads to

another convenient relationship I2R = 1− 1
R2 . Both I2HT and

I2R are usually expressed as percentages between 0% and
100%, where a value of 0% corresponds to no observed het-
erogeneity, while larger values indicate increasing levels of
heterogeneity. They estimate the same quantity as RI does,
but with different within-study variance estimates. Among
these measures (i.e. H2, R2, I2HT or I2R), I

2
HT is most pop-

ular and in the literature, I2 typically represents I2HT as
I2R is much less known. Higgins and Green [18] empirically
provided a rough guide to the interpretation of I2 using
overlapping intervals: a value in [0,0.4] suggests that hetero-
geneity may not be that important; [0.3, 0.6] may represent
moderate heterogeneity; [0.5,0.9] may represent substantial
heterogeneity; and [0.75,1] implies considerable heterogene-
ity.

The assumption of a constant within-study variance is
probably untrue in many real life data. Thus, Crippa et al.
[8] lifted this assumption and proposed a new measure Rb,

defined as Rb = 1
K

∑K
k=1

τ̂2

s2k+τ̂2 , to assess the contribu-

tion of the between-study variance τ2 to vRe (i.e., the vari-

ance of the pooled random-effects estimate θ̂Re). It can be
viewed as an average of the study-specific proportions of the
study-specific variances due to between-study heterogene-
ity. They showed that the quantity τ2/vRe underlying Rb

is a strictly increasing function of τ2 and is scale-invariant.
However, this quantity depends on K and so is not size-
invariant. They further showed that RI ≥ max(Rb, I

2
HT ).
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Table 1. Descriptive measures quantifying the between-study heterogeneity

Name f(θ, τ2, σ2,K) Formula Ref. Interpretation Assume σ2
k ≡ σ2?

RI
τ2

τ2+σ2
τ̂2

τ̂2+K/
∑K

k=1
s−2
k

[42]
Proportion of total variation in the estimates of
treatment effect due to between-study heterogeneity

Yes

CVB
τ
|θ|

√
τ̂2

|θ̂| [42] Between-study coefficient of variation No

H2 τ2+σ2

σ2
QFe
K−1

[19] Relative excess in QFe over its degrees of freedom
Yes, but can be used
for different σ2

k.

R2 τ2+σ2

σ2 ≈ vRe
vFe

∑K
k=1 s−2

k∑K
k=1

(s2
k
+τ̂2)−1 [19]

Inflation in the confidence interval for a single summary
estimate under Re model compared with Fe model

Yes, but can be used
for different σ2

k.

I2HT
τ2

τ2+σ2 1− K−1
QFe

[19] Same as RI Yes

I2R
τ2

τ2+σ2 1−
∑K

k=1(s
2
k+τ̂2)−1∑K

k=1
s−2
k

[24] Same as RI Yes

Rb
τ2

vRe
≈

1
K

∑K
k=1

τ2

σ2
k
+τ2

1
K

∑K
k=1

τ̂2

s2
k
+τ̂2 [8]

Proportion of the between-study heterogeneity τ2

relative to vRe, the variance of θ̂Re.
No

H2
r

τ2+σ2

σ2

πQ2
r

2K(K−1)
, Qr =

∑K
k=1

1
sk

∣∣∣yk − θ̂Fe

∣∣∣ [31] Same as H2 Yes

I2r
τ2

τ2+σ2 1− 2K(K−1)

πQ2
r

[31] Same as RI Yes

H2
m

τ2+σ2

σ2

πQ2
m

2K2 , Qm =
∑K

k=1
1
sk

∣∣∣yk − θ̂m

∣∣∣, θ̂m is

weighted median estimate

[31] Same as H2 Yes

I2m
τ2

τ2+σ2

Q2
m−2K2/π

Q2
m

[31] Same as RI Yes

When σ2
k ≡ σ2 and σ2 is estimated by s2, Rb, RI , I

2
HT and

I2R all yield the same quantity τ̂2

s2+τ̂2 . The authors conducted

a simulation study to examine the performance of RI , I
2
HT

and Rb. Both RI and I2HT tend to be positively biased and
this overestimation increases as K increases. Confidence in-
tervals based on RI and I2HT give lower coverage probabil-
ities compared to those based on Rb and the difference be-
comes more obvious when the within-study variances vary
more and when the heterogeneity level increases.

To reduce the impact of outlying studies, Lin, Chu and
Hodges [31] proposed new robust measures H2

r , H
2
m, I2r and

I2m, which are analogous to and have the same interpreta-
tions as H2 and I2, respectively. These methods were de-
veloped upon the absolute deviation measures Qr and Qm

rather than the usual squared deviation measure Q, as de-
fined in Table 1 and will be described in more detail in
Section 4.

All the measures except for CVB depend on the precision
of the study-specific effects. As the sample sizes of the com-
ponent studies increase, σ2

k’s would decrease to zero so that
RI , RB and all I2’s would increase to 1 and all H2’s and
R2 would become arbitrarily large, even when there is little
between-study heterogeneity. The measure CVB avoids this
drawback but has its own limitation: it would approach +∞
as θ goes to 0. Finally, we mention that some of the measures
involve the estimated value τ̂2. In principle, τ̂2 can be any
estimator of τ2, but most software uses the DL estimator
τ̂2DL as the default choice.

4. ESTIMATORS

We summarize 23 estimators for τ2 in Table 2, among
which most can be applied to all kinds of effect measures
except for the improved Paule and Mandel estimator (IPM ,
[2]) and Malzahn, Böhning, and Holling (MBH, [32]). IPM

is specifically designed to work with OR for binary out-
comes, and MBH can be only used for standardized mean
difference (SMD). All estimators can be divided into five
groups: method of moments, likelihood-based, model error
variance (least squares), Bayes, and other nonparametric es-
timators. Some have closed form expressions while the oth-
ers require numerical solutions. Some produce only positive
estimates while the others require truncation to zero when
a negative value occurs. Some properties of the estimators
are summarized in Table 2.

Table 3 shows previous studies that reviewed and com-
pared (large) subsets of these estimators. Recommendations
were made either based on their own simulations or conclu-
sions from the literature. Among them, Veroniki et al. [46],
Langan, Higgins and Simmonds [28] and Petropoulou and
Mavridis [37] are the most comprehensive. Veroniki et al.
[46] reviewed 17 estimators as listed in Table 3, including
all the method of moments estimators except for the IPM ,
multistep DL and LCH estimators, all three likelihood-
based estimators, the SJ estimator, all the Bayesian esti-
mators, and DLb. Langan, Higgins and Simmonds [28] and
Petropoulou and Mavridis [37] added IPM , MBH, and
SJHO into the comparison. Note that IPM was briefly sum-
marized but not compared with other estimators in Veroniki
et al. [46]. Also, EB mentioned in [37] has been shown to be
equivalent to PM . Langan, Higgins and Simmonds [28] also
added RB estimators with different priors, RBu and RBa.

Two newly proposed estimators, the LCH estimators [31]
and the multistep DL estimator DLM [44], are included in
our pool. We mark them in bold in Table 2 and provide a
brief description for each in below. The IPM estimator [2] is
described as well because it is the only method specifically
designed for rare binary events. More details about other
estimators can be found in [46] and references therein.

Lin, Chu and Hodges (LCH) Lin, Chu and Hodges [31] pro-
posed two alternative estimators, τ̂2r and τ̂2m, designed to be
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Table 2. Overview of 23 estimators for the between-study variance τ2

Estimators Abbre- Reference Iterative? Sign Effect
viation Measure

Method of Moments
Hedges and Olkin HO [17] No >= 0
Two-step Hedges and Olkin HO2 DerSimonian and Kacker [9] No >= 0
DerSimonian and Laird DL DerSimonian and Laird [10] No >= 0
Positive DerSimonian and Laird DLp Kontopantelis, Springate and Reeves [27] No > 0
Two-step DerSimonian and Laird DL2 DerSimonian and Kacker [9] No >= 0
Multistep Dersimonian and Laird DLM van Aert and Jackson [44] No >= 0
Paule and Mandel PM Paule and Mandel [36] Yes >= 0
Improved Paule and Mandel IPM Bhaumik et al. [2] Yes >= 0 OR
Hartung and Makambi HM Hartung and Makambi [16] No > 0
Hunter and Schmidt HS Hunter and Schmidt [20] No >= 0
Lin, Chu and Hodges LCH Lin, Chu and Hodges [31] No >= 0

Likelihood-based
Maximum Likelihood ML Hardy and Thompson [14] Yes >= 0
Restricted maximum likelihood REML Viechtbauer [47] Yes >= 0
Approximate restricted maximum likelihood AREML Morris [33] Yes >= 0

Model error variance (Least squares)
Sidik and Jonkman SJ Sidik and Jonkman [39] No > 0
Sidik and Jonkman (HO prior) SJHO Sidik and Jonkman [40] No > 0

Bayesian
Rukhin Bayes RB0 Rukhin [38] Yes >= 0
Positive Rukhin Bayes RBp Rukhin [38] Yes > 0
Empirical Bayes (Equivalent to PM) EB Morris [33] Yes >= 0
Fully Bayes FB Smith, Spiegelhalter and Thomas [41] Yes > 0
Bayes Modal BM Chung et al. [6], Chung, Rabe-Hesketh and Choi [5] Yes > 0

Other nonparametric
Malzahn, Böhning, and Holling MBH Malzahn, Böhning and Holling [32] No >= 0 SMD
Non-parametric bootstrap DerSimonian and Laird DLb Kontopantelis, Springate and Reeves [27] No >= 0

Table 3. Existing comparative studies for various estimators of the between-study variance τ2

Review paper Estimators compared Effect measure Recommendations

Viechtbauer [47] HO, DL, HS, ML, REML SMD and MD REML

Sidik and Jonkman [40] HO, DL, SJ , SJHO, ML, REML, EB OR
SJHO when τ2 is expected to be small or
moderate; SJ when τ2 is expected to be large.

Kontopantelis, Springate and Reeves [27] HO, HO2, DL, DL2, DLb, DLp, SJ , SJHO, ML, RB, RBp Generic DLb

Veroniki et al. [46]
HO, HO2, DL, DL2, DLp, DLb, PM , HM , HS, ML,
REML, AREML, SJ , RB, RBp, FB, BM

Generic PM

Langan, Higgins and Simmonds [28]
Estimators in Veroniki et al. [46] except for FB plus IPM ,
SJHO, RBu, RBa, MBH

RR, OR, SMD, MD
and Generic

PM

Petropoulou and Mavridis [37]
Estimators in Langan, Higgins and Simmonds [28] except for
RBu, RBa

OR and MD DLb and DLp

Langan et al. [29] DL, HO, PM , PMHO, PMDL, HM , SJ , SJHO, REML OR and Generic
REML, PM and PMDL for continuous
outcomes and non-rare binary events

less affected by outliers than conventional estimators based

on the Q statistics in (1). For the purpose of robustness,

they are based on Qr and Qm, defined as the weighted sums

of absolute differences between the study-specific treatment

effects and the overall treatment effect, namely

Qr =

K∑
k=1

1

sk

∣∣∣yk − θ̂Fe

∣∣∣ , Qm =

K∑
k=1

1

sk

∣∣∣yk − θ̂m

∣∣∣ .
Here, θ̂Fe =

∑K
k=1

yk

s2k
/
∑K

k=1
1
s2k
, the fixed-effect estimate

of θ as defined in Section 2, and θ̂m is the weighted

median estimator that is the solution to the equation∑K
k=1 wk [I(θ ≥ yi)− 0.5] = 0, where I(·) is the indicator

function. The estimators τ̂2r and τ̂2m, based on Qr and Qm,

respectively, can be derived similarly as τ̂2DL by equating ob-

served Qr and Qm to their corresponding expected values.

Multistep DL We first introduce the generalized method of
moments (GMM) estimator of τ2 based on the Q statistic in
(1). DerSimonian and Kacker [9] showed that if the weights
wk’s are treated as known constants, the expected value of
Q is

(2) E(Q)=τ2

(
K∑

k=1

wk−
∑K

k=1 w
2
k∑K

k=1 wk

)
+

(
K∑

k=1

wkσ
2
k−

∑K
k=1 w

2
kσ

2
k∑K

k=1 wk

)
.

By equating Q to its expected value, replacing σ2
k by s2k

in (2), solving for τ2 and truncating any negative solution
to zero:

(3) τ̂2GMM = max

⎧⎨⎩Q−
(∑K

k=1 wks
2
k −

∑K
k=1 w2

ks
2
k∑K

k=1 wk

)
∑K

k=1 wk −
∑K

k=1 w2
k∑K

k=1 wk

, 0

⎫⎬⎭ .

The DL estimator τ̂2DL [10] is a special case of τ̂2GMM , with
wk = 1/s2k and Q = QFe.
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As discussed in Section 2, the inverse-variance weighing
scheme yields wk = 1/(s2k+ τ̂2) when calculating the (gener-
alized) Q statistic (1) under the Re model. Recall that the
original DL estimator τ̂2DL can be obtained by specifying
wk = 1/s2k in (3), which is equivalent to setting τ̂2 = 0 in
the Re weights. The two-step DL method [9] first obtains
τ̂2DL and then sets τ̂2 = τ̂2DL in the Re weights to obtain
τ̂2DL2

from (3).
van Aert and Jackson [44] proposed the multistep DL

estimator as a natural extension of the two-step DL estima-
tor. The M -step DL estimator τ̂2DLM

can be obtained recur-
sively by computing τ̂2DL, τ̂

2
DL2

, ..., τ̂2DLM
using (3). It has

been shown that the limit of the multistep DL estimator,
τ̂2DL∞

, when it exists, is equivalent to the PM estimator.
As further suggested by the authors, divergence problems
seldom happen in practice and the convergence is usually
achieved quickly.

Improved Paule and Mandel (IPM) For meta-analysis of
rare binary events, Bhaumik et al. [2] adopted a standard
binomial-normal random-effects model (labeled BNBA),
which can be specified by

xki ∼ Binomial(nki, pki) for i = 0, 1;

logit(pk0) = μk, logit(pk1) = μk + θk;

μk ∼ N(μ, σ2), θk ∼ N(θ, τ2), μk ⊥ θk for k = 1, . . . ,K.

They proposed a simple average estimator, θ̂sa, for the over-
all treatment effect θ and then developed the IPM estima-
tor for τ2 based on θ̂sa and the iterative PM method. The
treatment effect θk (measured by log-odds ratio) in study
k is estimated with a correction factor a added to each
cell count, namely, yka = log [(xk1 + a)/(nk1 − xk1 + a)] −
log [(xk0 + a)/(nk0 − xk0 + a)]. The simple average estima-

tor for θ is then given by θ̂sa =
∑K

k=1 yka/K. The authors

further proved that a should be 1
2 in order for θ̂sa to be the

least biased for large samples. They noticed that the PM es-
timator for τ2 depends on s2k and proposed to improve PM
by borrowing strength from all component studies when es-
timating each within-study variance,

s2k(∗) =
1

nk0 + 1
[exp(−μ̂) + 2 + exp(μ̂)] +

1

nk1 + 1

·
[
exp

(
−μ̂− θ̂s 1

2
+

τ2

2

)
+ 2 + exp

(
μ̂+ θ̂s 1

2
+

τ2

2

)]
.

Denote the corresponding weights by wk(∗) ≡ 1/[s2k(∗)+τ2]
and τ̂2IPM can be obtained by solving Q − (K − 1) = 0
iteratively with weights wk(∗) in the calculation of Q.

5. CONFIDENCE INTERVALS

Table 4 reports 16 existing methods for constructing CIs
for τ2 in terms of key features including whether the algo-
rithm for computing a CI is iterative, whether truncation for

non-negativity is needed, which distribution is used for con-
struction, and whether the CI is exact under the Re model.
All the methods are general-purpose and so can be applied
to meta-analysis of binary events except for the generalized
variable approach [43], which is specifically designed for the
mean difference (MD) metric based on normally distributed
outcomes. Some of the CIs are obtained via a test-inverting
process based on different statistics for testing H0 : τ2 = 0.

In Table 5, we list existing review papers on constructing
confidence intervals for τ2. Clearly, none of these reviews is
comprehensive.

5.1 Confidence intervals based on
(modified) Q statistics

Q-profile and modified Q-profile CIs Knapp, Biggerstaff
and Hartung [25] and Viechtbauer [48] considered the Q-
profile CIs based on the generalized Q statistic in equa-
tion (1) with weights wk = 1/(τ2 + s2k), denoted by Q(τ2),
which depends on τ2 and treats s2k’s as if they were σ2

k’s.
It can be shown that Q(τ2) follows the χ2

K−1 distribu-
tion under the Re model in which θk ∼ N(θ, τ2) and
εk ∼ N(0, σ2

k). It follows that P (χ2
K−1,α/2 < Q(τ2) <

χ2
K−1,1−α/2) = 1− α. Based on the test-inversion principle,

a 100(1 − α)% confidence interval for τ2 can be obtained
as the interval (τ̃2l , τ̃

2
u) satisfying Q(τ̃2l ) = χ2

K−1,1−α/2 and

Q(τ̃2u) = χ2
K−1,α/2. Since τ

2 is non-negative, τ̃2l is truncated

to 0 if Q(0) < χ2
K−1,1−α/2 (meaning that τ̃2l is negative);

and the CI is set to [0, 0] (or {0}, the set containing only
zero) if Q(0) < χ2

K−1,α/2 (meaning that τ̃2u is also negative).

This type of CIs is referred to as the Q-profile (QP) CIs as
we are profiling Q(τ2) with different τ2 values when solving
the above equations for τ̃2l and τ̃2u iteratively.

Knapp, Biggerstaff and Hartung [25] considered the fact
that s2k’s are only estimates and so have error variabil-

ity, and constructed CIs using the test statistic Q̃r that
replaces the weights in Q(τ2) with regularized variants
wrk = rk/(τ

2 + s2k) to achieve a closer approximation to
χ2
K−1, where the regularization factor rk is derived through

a moment matching approach based on approximating the
distribution of τ2 + s2k by a scaled χ2 distribution [15]. The

lower bound τ̃2l is obtained by profiling Q̃r(τ
2) while the up-

per bound τ̃2u is still obtained by profiling Q(τ2), satisfying
Q̃r(τ̃

2
l ) = χ2

K−1,1−α/2 and Q(τ̃2u) = χ2
K−1,α/2. We refer to

this type of CIs as the modified Q-profile (MQP) CIs.
Like the Q-profile CIs, the MQP CIs need left truncation

to zero if the lower bound τ̃2l turns out to be negative, and
they are set to {0} if the upper bound τ̃2u is also negative.
The same rule applies to all other types of CIs based on
(modified) Q statistics in Section 5.1, as discussed below.

BT and BJ CIs based on the QFe statistic Biggerstaff
and Tweedie [4] proposed to approximate the distribu-
tion of QFe by a gamma distribution with a shape pa-
rameter r(τ2) ≡ E2(QFe)/Var(QFe) and a scale param-
eter λ(τ2) ≡ Var(QFe)/E(QFe). The mean and variance
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Table 4. CI methods for τ2 in random-effects meta-analysis

Method Abbre- Iterative? Truncation Distribution Exact Method Reference
viation (Y/N) to 0? (Y/N) Used for Re? (Y/N)

CIs based on (modified) Q statistics
Q-Profile QP Y Y χ2

K−1 Y [15, 25]
Modified Q-Profile MQP Y Y χ2

K−1 N [15, 25]
Biggerstaff and Tweedie BT Y Y Ga(r, λ) N [4]
Biggerstaff and Jackson BJ Y Y A positive linear

combination of χ2
1

Y [3]

Jackson J Y Y A positive linear
combination of χ2

1

Y [21]

Approximate Jackson AJ N Y Normal N [22]
Unequal-tail Q-profile UTQ Y Y χ2

K−1 Y [23]
Profile likelihood CIs
PL based on ML estimation PLML Y Y χ2

1 N [14]
PL based on REML estimation PLREML Y Y χ2

1 N [48]
Wald CIs
Wald based on ML estimation WML N Y N(0, 1) N [4, 49]
Wald based on REML estimation WREML N Y N(0, 1) N [49]

Others
Sidik and Jonkman SJ N N χ2

K−1 N [39]
Sidik and Jonkman with HO priori SJHO N N χ2

K−1 N [40]
Bayesian credible intervals — Y N — N [46]
Bootstrap BSP/BSNP Y Y — N [11, 27]
Generalized variable approach GV Y Y — N [43]

Table 5. Existing comparative studies on constructing CIs for τ2 in random-effects meta-analysis

Review paper CI methods reviewed/compared Effect
measure

Recommendations

Knapp, Biggerstaff and Hartung [25] QP, MQP, BT, PLML, WML MD/OR QP and MQP
Viechtbauer [48] QP, BT, PL, W, SJ, BS OR QP
Veroniki et al. [46] PL, W, BT, BJ, J, QP, SJ, BS, BC Generic —
van Aert, van Assen and Viechtbauer [45] QP, BJ, J OR None recommended when pki < 0.1 in combination with

either K ≥ 80 or (K ≥ 40 and nki < 30)

of QFe under the Re model are given by E(QFe) =
(K − 1) + (S1 − S2/S1) τ

2 and Var(QFe) = 2(K − 1) +
4 (S1 − S2/S1) τ

2+2
(
S2 + S2

2/S
2
1 − 2S3/S1

)
τ4, where Sr ≡∑K

k=1[1/s
2
k]

r. CIs for τ2 can be obtained similarly based
on this gamma approximation instead of χ2

K−1 using the
above profiling approach, which we refer to as the BT inter-
vals.

Biggerstaff and Jackson [3] derived the exact CDF of QFe

under the Re model, denoted by FQ(q; τ
2), as a positive lin-

ear combination of χ2
1 random variables, whose cumulative

distribution function can be obtained using Farebrother’s al-
gorithm [12]. They then obtained (τ̃2l , τ̃

2
u) by solving the fol-

lowing two equations numerically, FQ(cτ̂
2
uDL +K − 1; τ̃2l ) =

1 − α/2 and FQ(cτ̂
2
uDL + K − 1; τ̃2u) = α/2, where c =

S1 − S2/S1 and τ̂2uDL = [QFe − (K − 1)]/c is the untrun-
cated version of the DL estimator of τ2. This type of CIs is
referred to as the BJ intervals.

Jackson and approximate Jackson CIs Following the nu-
merical approach in [3], Jackson [21] proposed CIs by test
inversion based on the generalized Q in equation (1), which
is also distributed as a positive linear combination of χ2

1 ran-
dom variables under the Re model. Jackson, Bowden and

Baker [22] further proposed to apply the arcsinh transfor-
mation to the untruncated version of τ̂2GMM for variance
stabilization and then constructed CIs for τ2 based on a
normal approximation. These types of CIs are referred to as
the Jackson (J) and approximate Jackson (AJ) CIs, respec-
tively. Based on simulation, Jackson [21] further commented
that weighting component studies by the reciprocal of their
within-study standard errors (i.e. 1/sk), rather than by their
variances (i.e. 1/s2k) as the convention dictates, appears to
provide a sensible and viable option when there is little a
priori knowledge about the extent of heterogeneity.

Unequal-tail Q profile CIs Jackson and Bowden [23] ad-
vocated to use unequal tail probabilities to obtain shorter
intervals whenever such methods are justifiable. For exam-
ple, when constructing a 100(1−α)% unequal-tail Q-profile
(UTQ) confidence interval, the lower and upper bounds,
τ̃2l and τ̃2u , are obtained by solving Q(τ̃2l ) = χ2

K−1,1−α1

and Q(τ̃2u) = χ2
K−1,α2

, respectively, where α2 > α1 and
α1 + α2 = α. They further suggested to use a pre-specified
α-split with α1 = 0.01 and α2 = 0.04 for a 95% CI, which
was shown to be able to retain the nominal coverage and
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reduce the width under the Re model. Obviously, the idea
of unequal tails can be applied to all kinds of confidence
intervals. In our numerical evaluation, we examine the per-
formance of the Q-profile CIs with α1 = 0.01 and α2 = 0.04
as a representative case.

5.2 Profile likelihood confidence intervals

Under the Re model, Hardy and Thompson [14] pro-
posed the profile likelihood CIs based on maximum likeli-
hood (ML) estimation, referred to as PLML. The joint log-
likelihood function of (θ, τ2) is

l(θ, τ2) = −K

2
ln 2π − 1

2

K∑
k=1

ln(τ2 + σ2
k)−

1

2

K∑
k=1

(yk − θ)2

τ2 + σ2
k

.

Given the value of τ2, the ML estimator of θ is

θ̂ML(τ
2) =

K∑
k=1

1

τ2 + σ2
k

yk

/
K∑

k=1

1

τ2 + σ2
k

.

The profile log-likelihood for τ2, written as l(θ̂ML(τ
2), τ2),

takes into account the fact that θ is also unknown and
must be estimated. Then a 100(1 − α)% CI for τ2 is

given by the set of τ2 values satisfying l(θ̂ML(τ
2), τ2) >

l(θ̂ML(τ̂
2
ML), τ̂

2
ML)− χ2

1,1−α/2.

Viechtbauer [48] proposed to construct profile likelihood
CIs based on restricted maximum likelihood (REML) esti-
mation, referred to as PLREML. The 100(1 − α)% CI for
τ2 is given by the set of τ2 values satisfying lR(τ

2) >
lR(τ̂

2
REML) − χ2

1,1−α/2, where the restricted log-likelihood
function of τ2 is

lR(τ
2) =− K

2
ln 2π − 1

2

K∑
k=1

ln(τ2 + σ2
k)−

1

2
ln

K∑
k=1

1

τ2 + σ2
k

− 1

2

K∑
k=1

(
yk − θ̂ML(τ

2)
)2

τ2 + σ2
k

,

and τ̂2REML is the REML estimate of τ2 (by maximizing
lR). Viechtbauer [48] found that the REML-based CIs were
slightly more accurate than the ML-based CIs in terms of
coverage probability, especially for small K.

Because ML and REML estimates of τ2 require non-
negativity, the lower bounds of profile likelihood (PL) in-
tervals are always non-negative and the upper bounds are
strictly positive after applying the same truncation for Q-
profile CIs.

5.3 Wald confidence intervals

The Wald test statistics for testing H0 : τ2 = 0 under the
Re model have the form W = τ̂2/SE(τ̂2), where τ̂2 can be

τ̂2ML or τ̂2REML, and the standard error is estimated by

ŜE(τ̂2ML) =

√√√√2

[
K∑

k=1

w2
ML.k

]−1

,

ŜE(τ̂2REML) =

√
2

[∑K
k=1 w

2
REML.k − 2

∑K
k=1 w3

REML.k∑K
k=1 wREML.k

+
(∑K

k=1 w2
REML.k∑K

k=1 wREML.k

)2
]−1

with wML.k =
(
τ̂2ML + s2k

)−1
and wREML.k =(

τ̂2REML + s2k
)−1

. We label the Wald statistics based on ML
and REML estimation by WML and WREML, respectively.
The corresponding 100(1 − α)% Wald (W) CIs for τ2 are

τ̂2ML ± z1−α/2ŜE(τ̂2ML) or τ̂2REML ± z1−α/2ŜE(τ̂2REML)
[4, 48], where zα is the 100α-th percentile of the stan-
dard normal distribution. Negative lower bounds of
the Wald CIs should be truncated to 0 since both ML
and REML estimates of τ2 are constrained to be non-
negative.

5.4 Other confidence intervals

Sidik and Jonkman (SJ) CIs Sidik and Jonkman [39] pro-
posed confidence intervals based on the SJ estimator of
τ2, which is derived from the weighted residual sum of
squares in the framework of a linear regression model.
Let the crude estimate τ̂0 =

∑K
k=1(yk − ȳ)2/K be an

a priori value for τ2. Then the SJ estimator is given by

τ̂2SJ =
τ̂2
0

K−1

∑K
k=1 ŵk(yk− θ̂0)

2, where ŵk = 1/(s2k+ τ̂20 ), and

θ̂0 =
∑K

k=1 ŵkyk/
∑K

k=1 ŵk. It follows that (K − 1)τ̂2SJ/τ
2

has an asymptotic distribution of χ2
K−1. Thus an approx-

imate 100(1 − α)% confidence interval can be calculated
as

(K − 1)τ̂2SJ

χ2
K−1,1−α/2

≤ τ2 ≤ (K − 1)τ̂2SJ

χ2
K−1,α/2

.

Since τ̂2SJ is always positive, the SJ confidence intervals have
positive lower and upper bounds. Sidik and Jonkman [40]
later proposed an improved estimator τ̂2SJHO

by using τ̂2HO

as the a priori value. Then improved confidence intervals
can be constructed correspondingly.

Bayesian credible intervals Bayesian credible (BC) inter-
vals can be obtained when a Bayesian approach is employed
and posterior samples are drawn from the (joint) posterior
distribution of all parameters involved using an MCMC al-
gorithm. The lower and upper points of a 100(1−α)% CI can
be the 100(α/2)th and 100(1 − α/2)th percentiles, respec-
tively, of the posterior sample of τ2’s, or can be determined
by the region that gives the highest posterior density. Such
intervals may be heavily affected by the prior selection when
K, the number of studies is small.

Bootstrap CIs Bootstrap techniques can be used to ob-
tain confidence intervals for nearly all τ2 estimators. For
nonparametric bootstrap (denoted by BSNP), we sample K
studies with replacement from the observed set of studies B
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times to get B bootstrap samples. For parametric bootstrap
(denoted by BSP), we first obtain the parameter estimates
and then generate B samples from the assumed distribu-
tions with these estimates. For each (parametric or nonpara-
metric) sample, we calculate the corresponding estimate τ̂2.
Then the 100(α/2)th and 100(1− α/2)th percentiles of the
B estimates of τ2 are, respectively, the lower and upper
bounds of a 100(1 − α)% bootstrap confidence interval. In
our numerical experiment, we only perform the nonpara-
metric bootstrap procedure for the DL estimator for illus-
tration.

The generalized variable (GV) approach For meta-analysis
of normally distributed outcomes, Tian [43] proposed infer-
ence procedures based on the generalized pivotal quantity
for τ2. A pivotal quantity is a function of observations and
parameters such that the distribution of the function does
not depend on the parameters including nuisance parame-
ters. Let σ2

k0 (σ2
k1) be the population variance of the con-

trol (treatment) group in study k; let s2k0 (s2k1) be the cor-
responding sample variance. For normally distributed out-
comes, it is well known that Vki ≡ (nki−1)s2ki/σ

2
ki ∼ χ2

nki−1

for k = 1, . . . ,K and i = 0, 1. Denote Q in (1) with weight
wk = 1/(σ2

k0/nk0 + σ2
k1/nk1 + τ2) by Q(τ2), which follows

χ2
K−1 and is a monotonic decreasing function of τ2. Thus,

given a real number η ≥ 0, there exists a unique τ2η ≥ 0 such
that Q(τ2η ) = η. Based on this, Tian [43] defined the gener-
alized pivotal quantity Rτ2 for τ2 as Rτ2 = τ2η if η ≤ Q(0)
and Rτ2 = 0 otherwise. Given the observed treatment ef-
fects yk’s and sample variances s2ki’s, the distribution of
Rτ2 does not depend on any nuisance parameters. A se-
ries of Rτ2 values can be obtained by first simulating Vki ∼
χ2
nki−1 and η ∼ χ2

K−1 and setting σ2
ki = (nki − 1)s2ki/Vki

in Q(τ2) for k = 1, . . . ,K and i = 0, 1, and then solv-
ing for τ2η . A 100(1 − α)% confidence interval is given by
(Rτ2,α/2, Rτ2,1−α/2), where the lower and upper bounds are
the 100(α/2)th and 100(1−α/2)th percentiles, respectively,x
of the generated Rτ2 ’s.

6. SIMULATION FOCUSING ON RARE
BINARY EVENTS

For meta-analysis of rare binary events, Li and Wang
[30] conducted a comprehensive simulation study to com-
pare the performance of various estimators of the overall
treatment effect θ measured by log-odds ratio, where a flex-
ible binomial-normal model was used to accommodate treat-
ment groups with unequal variability. This model, labeled
BNLW , specifies the event probabilities by

logit(pk0) = μk − ωθk, logit(pk1) = μk + (1− ω)θk,

where μk ∼ N(μ, σ2), θk ∼ N(θ, τ2), μk ⊥ θk, and ω is a
constant in [0, 1]. The random-effects model BNBA in [2] is
a special case of BNLW with ω = 0. Further, when ω = 1/2,
it reduces to the model in [41], which assumes the equality
of the variances of logit(pk0) and logit(pk1).

In this section, we adopt the same model and simula-
tion setup from [30], to examine the performance of various
methods. Results are summarized in Sections 6.1 and 6.2 for
estimating the between-study variance τ2 of log-odds ratios
θk’s. Here, bias and MSE are reported for point estimation,
and the actual coverage probability and width of confidence
intervals are reported for interval estimation. To be specific,
we set the number of studies K to 10, 20 and 50 to re-
flect different sizes of meta-analysis. We generate the num-
ber of events xki from Binomial(nki, pki) for k = 1, . . . ,K
and i = 0, 1. The number of subjects nk0’s in the control
groups are generated from Uniform[2000, 3000] to examine
large-sample performance and from Uniform[20, 1000] to ex-
amine small-sample performance, and then rounded to the
nearest integers. To allow varying allocation ratios across
studies, the within-study sample sizes are set to follow the
relationship nk1 = Rknk0, where log2 Rk ∼ N(log2 R, σ2

R),
R ∈ {1, 2, 4} and σ2

R = 0.5. For small sample sizes, as noted
in [30], the range [20, 1000] is chosen so that the empirical
means of min(nk0pk0, nk1pk1)

K
k=1 in all the settings are be-

low one while it still allows for cases where most component
studies have small sample sizes but a few can have sample
sizes close to 1000. To generate pki’s, we fix σ2 at 0.5, and
set τ2 ∈ {0, 0.25, 0.5, 0.75, 1} for evaluating different estima-
tors and τ2 ∈ {0, 0.1, 0.2, · · · , 0.9, 1} for evaluating different
types of CIs. We further set θ ∈ {−1, 0, 1} to reflect different
directions of the overall treatment effect, set μ ∈ {−2.5,−5}
to represent low and very low incidence rates of the binary
event (i.e., 0.076 and 0.0067 in the probability scale), and
set ω ∈ {0, 0.5, 1} to represent smaller/equal/larger variabil-
ity in the control group, compared to the treatment group.
For each setting, 1000 datasets are simulated to compute
empirical values of the performance measures by taking the
average.

6.1 Comparison of different heterogeneity
estimators

We compare all the methods listed in Table 2 except
for FB and MBH. Since the full Bayesian method can be
greatly affected by the prior choice and other factors (such
as convergence), we exclude FB from our simulation. The
MBH method is designed specifically for standard mean
difference, thus not suitable for binary events. In addition,
the empirical Bayes method EB is equivalent to PM , and
the multistep DL method has the property that DL∞ con-
verges to PM . Therefore, we include PM in the comparison
and leave EB and DLM out. We use heat maps to visualize
the bias and MSE results where the rows of each map repre-
sent different methods and columns represents different τ2

values in [0,1].

Large-sample results Figure 1 presents the bias and MSE
results of different estimators for μ = −2.5 and μ = −5
based on large-sample settings with R = 1, K = 50, θ = 0,
and w = 0. As shown in Figure 1(a), when the event of
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Figure 1. Large-sample performance of different τ2 estimators based on settings with R = 1, K = 50, θ = 0, and w = 0.

interest becomes rarer, all methods seem to produce more
bias in estimating τ2. Almost all methods underestimate
the between-study heterogeneity when τ2 > 0. The RBp
estimator, however, consistently overestimates τ2 when the
event is very rare (μ = −5). As τ2 increases, most estimators
produce more bias except for BM and RBp; the bias from
BM first increases then decreases, and the bias from RBp

decreases for very rare events (μ = −5). When the events
are not that rare (μ = −2.5), most estimators have similarly
low bias except for the one-step DL estimators (DL, DLp,
DLb), HM , HS, and BM . However, IPM stands out with
the lowest bias when the incidence rate becomes very low,
especially when τ2 ≥ 0.5. The HS, HM , BM and one-
step DL family methods remain the worst and should be
avoided in terms of bias. All three likelihood-based methods,
ML, REML and AREML, produce similar results with a
moderate level of bias. In terms of MSE, most methods have
similar performance except for HM and BM , which are
the most inefficient according to Figure 1(b). Those with
relatively large magnitude of bias tend to have relatively
large MSE.

We next discuss the potential impacts of R, K, θ,
and w on the estimation performance for the large-sample
case. Figures S1 and S2 in the Supplementary Material
(SM) (http://intlpress.com/site/pub/files/ supp/sii/2020/
0013/0004/SII-2020-0013-0004-s003.pdf) show the bias and
MSE results for different R andK values, respectively, based
on settings with μ = −2.5, θ = 0 and w = 0. We can see
that when τ2 < 0.5, regardless of R and K, all the methods
perform somewhat similarly and have both bias and MSE
close to zero except for BM which has much larger bias. As
K increases, MSE decreases significantly for every estimator
when τ2 ≥ 0.5 but bias for a few estimators seems not to get
closer to zero (e.g., DL for τ2 = 1, BM for τ2 = 0.5, and
0.75). However, the heat maps show very similar color pat-
terns both vertically and horizontally, indicating that the
impact of R and K on the relative performance of these
methods is merely marginal. Figures S3 and S4 in the SM
show the bias and MSE results for different θ and w values,
respectively, based on settings with R = 1, K = 50 and
μ = −5. When θ = −1, bias decreases as w increases while
this trend reverses when θ = 1. This effect of w is minimal
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Figure 2. Small-sample performance of different τ2 estimators based on settings with R = 1, K = 50, θ = 0, and w = 0.

when there is no treatment effect (θ = 0). Similar trends are
observed but less obvious for MSE. Also, we find that IPM
maintains the best performance in terms of both bias and
MSE while DL, DLp, DLb, HS, HM , and BM are among
the worst in nearly all the settings considered.

Small-sample results Figure 2 presents the bias and MSE
results of different estimators for μ = −2.5 and μ = −5
based on small-sample settings with R = 1, K = 50, θ = 0,
and w = 0. From Figure 2(a), we can see that when τ2 > 0,
the underestimation observed in the large-sample results for
all the estimators but RBp is much more severe for small
samples, where the magnitude of bias increases substantially
for very rare events (μ = −5). Note that RBp consistently
overestimates τ2 for both μ = −2.5 and μ = −5, and unlike
most other estimators, the bias decreases as τ2 increases.
When events are not that rare (μ = −2.5), IPM is still
the least biased. However, for very rare events (μ = −5),
SJ becomes the least biased estimator for τ2 ≥ 0.5. The
problem of SJ is that it significantly overestimates τ2 when
there is no or little heterogeneity, due to its positive nature.
From Figure 2(b) we can see that MSE does not change

much when μ = −2.5 but dramatically increases when μ =
−5 compared to results from large samples. For very rare
events (μ = −5), SJ is the most efficient method except for
τ2 = 0 and IPM seems to be the second best in terms of
MSE. Note that when τ2 = 1, RBp has smaller MSE than
IPM for very rare events, but it does not perform as well
as IPM for smaller τ2 values.

The impacts of R, K, θ, and w on the estimation bias and
MSE for the small-sample case are shown in Figures S5-S8
of the SM. Since several methods (e.g., the likelihood-based
methods) failed in some small-sample settings for very rare
events (μ = −5), we show results for μ = −2.5 in these
figures. Although the effect of K on MSE becomes more
significant for small samples (i.e., MSE decreases more as K
increases), it is still the case that both R and K have lit-
tle impact on the relative performance of different methods.
Also, similar trends for both bias and MSE occur when w
and θ change as in the large-sample case. For these μ = −2.5
settings, IPM seems to be the best estimator due to its con-
sistent top-level performance across various settings. This
also agrees with the results in the left panels of Figure 2. On
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Figure 3. Actual coverage probabilities of different types of 95% CIs for different K values based on large-sample settings with
R = 1, μ = −5, θ = 0, and w = 0.

the other hand, DL, DLp, DLb, HM , HS, and BM should
be used with caution due to their generally large bias.

6.2 Comparison of different types of CIs

Among those summarized in Table 4, we compared 14 dif-
ferent types of 95% CIs for the heterogeneity parameter τ2

in Figures 3 and 4, excluding Bayesian credible intervals and
the GV method as before. As mentioned in Section 5, BSNP

represents the nonparametric bootstrap procedure combined
with the DL estimator and UTQ represents the unequal-tail
Q-profile CI with α1 = 0.01 and α2 = 0.04. Again, from our
(unreported) simulation results, we find that the influences
of R, θ, and w on the empirical coverage probability are
marginal.

Figure 3 shows actual coverage probabilities of different
types of CIs for different K values based on large-sample
settings with R = 1, μ = −5, θ = 0, and w = 0. When there
is no between-study heterogeneity (τ2 = 0), all the methods
provide 100% coverage except for SJ and SJHO, which pro-
duce strictly positive intervals and so have zero coverage.
When τ2 is small, as K increases, the methods based on
(modified) Q statistics gain some improvement in coverage
except for AJ, which achieves relatively high coverage for all
K and τ2 values. As τ2 gets larger, most methods do not
improve their coverage by increasing K.

Figure 4 presents actual coverage probabilities of differ-
ent types of CIs for both large- and small-sample cases and
different μ values based on settings with R = 1, K = 20,
θ = 0, and w = 0. When μ = −2.5, most methods have
actual coverage close to the nominal level 0.95. Among all,
the nonparametric bootstrap CI has the lowest coverage,
followed by the two Wald CIs when τ2 > 0. The influence
of sample sizes is not obvious except for J, SJ and SJHO

that improve their coverage for large sample sizes when τ2

is small. For very rare events (μ = −5), the impact of sam-
ple sizes is much more severe and some of the CIs (e.g.,
SJHO, J, UTQ) do not even achieve 50% coverage in most
small-sample settings. In the large-sample settings, PLML,
PLREML, and AJ maintain the nominal 95% coverage quite
well at all positive levels of τ2. As the sample sizes become
small, all methods fail to do so for very rare events when
τ2 ≥ 0.3. Still, PLML and PLREML, and AJ are among those
with the highest coverage. We also find that when τ2 ≥ 0.4,
SJ joins the top-performing group with the following order
SJ ≈ PLREML > PLML > AJ. This matches with the es-
timation results reported in Section 6.1 that for very rare
events coupled with small samples, the SJ estimator is the
least biased and has the smallest MSE when τ2 ≥ 0.5. In
such situations, the Q statistic-based CIs have generally low
coverage and thus should be avoided; meanwhile the Wald
and nonparametric bootstrap CIs have moderate coverage
instead of being the worst in the other three cases.

Figure 5 shows width curves of different types of CIs un-
der the same settings of Figure 4, where for all CIs, the width
shows an increasing pattern as τ2 increases. The influence of
sample sizes on the CI width is only obvious when μ = −5,
where all the CIs become narrower when sample sizes de-
crease. Though anti-intuitive, a closer examination reveals
that when events are very rare and sample sizes are small,
many simulation iterations produce confidence intervals of a
point {0}, which makes the average width become smaller.
In the first three situations (either μ = −2.5 or large sam-
ples), BT and BJ produce the widest intervals, and PL and
AJ intervals, which offer higher coverage than most other
methods, have moderate widths among all. Unsurprisingly,
the nonparametric bootstrap procedure produces the nar-
rowest CIs. In the last situation (very rare events coupled
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Figure 4. Actual coverage probabilities of different types of 95% CIs for both large- and small-sample cases and different μ
values based on settings with R = 1, K = 20, θ = 0, and w = 0.

with small samples), PL and AJ intervals are among the
widest. Here, CIs with shorter widths are not necessarily
desirable as they may reflect more {0} intervals due to spar-
sity. SJ produces intervals with moderate widths though it
also provides higher coverage when τ2 is large. Overall, we
recommend PL and AJ intervals in meta-analysis of rare bi-
nary events for their high coverage. For very rare events with
small samples, we recommend SJ intervals if we know there
exists at least moderate-level heterogeneity. Besides, AJ and
SJ intervals are much easier to obtain than PL intervals.

7. EXAMPLE: TYPE 2 DIABETES
MELLITUS AFTER GESTATIONAL

DIABETES

Women with gestational diabetes are believed to have a
higher chance to develop type 2 diabetes. Bellamy et al.
[1] performed a comprehensive systematic review and meta-
analysis to assess the strength of this association. They
selected 20 cohort studies that included 675,455 women
with/without gestational diabetes and 10,859 type 2 dia-
betic events from 205 reports between Jan 1, 1960 and Jan
31, 2009 from Embase and Medline (see Table S1 of the
SM). We reanalyzed the data focusing on inference about
the heterogeneity parameter τ2. Note that the overall event

rate is ∼1.61% and many studies have very small sample
sizes with zero event counts. So this data example fits in
the scenario of very rare events coupled with small sample
sizes. Recall that in this scenario, SJ gives the least bias
and most efficient estimator when there exists a moderate
or large level of heterogeneity and IPM is the second best
which tends to underestimate τ2.

Point estimates for the heterogeneity parameter τ2 and
the corresponding inverse-variance weighted estimates for
the overall treatment effect θ (measured by log-odds ratio)
are summarized in Table 6. Here, most methods give an es-
timate between 0.4 and 0.7 for τ2, where the estimate from
IPM is 0.563 and that from SJ is 0.679. This seems to sug-
gest a moderate to high level of heterogeneity, especially af-
ter accounting for the underestimation from IPM . The RBp

method, which has been shown to severely overestimate τ2

for very rare events, not surprisingly gives the largest esti-
mate of 1.162. On the other hand, the HS estimate is much
smaller than the others. The resulting estimated odds ratios
do not vary as much except for the one from RBp. Table 7
shows the confidence intervals from all the compared meth-
ods. BT gives a very large upper bound, which seems to be
odd. All CIs except for those from BT, BJ, and Wald meth-
ods exclude zero, among which SJ yields the shortest interval
with the largest lower bound and the upper bound in line
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Figure 5. Width curves of different types of 95% CIs for both large- and small-sample cases and different μ values based on
settings with R = 1, K = 20, θ = 0, and w = 0.

with that from PL and AJ methods. Recall that SJ tends to
produce the best interval with higher coverage and relatively
shorter width when there exists at least moderate-level het-
erogeneity, as reported in Section 6.2. In this example, we
lean toward reporting the SJ interval, among the top per-
forming methods PL, AJ and SJ. Based on the estimation
and inference results above, we believe that these studies
are heterogeneous.

8. DISCUSSION AND
RECOMMENDATIONS

Based on our comprehensive simulation studies for large-
sample meta-analysis of rare binary events, we recommend
the IPM method for estimating the heterogeneity param-
eter τ2 if reducing estimation bias is of high priority, espe-
cially when the events are extremely rare. Most of the meth-
ods do not differ much in terms of MSE. We suggest to avoid
using HM , HS and BM since they have relatively large
bias and MSE compared with other estimators. The most
widely used DL estimator and its one-step variants DLp

and DLb do not perform satisfactorily and hence should
be avoided. For small-sample meta-analysis of rare events,
IPM is still recommended and SJ also performs much bet-
ter than the other estimators in terms of both bias and

MSE when τ2 ≥ 0.5 and the events are extremely rare. In
terms of interval estimation, we recommend the profile like-
lihood methods (PLML and PLREML) and the approximate
Jackson method AJ in general situations. Among the three,
PLREML usually produces higher coverage but with wider
intervals. The SJ method is a good candidate when events
are extremely rare, sample sizes are small, and τ2 ≥ 0.4.
We did not examine the performance of Bayesian methods
because of the computation burden, convergence detection
issue, and potential sensitivity to prior choices. However,
Bayesian hierarchical modeling can be a good alternative
especially when meaningful prior information is available.

We notice that most estimators for τ2 are negatively
biased in our simulation, an interesting phenomenon ob-
served in other simulation studies with binary outcomes
[2, 26, 39, 40] as well. In simulation studies with contin-
uous outcomes [27], most of the estimators show positive
bias when τ2 is small (<0.1) and the magnitude of bias of
RBp is much larger than the other estimators; for larger τ2

values, the HS and ML estimators are negatively biased
and the magnitude increases as τ2 increases [47]. Viecht-
bauer [47] provides some analytical results for the bias of
estimators HO, DL, HS, ML, and REML. Most of these
results were derived based on the homogeneous within-study
variance assumption (σ2

k = σ2). Under this assumption, the
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Table 6. Data example of gestational diabetes meta-analysis: estimates for τ2 and θ from different methods

Estimator HO HO2 DL DL2 DLp DLb PM IPM HM HS

τ̂2 0.220 0.418 0.466 0.411 0.466 0.265 0.413 0.563 0.419 0.046

θ̂ 2.093 2.136 2.146 2.135 2.146 2.104 2.135 2.162 2.137 2.092
OR 8.112 8.469 8.547 8.457 8.547 8.197 8.461 8.691 8.470 8.099

Estimator LCHmean LCHmedian ML REML AREML SJ SJHO RB0 RBp BM

τ̂2 0.519 0.298 0.396 0.449 0.433 0.679 0.290 0.198 1.162 0.195

θ̂ 2.155 2.111 2.132 2.142 2.139 2.180 2.110 2.088 2.235 2.088
OR 8.626 8.260 8.432 8.520 8.493 8.846 8.245 8.072 9.345 8.067

Table 7. Data example of gestational diabetes meta-analysis: confidence intervals for τ2 from different methods

Method QP MQP UTQ BT BJ J AJ
CI (0.109, 1.603) (0.106, 1.603) (0.083, 1.403) [0, 8.610) [0, 2.660) (0.048, 1.540) (0.004, 1.396)

Method SJ SJHO BSNP PLML PLREML WML WREML

CI (0.393,1.449) (0.168, 0.620) (0.012, 0.670) (0.113, 1.285) (0.129, 1.458) [0, 0.841) [0, 0.966)

bias due to truncation is always positive for DL, HO and
REML with all levels of heterogeneity and is negative for
HS and ML when τ2 ≥ 0.5. However, we believe that in the
rare events context, it is the sparsity (caused by zero counts)
and lack of resolution in estimating the within-study vari-
ances that cause the large magnitude of underestimation
for many methods. This underestimation is much reduced
by the IPM estimator where the within-study variance es-
timates are improved by pooling information from all the
studies.

Finally, we should mention that, when synthesizing infor-
mation from multiple studies to obtain more reliable conclu-
sions, one should not simply rely on one point estimate or
one p-value (especially those from the default methods in
software packages) without considering the rich selection of
statistical tools offered in the literature. Each of the above
reviewed models or methods has its own limitations. In prac-
tice, all kinds of evidence should be combined and evaluated
together with the specific characteristics of component stud-
ies included in the meta-analysis.

Received 11 August 2019

REFERENCES

[1] Bellamy, L., Casas, J.-P., Hingorani, A. D. and Williams, D.

(2009). Type 2 diabetes mellitus after gestational diabetes: a sys-
tematic review and meta-analysis. The Lancet 373 1773–1779.

[2] Bhaumik, D. K., Amatya, A., Normand, S.-L. T., Green-

house, J., Kaizar, E., Neelon, B. and Gibbons, R. D. (2012).
Meta-analysis of rare binary adverse event data. Journal of the
American Statistical Association 107 555–567. MR2980067

[3] Biggerstaff, B. J. and Jackson, D. (2008). The exact dis-
tribution of Cochran’s heterogeneity statistic in one-way ran-
dom effects meta-analysis. Statistics in Medicine 27 6093–6110.
MR2522312

[4] Biggerstaff, B. and Tweedie, R. (1997). Incorporating vari-
ability in estimates of heterogeneity in the random effects model
in meta-analysis. Statistics in medicine 16 753–768.

[5] Chung, Y., Rabe-Hesketh, S. and Choi, I.-H. (2013). Avoiding
zero between-study variance estimates in random-effects meta-
analysis. Statistics in Medicine 32 4071–4089. MR3102435

[6] Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. and
Liu, J. (2013). A nondegenerate penalized likelihood estimator
for variance parameters in multilevel models. Psychometrika 78
685–709. MR3110938

[7] Cochran, W. G. (1954). The combination of estimates from dif-
ferent experiments. Biometrics 10 101–129. MR0067428

[8] Crippa, A., Khudyakov, P., Wang, M., Orsini, N. and Spiegel-

man, D. (2016). A new measure of between-studies hetero-
geneity in meta-analysis. Statistics in Medicine 35 3661–3675.
MR3538039

[9] DerSimonian, R. and Kacker, R. (2007). Random-effects model
for meta-analysis of clinical trials: an update. Contemporary Clin-
ical Trials 28 105–114.

[10] DerSimonian, R. and Laird, N. (1986). Meta-analysis in linical
trials. Controlled Clinical Trials 7 177–188.

[11] Efron, B. and Tibshirani, R. (1986). Bootstrap methods for
standard errors, confidence intervals, and other measures of sta-
tistical accuracy. Statistical Science 54–75. MR0833275

[12] Farebrother, R. (1984). Algorithm AS 204: the distribution of
a positive linear combination of χ2 random variables. Journal
of the Royal Statistical Society. Series C (Applied Statistics) 33
332–339.

[13] Gart, J. J. (1966). Alternative analyses of contingency tables.
Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 164–179. MR0202241

[14] Hardy, R. J. and Thompson, S. G. (1996). A likelihood approach
to meta-analysis with random effects. Statistics in Medicine 15
619–629.

[15] Hartung, J. and Knapp, G. (2005). On confidence intervals for
the among-group variance in the one-way random effects model
with unequal error variances. Journal of Statistical Planning and
Inference 127 157–177. MR2103031

[16] Hartung, J. and Makambi, K. (2002). Positive estimation of
the between-study variance in meta-analysis: theory and methods.
South African Statistical Journal 36 55–76. MR1961402

[17] Hedges, L. V. and Olkin, I. (2014). Statistical methods for meta-
analysis. Academic press. MR0798597

[18] Higgins, J. P. and Green, S. (2011). Cochrane handbook for
systematic reviews of interventions 4. John Wiley & Sons.

[19] Higgins, J. and Thompson, S. G. (2002). Quantifying hetero-
geneity in a meta-analysis. Statistics in Medicine 21 1539–1558.

Statistical methods for quantifying between-study heterogeneity in meta-analysis with focus on rare binary events 463

http://www.ams.org/mathscinet-getitem?mr=2980067
http://www.ams.org/mathscinet-getitem?mr=2522312
http://www.ams.org/mathscinet-getitem?mr=3102435
http://www.ams.org/mathscinet-getitem?mr=3110938
http://www.ams.org/mathscinet-getitem?mr=0067428
http://www.ams.org/mathscinet-getitem?mr=3538039
http://www.ams.org/mathscinet-getitem?mr=0833275
http://www.ams.org/mathscinet-getitem?mr=0202241
http://www.ams.org/mathscinet-getitem?mr=2103031
http://www.ams.org/mathscinet-getitem?mr=1961402
http://www.ams.org/mathscinet-getitem?mr=0798597


[20] Hunter, J. E. and Schmidt, F. L. (2004). Methods of meta-
analysis: Correcting error and bias in research findings. Sage.

[21] Jackson, D. (2013). Confidence intervals for the between-
study variance in random effects meta-analysis using generalised
Cochran heterogeneity statistics. Research Synthesis Methods 4
220–229.

[22] Jackson, D., Bowden, J. and Baker, R. (2015). Approximate
confidence intervals for moment-based estimators of the between-
study variance in random effects meta-analysis. Research Synthe-
sis Methods 6 372–382.

[23] Jackson, D. and Bowden, J. (2016). Confidence intervals for
the between-study variance in random-effects meta-analysis using
generalised heterogeneity statistics: should we use unequal tails?
BMC Medical Research Methodology 16 118.

[24] Jackson, D., White, I. R. and Riley, R. D. (2012). Quantifying
the impact of between-study heterogeneity in multivariate meta-
analyses. Statistics in Medicine 31 3805–3820. MR3041775

[25] Knapp, G., Biggerstaff, B. J. and Hartung, J. (2006). Assess-
ing the amount of heterogeneity in random-effects meta-analysis.
Biometrical Journal 48 271–285. MR2224258

[26] Knapp, G. and Hartung, J. (2003). Improved tests for a ran-
dom effects meta-regression with a single covariate. Statistics in
Medicine 22 2693–2710.

[27] Kontopantelis, E., Springate, D. A. and Reeves, D. (2013).
A re-analysis of the Cochrane Library data: the dangers of unob-
served heterogeneity in meta-analyses. PloS One 8 e69930.

[28] Langan, D., Higgins, J. and Simmonds, M. (2017). Compar-
ative performance of heterogeneity variance estimators in meta-
analysis: a review of simulation studies. Research Synthesis Meth-
ods 8 181–198.

[29] Langan, D., Higgins, J. P., Jackson, D., Bowden, J.,
Veroniki, A. A., Kontopantelis, E., Viechtbauer, W. and
Simmonds, M. (2019). A comparison of heterogeneity variance
estimators in simulated random-effects meta-analyses. Research
Synthesis Methods 10 83–98.

[30] Li, L. and Wang, X. (2019). Meta-analysis of rare binary events
in treatment groups with unequal variability. Statistical Methods
in Medical Research 28 263–274. MR3894527

[31] Lin, L., Chu, H. and Hodges, J. S. (2017). Alternative measures
of between-study heterogeneity in meta-analysis: Reducing the
impact of outlying studies. Biometrics 73 156–166. MR3632361
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