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Quantile recurrent forecasting in singular
spectrum analysis for stock price monitoring

Atikur R. Khan and Hossein Hassani
∗

Monitoring of near real-time price movement is neces-
sary for data-driven decision making in opening and closing
positions for day traders and scalpers. This can be done
effectively by constructing a movement path based on fore-
cast distribution of stock prices. High frequency trading data
are generally noisy, nonlinear and nonstationary in nature.
We develop a quantile recurrent forecasting algorithm via
the recurrent algorithm of singular spectrum analysis that
can be implemented for any type of time series data. When
applied to median forecasting of deterministic and short-
and long-memory processes, our quantile recurrent forecast
overlaps the true signal. By estimating only the signal di-
mension number of parameters, this method can construct a
recurrent formula by including many lag periods. We apply
this method to obtain median forecasts for Facebook, Mi-
crosoft, and SNAP’s intraday and daily closing prices. Both
for intraday and daily closing prices, the quantile recurrent
forecasts produce lower mean absolute deviation from origi-
nal prices compared to bootstrap median forecasts. We also
demonstrate the tracing of price movement over forecast dis-
tribution that can be used to monitor stock prices for trading
strategy development.

AMS 2000 subject classifications: Primary 37M10,
91B84; secondary 90B50.
Keywords and phrases: Forecast distribution, Recurrent
forecasting, Quantile, Trading.

1. INTRODUCTION

Closing stock prices are of interest in trading strategy de-
velopment. Accurately predicting a stock market is of great
interest to many stakeholders to make a profit and guard
their investments against risks. Stock price monitoring and
forecasting play important role in trading strategy develop-
ment and investment decision making [1, 2]. Stock prices
are noisy and very often they are non-normal, nonstation-
ary and nonlinear [3, 4, 5]. Generating signals from noisy
price movement requires not only market monitoring skill
but also requires to choose a flexible model that can adapt
to changing pattern in the market. Singular spectrum anal-
ysis (SSA) is a nonparametric method that is deemed to
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be suitable for extracting and forecasting signals from lin-
ear, nonlinear, stationary, and nonstationary time series [6].
For recent application of SSA techniques in finance and eco-
nomics see for example [7, 8, 9, 10]. We apply this method
to develop future paths of stock prices and use these paths
to trace price movement to enable trading decision making.

With the advancement of machine learning in financial
time series analysis, artificial neural network (ANN), ran-
dom forest (RF) and support vector regression (SVR) gain
popularity in predicting stock prices [11, 12, 13, 14]. Hybrid
modelling approaches have also been widely implemented in
forecasting stock prices [15, 5, 16]. Ticknor [13] implemented
Bayesian regularized artificial neural network (BRANN) for
one day ahead forecasting of closing prices in response to
several technical indicators. Lu and Wu [1] used neural net-
works and SVR for forecasting daily Nikkei 225 and TAIEX
closing cash indexes. In an attempt to forecast daily closing
stock prices, Pai and Lin [15] have fitted an autoregressive
integrated moving average (ARIMA) model to obtain fore-
cast and then SVR forecast of the residual series is added
to the ARIMA forecast. Their hybrid model has been eval-
uated by computing one-step ahead forecast error. Hybrid
models are subjective in nature and a single approach may
not be suitable for varied data types.

Stock prices are noisy in nature and hybrid modelling ap-
proaches in [5], [17], and [14] considered noise reduction ap-
proaches as a preprocessing step to model building and fore-
casting. The ICA-BPN prediction model [5] utilizes indepen-
dent component analysis (ICA) to filter out the noise con-
tained in forecasting variables and then uses these variables
in back-propagation neural network (BPN) for construction
of a forecasting model. Kao et al. [14] have applied wavelet
transformation for feature extraction and passed these fea-
tures to a SVR model to forecast stock prices. Akin to the
works in [5] and [14], SSA can be used to extract features
from historical time series of stock prices and these features
can be used further to obtain forecasts.

Forecasting a daily closing price is commonly adopted ap-
proach in decision making and can be done by implement-
ing any of these predictive models. But a vision for subse-
quent price distribution is more appealing to investors for
trading strategy development. An investor or a day trader
is more likely to view price distribution for several subse-
quent days for trading strategy development. Whereas a
scalper may wish to view probable price paths for subse-
quent time points for intraday trading. This can effectively
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be done by forecasting quantiles of closing prices and con-
structing price paths for future time points. Hagfors et al.
[18] have explored electricity price distribution by estimat-
ing coefficients for different quantiles in quantile regression.
Nowotarski and Weron [19] constructed prediction intervals
by averaging ensemble of point forecasts from quantile re-
gression of electricity spot prices. Thus we may apply SSA
to filter out noise to extract features and then use these
features to construct ensemble of forecasts from quantile re-
gression. This will provide a distribution of prices for subse-
quent future time points. To construct ensemble of forecasts
for quantiles via SSA, we develop a quantile recurrent fore-
casting method in SSA.

To organize rest of the paper we provide a detailed expo-
sition of SSA methods for forecasting and develop quantile
recurrent forecasting method in Section 2. In Section 3, we
provide simulation results for quantile recurrent forecasting
for deterministic cosinusoidal and short-and long-memory
processes. We apply this method to obtain quantile forecasts
for daily and intraday closing stock prices of Facebook, Mi-
crosoft and SNAP. The selection of Facebook, Microsoft, and
SNAP is just for the applicability of the proposed approach,
while the proposed algorithm can be utilized for other social
media and data providers. We also demonstrate the contin-
uous monitoring of stock prices over price paths of quantile
forecasts in Section 4 and provide concluding remarks in
Section 5.

2. SSA FORECASTING

There are two different algorithms in forecasting via SSA
namely the recurrent forecasting and vector forecasting.
Both of these forecasting algorithms require to follow two
common steps of SSA, the decomposition and reconstruc-
tion of a time series. In this section, we provide a brief de-
scription of forecasting processes in SSA.

2.1 Decomposition and reconstruction of
time series

In SSA, we embed the time series {x1, x2, . . . , xN} into a
high-dimensional space by constructing a Hankel structured
trajectory matrix of the form

X =

⎛
⎜⎜⎜⎝

x1 x2 x3 . . . xn

x2 x3 x4 . . . xn+1

...
...

... . . .
...

xm xm+1 xm+2 . . . xN

⎞
⎟⎟⎟⎠(1)

= [x1 . . . xi . . . xn] ,

where m is the window length, the m-lagged vector xi =
(xi, xi+1, . . . , xi+m−1)

′ is the ith column of the trajectory
matrix X, n = N −m+ 1 and m ≤ n.

The singular value decomposition (SVD) of the trajectory

matrix X can be expressed as

(2) X = Sk +Ek =

k∑
j=1

√
λjujv

′
j +

m∑
j=k+1

√
λjujv

′
j

where uj is the jth eigenvector of XX ′ corresponding to

the eigenvalue λj and vj = X ′uj/
√
λj .

If k is the number of signal components, Sk =∑k
j=1

√
λjujv

′
j represents a matrix of signal and Ek =∑m

j=k+1

√
λjujv

′
j is the matrix of noise. We apply diago-

nal averaging procedure to Sk to reconstruct signal series s̃t
such that the observed series can be expressed as

(3) xt = s̃t + ẽt,

where ẽt is the filtered out noise series. A detailed exposi-

tion of decomposition in Eq. (3) can be found in Khan and

Poskitt [20].

It is worth mentioning that the selection of the SSA pa-

rameters/choices depends on various factors, but the general

concept is to achieve minimal errors. As illustrated above,

we deal with a basic time series model, ‘signal + noise.’

Thus, the residual pattern after signal extraction informs us

if the selected parameters are appropriately done.

2.2 Recurrent forecast

The reconstructed signal matrix derived from the first k

signal components can be written as

(4) Sk =

k∑
i=1

Xi =

k∑
i=1

uiu
′
iX = UkU

′
kX ,

where m × k matrix Uk = [u1 : . . . : uk] is the matrix of

k eigenvectors of XX ′. Now we partition the matrix Uk

such that Uk =
(
U ′u

k U ′ l
k

)′
where U l

k is the row vector of

elements in the last row of Uk and Uu
k is a (m − 1) × k

matrix of the first m − 1 rows of Uk. Partitioning Sk and

Xk conformable with the partition of Uk in Eq. (4) can be

rewritten as

(
Su
k

Sl
k

)
=

(
Uu

k

U l
k

)(
Uu′

k U l′

k

)(Xu

X l

)
(5)

=

(
Uu

kU
u′

k Xu +Uu
kU

l′

k X
l

U l
kU

u′

k Xu +U l
kU

l′

k X
l

)
.

The projection of the last row of signal matrix Sk on to
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its first m− 1 rows is defined by
(6)

Sl
k = U l

kU
u′

k Xu +U l
kU

l′

k X
l

= U l
kU

u′

k (Su
k +Eu

k ) +U l
kU

l′

k (S
l
k +El

k)

= (1−U l
kU

l′

k )
−1[U l

kU
u′

k (Su
k +Eu

k ) +U l
kU

l′

k E
l
k]

= (1−U l
kU

l′

k )
−1U l

kU
u′

k Su
k

+ (1−U l
kU

l′

k )
−1U l

k[U
u′

k Eu
k +U l′

k E
l
k]

= (1−U l
kU

l′

k )
−1U l

kU
u′

k Su
k + (1−U l

kU
l′

k )
−1U l

kU
′
kEk

= (1−U l
kU

l′

k )
−1U l

kU
u′

k Su
k

+ (1−U l
kU

l′

k )
−1U l

k[U
′
kUm−kU

′
m−kX]

= (1−U l
kU

l′

k )
−1U l

kU
u′

k Su
k ,

where a′ = (1−U l
kU

l′

k )
−1U l

kU
u′

k is the vector of coefficients
for the projection of Sl

k on Su
k and is used to construct a

linear recurrent formula.
Recurrent forecasting in SSA is also known as R-

forecasting and is the most popular forecasting algorithm
in SSA [21]. If uu

j = (u1j , . . . , u(m−1)j)
′ is the vector of the

first m−1 elements of the jth eigenvector uj and umj is the
last element of uj , coefficients of linear recurrent equation
can be estimated as

(7) a = (a(m−1), . . . , a1)
′ =

1

1−
∑k

j=1 u
2
mj

k∑
j=1

umju
u
j .

With the parameters in Eq. (7), a linear recurrent equa-
tion of the form

(8) s̃t =

m−1∑
i=1

a(m−i)s̃t−m+i

is used to obtain one-step ahead recursive forecast [20, 22, 6].
This linear recurrent formula in Eq. (8) is used to fore-
cast the signal at time t + 1 given the signal at time
t, t− 1, . . . , t−m+ 2 [21, sec. 2.1, eq. 2.1-2.2] and the one-
step-ahead recursive forecast of xN+j is
(9)

ŝN+j =

⎧⎨
⎩

∑j−1
i=1 aiŝN+j−i +

∑m−j
i=1 am−is̃N+j−m+i

for j ≤ m− 1;∑m−1
i=1 aiŝN+j−i for j > m− 1.

2.3 Quantile recurrent forecast

As can be seen in Eq. (6), the last row of the reconstructed
trajectory matrix is

Sl
k = (1−U l

kU
l′

k )
−1U l

kU
u′

k Su
k ,

and by adding the noise part El
k on both sides we may write

that

X l = (1−U l
kU

l′

k )
−1U l

kU
u′

k Su
k +El

k

= (1−U l
kU

l′

k )
−1U l

k

(
Uu′

k Su
k

)
+El

k

= β
(
Uu′

k Su
k

)
+El

k.(10)

Applying a transpose to the above equation, Eq. (10), we
can write (

X l
)′

=
(
Uu′

k Su
k

)′
β′ +

(
El

k

)′
⇒ y∗ = X∗α+ ε(11)

where α = β′ is a vector of k parameters, X∗ =
(
Uu′

k Su
k

)′
,

ε =
(
El

k

)′
, and y∗ is the last row of the trajectory matrix

X.
In SSA, we estimate coefficients of the linear recurrent

equation and there are m − 1 number of parameters that
are estimated naturally from the decomposition of the tra-
jectory matrix X. But Eq. (11) has only k parameters that
can regulate the distribution of m− 1 parameters under the
transformation. If α is estimated as in quantile regression
to obtain median forecast, this can be transferred back to
form a quantile recurrence formula with m − 1 coefficients.
This procedure is suitable at least when an analyst requires
to consider too many time lags for quantile forecasting. We
only need to estimate k number of parameters to unveil
a quantile recurrence formula with m − 1 parameters even
when m is much higher than k.

The quantile regression estimate of α can be obtained by
solving the equation

(12) α̂ = argminα

∑
ρτ

(
y∗i − x∗′

i α
)

where 0 < τ < 1 represents the probability and

ρτ (z) =

{
z(τ − 1) for z < 0;
zτ for z ≥ 0.

Setting τ = 0.5 will provide estimates for α leading to the
median regression. Thus β̂τ = α̂′ and the quantile recur-
rence relationship can be written as

(13) Sl
k = β̂τU

u′

k Su
k = β̂∗

τS
u
k

where β̂∗
τ = β̂τU

u′

k is a m − 1 vector of quantile recurrent
coefficients, and the recurrence relationship

(14) s̃k,τ (t) =

m−1∑
j=1

β̂∗
τ,j s̃k(t−m+ j)

provides one-step ahead recursive quantile forecast.

3. NUMERICAL ILLUSTRATION

3.1 Deterministic cosinusoidal process

Sinusoidal signals are commonly used in engineering and
physics. Many literatures on SSA also used the examples of
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cosine and exponentially modulated series [21, 23, 24, 25].
Here we consider an example of cosine series generated as

yt = μ+

p∑
r=1

Arcos(λrt+ θr) + εt

where μ is the mean signal, Ar is the amplitude, λr is the
frequency (number of cycles per unit measured in radians),
θr is the phase uniformly distributed over the range (−π, π)
and εt is the i.i.d. Gaussian noise process with noise variance
σ2. The wavelength of the process is 2π/λr. This series has
previously been used in [26].

Since the amplitude Ar and the frequency λr are constant
at time t, we may write

E(ytyt+h) =

{
μ2 + 1

2

∑p
r=1 A

2
rcos(λrh) if h �= 0;

μ2 + 1
2

∑p
r=1 A

2
r + σ2 if h = 0.

Therefore, {yt} is deemed to be a stationary process and
possess a linear recurrent formula (LRF) of dimension 2p+1.
Signal-to-noise ratio (SNR) of this process is

SNR = 10log10

(
μ2 + 1

2

∑p
r=1 A

2
r

σ2

)
dB.

By setting different values to this signal-to-noise ratio, we
may generate data for further analysis. For instance, let us
consider the following setup for a data generating process
(DGP)
(15)
yt = 0.75 + 3cos(2πt/7 + π/5) + 1.5cos(2πt/10− π/4) + εt

where a Gaussian noise process is added such that noise vari-
ance satisfies certain level of signal-to-noise ratio. In prac-
tice, we generate data for different noise variance σ2 by con-
trolling the SNR level such that SNR = 10log10

(
6.1875
σ2

)
decibel (dB).

We generate 1,000 time series of length N = 200 form
Eq. (15) by setting SNR = 10 dB and obtain h = 12 fore-
casts from each of the generated series by using recurrent
forecasting algorithm of SSA(100, k) model (SSA with win-
dow length �N/2� and number of component k selected by
employing the description length criterion) and plot the me-
dian and quartiles of forecasts in Figure 1. We also compute
quantile forecast via SSA (QSSA) and plot medians of quar-
tile forecasts in Figure 1. Both the median forecasts from
QSSA and SSA overlap the true signal, and the quartile
forecasts are hardly distinguishable. Thus it mimics that
the QSSA forecast is providing qualitatively similar distri-
butional properties of SSA forecast. Similar results are ob-
tained when data is generated by setting SNR = 5 dB, as
can be seen in Figure 2.

3.2 Short-and long-memory processes

Assuming εt being a white noise process, let us define an
AR(2) process of the form

(16) (1− 0.8B)(1− 0.6B)xt = εt.

Figure 1. Median and quartile forecasts obtained from
bootstrapping and quantile SSA of cosinusoidal signal when

SNR = 10 dB.

Figure 2. Median and quartile forecasts obtained from
bootstrapping and quantile SSA of cosinusoidal signal when

SNR = 5 dB.

This AR(2) process has previously been studied explicitly in
[27, Example 25.1, p.57] for an autoregressive process with
real roots within the unit circle.

Assuming Gaussian white noise process, we generate
1,000 time series of length N = 200 from the AR(2) process
in Eq. (16) and for each of the series we obtain h = 12 fore-
casts from SSA(100, k) models as has been described in Sec-
tion 3.1. Quartiles of forecasts obtained from SSA(100, k)
models are displayed in Figure 3. We also compute medians
of quantile forecasts for each of the quartiles from QSSA
forecast. Akin to the results in Figure 1 and Figure 2, the
median forecast from both methods are hardly distinguish-
able from the true signal (E(xt) = 0) and the quartile fore-
casts are lying very close to each other. Thus both SSA and
QSSA provide qualitatively similar forecast distribution for
this short-memory process.

To introduce long-memory in Eq. (16) we consider a frac-
tional differencing parameter d = 0.3 and define a process

192 A. R. Khan and H. Hassani



Figure 3. Median and quartile forecasts obtained from
bootstrapping and quantile SSA of AR(2) process in Eq (16).

Figure 4. Median and quartile forecasts obtained from
bootstrapping and quantile SSA of FAR(2) process in

Eq (17).

of the form

(17) (1− 0.8B)(1− 0.6B)(1−B)0.3xt = εt

where εt ∼ WN(0, 1). We generate 1,000 time series of
length N = 200 and obtain forecasts both from SSA and
QSSA by following the procedures described above for the
short-memory process. Forecast quantiles are provided in
Figure 4. We find that both forecasting algorithms provide
qualitatively similar results with median forecasts lying on
the true signal. Results obtained from both simulation ex-
periments demonstrate that the quantile forecasting meth-
ods in SSA performs qualitatively similar to the recurrent
forecasting method.

4. PRACTICAL APPLICATION

We have demonstrated through simulation experiments
that the utilization of QSSA may produce quantile forecasts
qualitatively very similar to the bootstrap quantiles of SSA.
In this section, we apply quantile SSA and bootstrap SSA

methods to obtain median forecast of intraday and daily
closing prices of major social media stocks.

4.1 Intraday closing prices

We obtain intraday minute level closing prices data of
Facebook (FB), Microsoft (MSFT) and SNAP from “2019-
10-31 12:01:00” to “2019-11-01 12:30:00”. For each of the
ticker time series, we leave the last 30 minutes data for test-
ing and use the remaining data as training data for model
fitting. Tickers data shown in Figure 5 are extracted by im-
plementing the R package quantmod.

Figure 5. Intraday closing prices of (a) Facebook (FB) (b)
Microsoft (MSFT) and (c) SNAP from “2019-10-31

12:01:00” to “2019-11-01 12:30:00”.

We apply Jarque-Bera test [28, 29] for normality,
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [30] for sta-
tionarity and Teraesvirta NN test [31] for linearity to these
data sets, and provide these test results in Table 1. Though
the KPSS test rejects the stationarity of these data sets,
the TNN test supports the linearity. The normality of FB
closing price is supported by the Jarque-Bera test, but the
normality is rejected for MSFT and SNAP intraday closing
prices. SSA can be applied to non-normal and nonstationary
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Figure 6. Forecast distribution of intraday (minutes) closing prices of (a) Facebook (FB) (b) Microsoft (MSFT) (c) SNAP,
where the thick solid line is the original price and colored lines are 20% to 80% quantile forecasts.

time series without any transformation, and we apply SSA
to analyze these data sets.

Table 1. Statistical properties of daily closing prices of tickers
FB, MSFT, and SNAP

Jarque-Bera Test KPSS Test TNN Test
Ticker χ2 Normal KPSS STS χ2 Linear

FB 1.70 Yes 1.23 No 0.09 Yes
MSFT 7.01 No 1.59 No 0.06 Yes
SNAP 61.95 No 0.71 No 2.17 Yes

Here, STS refers to stationarity of time series.

We select an hour window (window length m = 60) for
construction of trajectory matrix and apply the SDL(k|m)
criterion of Khan and Poskitt [32] to select the number of
signal components for SSA of historical training data. Me-
dian forecasts are obtained both from bootstrapping of SSA
and quantile recurrent forecasting. Mean absolute deviation
(MAD) of forecast from observed prices are computed by
using the following formula

MAD(h) =
1

h

h∑
j=1

|xN+j − x̂N+j |

where x̂N+j is the median forecast corresponding to xN+j .
Results in Table 2 reveal that the median forecast from

quantile SSA provides lower MAD compared to bootstrap
median of minute level closing prices. For FB closing prices,
QSSA provides around 10% less MAD than that of boot-
strap median forecast in SSA. We find that both for 15
minutes and 30 minutes ahead recursive median forecasting
QSSA provides relatively better results than the bootstrap
median forecast from SSA.

Table 2. Mean absolute deviation of median forecast of a
minute closing prices of social media tickers

h = 15 h = 30

Ticker QSSA BSSA QSSA
BSSA

QSSA BSSA QSSA
BSSA

FB 1.20 1.32 0.91 1.44 1.60 0.90
MSFT 0.20 0.23 0.87 0.19 0.23 0.83
SNAP 0.04 0.06 0.67 0.04 0.05 0.80

Here, QSSA
BSSA

is the relative MAD(h) of QSSA with respect to BSSA.

Though the median forecasts are useful to learn about the
future closing prices of a stock, it is of interest to stock mar-
keting analysts that the future closing prices can be tracked
over the forecast distribution. In stock prices, analysts are
more interested in prices between the first and the third
quartiles. Thus we compute 20% to 80% quantile forecasts
of minutes closing prices and plot these forecasts in Figure 6.

Forecast distribution of FB clearly shows that the clos-
ing minute prices are moving further down from the 20%
quantile forecast and is not likely to return to the median
level in the next subsequent minutes. After 15 minutes price
starts to rise but clearly it is highly unlikely to cross the
lower quartile forecast. This movement tracing will help an
analyst to make a quick trading decision.

Minute closing price of MSFT is moving down of the 20%
quantile forecast and its seems that even after 15 minutes
the price is less likely to return to its median forecast. By
comparing the movement of original price with respect to
the forecast distribution, it can be assumed by an analyst
that the future closing prices are not moving up to and above
the median forecast in the next subsequent minutes. Unlike
the closing prices of FB and MSFT, minute closing price of
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Figure 7. Daily closing prices of (a) Facebook (FB) (b)
Microsoft (MSFT) and (c) SNAP from “2017-10-01” to

“2019-09-30”.

SNAP starts moving around the first quartile of the forecast
distribution and around 15 minutes later the price swings
up and indicates a trend to return to the median forecast.
Tracing of price movement on the forecast distribution can
help a trading analyst to trace its position after the next
subsequent minutes to build a trading strategy.

4.2 Daily closing prices

We obtain ‘daily closing prices data of Facebook (FB),
Microsoft (MSFT) and SNAP from “2017-10-01” to “2019-
09-30”. For each of the ticker time series, we leave the last 10
business days (2 weeks) data for testing and use the remain-
ing data as training data for model fitting. The R package
quantmod has been used to extract these data sets from Ya-
hoo Finance and are presented in Figure 7.

To explore statistical properties of these time series, we
apply Jarque-Bera test [28, 29] for normality, Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test [30] for stationarity and
Teraesvirta NN test [31] for linearity to these data sets.
Test results provided in Table 3 support that the daily FB
and SNAP closing prices are non-normal, nonstationary and

nonlinear. Daily closing price of MSFT is non-normal and
nonstationary, but linearity is supported by the TNN test.

Table 3. Statistical properties of daily closing prices of tickers
FB, MSFT and SNAP

Jarque-Bera Test KPSS Test TNN Test
Ticker χ2 Normal KPSS STS χ2 Linear

FB 19.89 No 0.87 No 17.76 No
MSFT 19.557 No 7.29 No 1.94 Yes
SNAP 18.43 No 2.11 No 10.85 No

Here, STS refers to stationarity of time series.

It is known that SSA is suitable for time series of varied
properties and can be used without any transformation even
if the time series in non-normal, nonstationary and nonlin-
ear in nature. We obtain median forecast from quantile SSA
and bootstrap SSA and incorporate relative MAD values
for 1 week (5 days) and 2 weeks (10 days) recursive fore-
casts. When compared to 5 days forecasting performance,
the quantile SSA forecast provides much lower MAD than
that of bootstrap median forecast. This property also re-
flects in 10 days recursive forecasting of closing prices. Thus
for 5 days and 10 days recursive median forecasting, quantile
recurrent forecasting provides better performance compared
to bootstrap median forecast of SSA. Since the quantiles are
distributed around the median, we apply recurrent quantile
forecasting to trace movement of closing prices.

Table 4. Mean absolute deviation of median forecast of daily
closing prices of social media tickers

h = 5 h = 10

Ticker QSSA BSSA QSSA
BSSA

QSSA BSSA QSSA
BSSA

FB 3.81 6.00 0.64 5.57 7.52 0.74
MSFT 3.51 5.02 0.70 6.44 8.07 0.80
SNAP 1.94 2.1 0.92 2.67 2.74 0.97

Here, QSSA
BSSA

is the relative MAD(h) of QSSA with respect to BSSA.

By following the movement of FB closing prices over the
forecast distribution in Figure 8, we explore that the clos-
ing price starts growing over the median forecast providing
a signal that the price is likely to exceed the 80% quantile
forecast in the next subsequent days. As soon as the price
becomes stable over the 80% quantile position, it may swing
upward further or may swing downward. We find that the
price swings down towards the median and is likely to down
further with a falling signal in closing price. The falling pat-
tern clearly demonstrates that the price is likely to fall bel-
low the 20% quantile position in the next subsequent days.

The closing price of MSFT starts growing over the median
and it provides a clear indication that the price is likely to
cross the upper quartile forecast. Tracing the price move-
ment over the forecast distribution clearly demonstrates
that the price is trending over the 80% quantile position and
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Figure 8. Forecast distribution of daily closing prices of (a) Facebook (FB) (b) Microsoft (MSFT) and (c) SNAP, where the
thick solid line is the original price and colored lines are 20% to 80% quantile forecasts.

is less likely to fall below the third quartile of the forecast
distribution. This signal can be used by a trading analyst
to adopt a trading plan. Similarly, the SNAP closing price
starts moving much over the 80% quantile of the forecast
distribution and signals that the price is highly unlikely to
cross below the third quartile of the distribution in the next
subsequent days.

It seems that both for intraday and daily closing prices
quantile recurrent forecasting provides much better results
compared to bootstrap median forecast. Quantile recurrent
forecasting also provides enough information about forecast
distribution to monitor price movement for making trading
decisions.

5. CONCLUDING REMARKS

Forecasting closing stock prices is a quintessential part
in trading strategy development and decision making. A
trading analyst may obtain forecasts by employing different
statistical methods to enable data-driven decision making.
Since the stock market is highly noisy and volatile, it is very
important to monitor stock prices continuously to assess an
adopted trading strategy. We develop a hybrid forecasting
model by employing SSA to construct features and then use
these features to construct ensemble of quantile forecasts.
These ensemble of quantile forecasts can be used to con-
struct a price distribution for future time points and stock
prices can be monitored continuously by plotting available
current prices on the constructed price distribution. This
enables traders to follow-up stock prices on the price distri-
bution for data-driven decision making. The study can be
further enhanced by adding automated change point detec-
tion for various h-step ahead and its multivariate version.

The issue of SSA parameters choices needs to be evaluated
for forecasting performance improvement.

Received 23 May 2021
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