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The asymptotic profile of χy−genera of

Hilbert schemes of points on K3 surfaces

Jan Manschot and Jose Miguel Zapata Rolon

The Hodge numbers of the Hilbert schemes of points on algebraic
surfaces are given by Göttsche’s formula, which expresses the gen-
erating functions of the Hodge numbers in terms of theta and eta
functions. We specialize in this paper to generating functions of
the χy-genera of Hilbert schemes of n points on K3 surfaces. We
determine asymptotic values of the coefficients of the χy-genus for
n→∞ as well as their asymptotic profile.

1. Introduction and results

The Hilbert scheme S[n] of n points on a complex projective surface S heuris-
tically parametrizes collections of n points on the surface S. The geometry
of such Hilbert schemes is well studied.1 In this paper we will be mainly con-
sidering the case when S is a K3 surface. K3 surfaces are smooth, compact
and simply connected surfaces with trivial canonical bundle. K3 surfaces
are hyper-Kähler manifolds and exhibit a wealth of other special proper-
ties. The Hilbert schemes K3[n] are also hyper-Kähler manifolds, and their
topological invariants determine many other interesting invariants for math-
ematical objects associated to K3: Gromov-Witten invariants [16, 17], stable
pair invariants [22], rank r sheaves of pure complex dimension 2 [25]. K3 sur-
faces are important in Calabi-Yau compactifications of 10-dimensional string
theory to 4 and 6 dimensions. From this perspective, the Hodge numbers
hp,r(S[n]) of the cohomology give information about the number of (super-
symmetric) quantum states in the lower dimensional physical theories. See
for example [8].

The Hodge numbers hp,r(S[n]) of the Hilbert schemes of n points on an
algebraic surface S are famously given by Göttsche’s formula [12]. Göttsche’s
formula expresses the generating function as an infinite product, and is
in fact a simple product of Jacobi theta and Dedekind eta functions. The
asymptotic growth of the Euler number χ(S[n]) for n→∞ has been known

1See for example [13] and [21] for two expository texts.
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for a long time. It was found using the Rademacher circle method (see for
example [3, 14]) and is of interest for conformal field theory and string the-
ory. Recently, methods are also developed to derive the asymptotic behavior
of the Betti numbers which gives much more refined information about the
cohomology of the Hilbert schemes [4, 7]. Closely related is the work by
Hausel and Rodriguez-Villegas [15], who have determined the asymptotic
profiles of Betti numbers of a class of hyper-Kähler manifolds. The majority
of those hyper-Kähler manifolds in [15] appear as moduli spaces of families
of mathematical objects.

In the present paper we extend the techniques developed in [4, 7], to
determine the asymptotic behavior of the χy genus of K3[n]. To explain the
setup and results in more detail, let

e(M;x, y) :=

dimCM∑
p,r=0

hp,r(M)xpyr,

be the Hodge polynomial of a smooth complex manifoldM with hp,r(M) =
dimHp,r(M) the dimension of the Dolbeault cohomology group Hp,r(M). If
M satisfies Poincaré duality, e(M;x, y) is a palindromic polynomial in the
two variables x and y. The polynomial specializes to several other well-known
characteristic polynomials. For x = y, one obtains the Poincaré polynomial,
i.e. the generating function of Betti numbers bk(M) =

∑
p+r=k h

p,r(M). For
x = −1, e(M;x, y) specializes to the χy-genus of

M : χy(M) =
∑
p,r

hp,r(M) (−1)pyr =
∑
r

χr(M)yr.

The number χr(M) is the index of the Dolbeault complex of forms with non-
holomorphic degree r. Finally for x = y = −1, e(M;x, y) equals the Euler
number χ(M).

The famous formula by Göttsche [12, Conjecture 3.1] expresses the gen-
erating function of Hodge polynomials of the Hilbert schemes as an infinite
product formula

(1.1)

∞∑
n=0

e(S[n];x, y)x−ny−n qn =

∞∏
n=1

∏
p+r=odd(1 + xp−1yr−1qn)h

p,r(S)∏
p+r=even(1− xp−1yr−1qn)hp,r(S)

.

To specialize Eq. (1.1) to a K3 surface, note that the nonvanishing Hodge
numbers of a K3 surface are given by h0,0(K3) = h2,0(K3) = h0,2(K3) =
h2,2(K3) = 1, and h1,1(K3) = 20.
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In the physical context of Calabi-Yau compactifications to 4 dimensions,
the exponents of x and y label representations of the SU(2) rotation and
U(1) R-symmetry group [8]. Specializing (1.1) by x→ −1, and y → −ζ, one
obtains a generating function of the Laurent polynomials ζ−n χ−ζ(K3[n]).
The exponent of ζ then labels representations of a diagonal subgroup ⊂
SU(2)×U(1).

To obtain our results we use and develop techniques from analytic num-
ber theory. See for example the closely related papers [4–7, 9, 14, 18, 19, 27].
We expect that the techniques in this paper might in turn motivate and be
relevant for questions in analytic number theory. For example, a combinato-
rial interpretation of the coefficients of (1.1) (and its specialization of (x, y)
to (−1,−ζ)) in terms of colored partitions is still missing. We continue by
expressing the generating function in terms of modular forms. Recall that
the Jacobi theta function ϑ(w; τ) is defined for w ∈ C and τ ∈ H

ϑ(w; τ) := iζ
1

2 q
1

8

∞∏
n=1

(1− qn) (1− ζqn)
(
1− ζ−1qn−1

)
= iζ

1

2 q
1

8 (q; q)∞ (qζ; q)∞ (ζ−1; q)∞,

where

ζ := e2πiw, q := e2πiτ , and (a; q)∞ =

∞∏
n=0

(1− aqn)

is the q-Pochhammer symbol. Recall also that the Dedekind η-function is
defined as

η(τ) := q
1

24

∞∏
n=1

(1− qn) = q
1

24 (q; q)∞.

Then specialization of Equation (1.1) to x = −1 and y = −e2πiw = −ζ gives
the generating function of χ−ζ-genera of K3[n]

fk(w; τ) :=
g(w; τ)2

η(τ)k
,

with k = 24 and

g(w; τ) := i

(
ζ

1

2 − ζ−
1

2

)
η(τ)3

ϑ(w; τ)
.
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We define the coefficients am,k(n) of fk(w, τ), k ≥ 1, as follows

fk(w, τ) :=
∑
m,n

am,k(n)ζmqn−
k

24 .

We note that the coefficients χr([K3][n]) are given by (−1)rar,24(n). Due to
the symmetry w ↔ −w of fk(w; τ) it is easy to deduce that χ−ζ(K3[n]) is
a palindromic polynomial of degree 2n with positive coefficients. We note
that

∑
m∈Z am,k(n) = pk(n), with pk(n) the number of partitions of n in k

colors.
Our first result is obtained using the approach of Wright [26] also used

in [5–7, 19, 27].

Theorem 1.1. Let N ∈ N and I`(x) denote the I-Bessel function defined
in Equation (2.10). For fixed m we have, as n→∞

am,k(n) = (2π)−
k

2

N∑
`=1

dm,k(`)n
− 2+2`+k

4

(
π

√
k

6

)1+`+ k

2

× I−1−`− k
2

(
π

√
2kn

3

)
+O

(
n−1−

N

2
− k

4 eπ
√

2kn

3

)
,

where the dm,k(`) are defined in Equation (2.9).

Since dm,k(`) are independent of m for ` = 1, 2 and dm,k(3)− dr,k(3) =
1
60(r2 −m2), we deduce:

Corollary 1.1. The difference am,k(n)− ar,k(n), as n→∞, is given by

am,k(n)− ar,k(n) =
4

15
π3(r2 −m2) (8n)−

9+k

4

(
k

3

) k+7

4

eπ
√

2kn

3

+O
(
n−3−

k

4 eπ
√

2kn

3

)
.

Remark. The leading asymptotic behavior of a similar difference of coef-
ficients was determined in [7, Corollary 1.2] for the function g(w; τ)/η(τ)k.
We observe that the two asymptotic behaviors only differ by the factor 4

15 .
Note however that for large m the coefficients dm,k(`) grow much faster in
the case studied here compared to [7].
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Our second main result concerns the profile of the coefficients am,k(n)

for |m| ≤
√

n
6k

logn
π . To this end we define

P (m,β) :=
d2

dm2

(
m

2
coth

(
βm

2

))
(1.2)

=
β

4
csch2

(
βm

2

)(
βm coth

(
βm

2

)
− 2

)
,

with csch(x) = 1/ sinh(x). The function P (m,β) satisfies

P (0, β) =
β

6
,

∫ ∞
−∞

P (m,β)dm = 1

and has variance ∫ ∞
−∞

m2P (m,β)dm =
2π2

3β2
.

Using the Taylor expansion of P (m,β) in m, we obtain the limiting shape
of the ratio am,k(n)/pk(n) for large n. This is given by:

Theorem 1.2. Let pk(n) be the number of partitions of n in k colors. For
m as above we have, as n→∞

am,k(n)

pk(n)
= P (m,βk)

(
1 +O

(
β

1

2

k |m|
1

3

))
,

where βk = π
√

k
6n .

It is an interesting open question to which distribution the probabil-
ity density function P (m,β) corresponds. Probability distributions occurred
earlier for coefficients of inverse theta functions and for the cohomology of
hyper-Kähler manifolds. For example the profile for the function g(w;τ)/η(τ)k

was conjectured by Dyson [10] (and recently proven by Bringmann and
Dousse [4, Theorem 1.3]; see also [24, Equation (2.13)]), to be equal to
Plog(m,β)= β

4 sech2
(
1
2βm

)
= β

4 cosh−2
(
1
2βm

)
, which coincides with the prob-

ability density function of the logistic distribution with mean 0 and variance
π2

3β2 . Similarly, the profiles of Betti numbers of hyper-Kähler manifolds found
by Hausel and Rodriguez-Villegas allow often an interpretation as proba-
bility distributions [15]. For example, the profile of the Betti numbers of
Hilbert schemes on C2 corresponds to the Gumbel distribution [15]. In a
similar spirit, a Gaussian distribution is found for DT-invariants of C3 [20].
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The paper is organized as follows: In section 2 we prove Theorem 1.1 by
using Wright’s method as in [7] and in section 3 we adopt the method de-
veloped in [4] to our generating function of χy-genera to prove Theorem 1.2.
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2. Proof of Theorem 1.1

2.1. The main term

We start by recalling the transformation properties under τ → −1/τ of the
Jacobi theta and the Dedekind eta function.

Lemma 2.1. We have

η

(
−1

τ

)
= (−iτ)

1

2 η(τ),

ϑ

(
w

τ
;−1

τ

)
= −i (−iτ)

1

2 eπiw
2/τϑ(w; τ).

To prove Theorem 1.1 we investigate the main term of g(w; τ) by using
the transformation rules of η(τ) and ϑ(w; τ). Recall that q := e2πiτ and
ζ := e2πiw. We define furthermore z := −2πiτ such that q = e−z. Then we

have for g
(
w; iz2π

)2
as z → 0:

Lemma 2.2. For 0 < Re(z)� 1, 0 ≤ Re(w) ≤ 1 we have

g

(
w;

iz

2π

)2

=
sin(πw)2 exp

(
4π2w2

z

)
(
z
2π

)2
sinh

(
2π2w
z

)2 (
1 +O

(
e−4π

2Re( 1

z )(1−w)
))

.
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Proof. Using Lemma 2.1, we obtain

g

(
w;

iz

2π

)2

= −

(
ζ

1

2 − ζ−
1

2

)2
η
(
iz
2π

)6
ϑ
(
w; iz2π

)2 =

(
ζ

1

2 − ζ−
1

2

)2
exp
(
4π2w2

z

)
η
(
2πi
z

)6(
z
2π

)2
ϑ
(
2πw
iz ; 2πi

z

)2 .

Then expanding the definitions one obtains

g

(
w;

iz

2π

)2

= −

(
ζ

1

2 − ζ−
1

2

)2
exp

(
4π2w2

z

)
(
z
2π

)2 (
e

2π2w

z − e−
2π2w

z

)2
·
∏
n≥1

(
1− e−

4π2n

z

)4
(

1− e
4π2w

z
− 4π2n

z

)2 (
1− e−

4π2w

z
− 4π2n

z

)2
=

sin(πw)2 exp
(
4π2w2

z

)
(
z
2π

)2
sinh

(
2π2w
z

)2 (
1 +O

(
e−4π

2Re( 1

z )(1−w)
))

,

which completes the proof. �

We continue by using Cauchy’s theorem to express the coefficients of
fk(w; τ) as contour integrals. We define fm,k(τ) as the coefficient of ζm,

fm,k(τ) :=
2 q

k

24

η(τ)k

∫ 1

2

0
g(w; τ)2 cos(2πmw)dw,

where we used that fk(−w; τ) = fk(w; τ). From fm,k(τ), the am,k(n) are
consequently obtained as

(2.1) am,k(n) :=
1

2πi

∫
C

fm,k(τ)

qn+1
dq,

where C is a circle surrounding 0 clockwise. We choose e−βk for the radius,

with βk := π
√

k
6n . Lemmas 2.1 and 2.2 show that in order to obtain the

asymptotic main term of am,k(n), the following split is natural [7, 26]

am,k(n) = M + E,
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with

M :=
1

2πi

∫
C1

fm,k(τ)

qn+1
dq,

E :=
1

2πi

∫
C2

fm,k(τ)

qn+1
dq,

where C1 is the arc going counterclockwise from phase −βk to βk, and C2 is
the complement of C1 in C.

The leading term will follow from M , whereas E will contribute to the
error. We first consider M and split this further into

M = M1 + E1,

with

M1 :=
1

2πi

∫
C1

gm,1(z)

(e−z; e−z)k∞
q−(n+1) dq,(2.2)

E1 :=
1

2πi

∫
C1

gm,2(z)

(e−z; e−z)k∞
q−(n+1)dq,(2.3)

and gm,1(z) and gm,2(z) are defined by

gm,1(z) :=
8π2

z2

∫ 1

2

0

sin(πw)2

sinh
(
2π2w
z

)2 e 4π2w2

z cos(2πmw)dw,

(2.4)

gm,2(z) := 2

∫ 1

2

0

(
g

(
w;

iz

2π

)2

− sin(πw)2(
z
2π

)2
sinh

(
2π2w
z

)2 e 4π2w2

z

)
cos(2πmw)dw.

In view of Lemma 2.2 this is the natural splitting.
Continuing in analogy with [4], we insert the Taylor expansions of sin2(πw),

cos(2πmw), and exp
(
4π2w2

z

)
,

sin(πw)2 = −1

4

(
e2πiw + e−2πiw − 2

)
= −1

2

∑
`≥1

(−1)`
(2πw)2`

(2`)!
,

cos(2πmw) =
∑
`≥0

(−1)`
(2πmw)2`

(2`)!
, exp

(
4π2w2

z

)
=
∑
j≥0

(
4π2w2

z

)j
j!

,
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into Equation (2.4). Since the Taylor series converge absolutely, we can ex-
change the sums and the integral, such that we find for gm,1(z)

gm,1(z) =
∑

`1≥1,`2≥0,

j≥0

(−1)`1+`2+1 (2π)2(`1+`2+j+1)

(2`1)! (2`2)! j!

m2`2

zj+2

∫ 1

2

0

w2(`1+`2+j)

sinh
(
2π2w
z

)2dw.
We are thus left to evaluate integrals of the shape (j ∈ N∗)

(2.5)

∫ 1

2

0

w2j

sinh
(
2π2w
z

)2dw.
This integral is convergent since the integrand behaves as w2j−2 as func-
tion of w. We next extend the integration domain [0, 12 ] to [0,∞]. Using
the incomplete Gamma function Γ (j;x) :=

∫∞
x e−ttj−1dt, the error may be

bounded by

�
∫ ∞

1

2

w2je−4π
2wRe( 1

z )dw(2.6)

�
(

Re

(
1

z

))−2j−1
Γ

(
2j + 1; 2π2 Re

(
1

z

))
� e−2π

2 Re( 1

z ),

where we throughout use that g(x)� f(x) means g(x) = O(f(x)), and the
well known fact that

Γ (j;x) ∼ xj−1 e−x,

as x→∞. In the new integral we make the change of variables 2πw
z = u.

The path then is given by Arg(u) = Arg(z). Using the Residue Theorem we
can shift the path of integration down to R giving( z

2π

)2j+1
∫ ∞
0

u2j

sinh(πu)2
du.

Now define

Bj :=

∫ ∞
0

u2j

sinh(πu)2
du.

We will need the following evaluation

Lemma 2.3. We have

Bj =
(−1)j+1B2j

π
,

where Bj denotes the j-th Bernoulli number.
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Proof. The proof is similar in spirit to [5, Lemma 5.2]. We first extend the
integral to R. Since the poles all lie at iZ/{0}, we can shift the integral away
from the real axis. One obtains

Bj =
1

2

∫
R+ i

2

u2j

sinh(πu)2
du.

Define the function g(u, T ) := e2πiTu

sinh(πu)2 . Its residue is given by

2πiResu=i( g(u, T ) ) =

(∫
R+ i

2

−
∫
R+ 3i

2

)
g(u, T )du = −4Te−2πT .

Moreover, we have that∫
R+ 3i

2

g(u, T )du =

∫
R+ i

2

g(u+ i, T )du = e−2πT
∫
R+ i

2

g(u, T )du,

which gives us the integral∫
R+ i

2

g(u, T )du =
4T

1− e2πT
.

The generating function of the Bernoulli numbers Bm

(2.7)
x

ex − 1
=

∞∑
m=0

Bm
xm

m!
,

and the expansion of the numerator of e2πiTu

sinh(πu)2 in the integral gives the
desired result. �

Now combining Lemma 2.3 with the error (2.6), we have

gm,1(z) = 2
∑

`1≥1,`2≥0,

j≥0

(−1)j
m2`2

(2`1)! (2`2)! j!
z2(`1+`2)+j−1(2.8)

×
(
B2(`1+`2+j) +O

(
|z|−2(`1+`2+j)−1e−2π2Re( 1

z )
))

.

To evaluate the integral M1 defined in (2.2), we can proceed as in [7, 26].
First we define the coefficients dm,k(`) as the Taylor coefficients of gm,1(z),
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where we let N ∈ N,

e−
kz

24 gm,1(z) =:

N∑
`=1

dm,k(`) z
` +O

(
zN+1

)
.(2.9)

The first few coefficients are given by

dm,k(1) =
1

6
, dm,k(2) =

1

30
− k

144
, dm,k(3) =

23

2520
− m2

60
− k

720
+

k2

6912
.

Having obtained Equation (2.9), we make two further splits, where the first
one is natural in view of Lemma 2.1

M1 = M2 + E2,

with

M2 :=
1

2πi

∫
C1

gm,1(z)

qn+1

( z
2π

) k
2

e−
kz

24
+ kπ2

6z dq,

E2 :=
1

2πi

∫
C1

gm,1(z)

qn+1

(
1

(e−z; e−z)k∞
−
( z

2π

) k
2

e−
kz

24
+ kπ2

6z

)
dq,

and

M2 = M3 + E3,

where

M3 :=
1

2πi

N∑
`=1

dm,k(`)

∫
C1

1

qn+1

( z
2π

) k
2

e
kπ2

6z z`dq,

E3 :=
1

2πi

∫
C1

1

qn+1

( z
2π

) k
2

e
kπ2

6z

(
e−

kz

24 gm,1(z)−
N∑
`=1

dm,k(`)z
`

)
dq.

After a change of the integration variable v = z/βk, the main term M3

consists of contour integrals of the form

Is(α) :=
1

2πi

∫ 1+i

1−i
vseα(v+ 1

v )dv, α > 0.

Lemma 3.1 in [7] estimates this integral in terms of the I-Bessel function

Is(α) = I−s−1(2α) +O
(
e

3

2
α
)
,
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with

(2.10) I`(2
√
z) =

z
`

2

2πi

∫ (0+)

−∞
t−`−1 exp

(
t+

z

t

)
dt,

where the integral is along any counterclockwise contour looping from −∞
around 0 back to −∞. Theorem 1.1 follows now from substitution of these
expressions and α = βk, except for the determination of the error terms,
which we bound in the following subsection. Corollary 1.1 follows from The-
orem 1.1 and using the asymptotic behavior of the Bessel function [1]

(2.11) Is(x) =
ex√
2πx

+O

(
ex

x
3

2

)
.

2.2. The error term

We determine in this subsection the magnitude of the error terms E,E1, E2,
and E3, and that they are ignorable compared to the main term. We show
that the main error is due to E3. We start by computing bounds for the
error terms coming from the different approximations near the dominant
pole starting with E1. To this end we first bound gm,2(z), which is given
by (2.4), near the dominant pole

Lemma 2.4. We have for z ∈ C1 and βk → 0

gm,2(z)�
e
− 3π2

2βk

β2k
.

Proof. Recall that C1 is the arc for q = e−z with phase going from −βk to
βk and radius e−βk . One straightforwardly establishes the following bounds
on this arc

|z| � βk, Re

(
1

z

)
≥ 1

2βk
.

Furthermore, the quotient ∣∣∣∣∣ sin(πw)

1− e−
4π2w

z

∣∣∣∣∣� 1,

is bounded for w ∈
[
0, 12
]
, since the numerator is obviously bounded and for∣∣w

z

∣∣� 1, the quotient is � |z|, and for larger w the denominator is � 1 for
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βk → 0. Using Lemma 2.2 and the bounds above, we bound gm,2(z) by

gm,2(z)�
1

|z|2

∫ 1

2

0

∣∣∣∣∣∣∣
sin(πw)2(

1− e−
4π2w

z

)2
∣∣∣∣∣∣∣ e4π

2Re( 1

z )(w
2−1)dw � e

− 3π2

2βk

β2k
,

where we used that w2 − 1 has its maximum on
[
0, 12
]

at 1
2 . �

With this result we find for E1, defined in Equation (2.3),

Lemma 2.5. We have for n→∞

E1 � n−
k

4
+ 1

2 eπ
√

2kn

3
− 3

2
π
√

6n

k .

Proof. Using the bound of gm,2(z) (see Lemma 2.4) we obtain directly

E1 �
e
− 3π2

2βk

β2k

∫
C1

q−(n+1)

(e−z; e−z)k∞
dq.

From Lemma 2.1 it is easy to see that

(2.12)
1

(e−z; e−z)k∞
=
( z

2π

) k
2

e−
kz

24
+ kπ2

6z

(
1 +O

(
e−

4π2

z

))
.

As a result we find for n→∞

E1 � β
k

2
−2

k e
− 3π2

2βk

∫ βk

−βk
e(n−

k

24
)βk+

kπ2

6
Re( 1

z )dz.

Now we investigate the exponent, which can be rewritten and bounded by

π

√
2kn

3
− 3

2
π

√
6n

k
.

This follows from the following upperbound for Re
(
1
z

)
on C1

Re(z)

|z|2
≤ 1

Re(z)
=

1

βk
,

and so

(2.13)

(
n− k

24

)
βk +

π2k

6
Re

(
1

z

)
< π

√
2kn

3
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by substituting βk = π
√

k
6n . Since the length of the integration path is of

order O(βk), we arrive at the desired result. �

The next step is to evaluate the error E2 coming from approximation of the
q-Pochhammer symbol by its functional equation.

Lemma 2.6. We have for n→∞

E2 � n−
k

4
−1eπ
√

2kn

3
−4π
√

6n

k .

Proof. On C1 the following approximation is valid

|z|2 = β2k + Im(z)2 ≤ 2β2k.

Since the leading term in the Taylor series of gm,1(z), given in Equation (2.8),
is z

6 , we can bound gm,1(z) as

gm,1(z)� |z| � βk.

From (2.12) we know that

1

(e−z; e−z)k∞
−
( z

2π

) k
2

e−
kz

24
+ kπ2

6z = O
(
z
k

2 e−
kz

24
+ 4π2

z
( k
24
−1)
)
.

Now we have

E2 �
∫
C1
dz e

nβk+
π2k

6βk
− 4π2

βk β
k

2
+1

k .

By noting that the integration path is of order O(βk) and plugging in βk we
obtain the lemma. �

To finish the analysis of the error terms on the major arc we calculate E3

coming from the replacement of our main term by a Taylor series.

Lemma 2.7. We have, as n→∞

E3 � n−1−
N

2
− k

4 eπ
√

2kn

3 .
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Proof. Using

e−
kz

24 gm,1(z)−
N∑
`=1

dm,k(`)z
` = O(zN+1),

and changing variables we have

E3 �
∫
C1
|z|

k

2
+N+1enβk+

π2k

6
Re( 1

z )dz.

Using (2.13), |z| � βk and that the path is of order O(βk) gives the desired
result. �

To obtain an error term away from the dominant pole (also known as the
minor arc) we use the following Lemma proved in [4].

Lemma 2.8. Assume that τ = u+ iv ∈ H with Mv ≤ |u| ≤ 1
2 for u > 0

and v → 0, we have that

|(q; q)−1∞ | �
√
v exp

[
1

v

(
π

12
− 1

2π

(
1− 1√

1 +M2

))]
.

This means that the contribution of the other roots of unity will be
suppressed as we see by bounding the error term E.

Lemma 2.9. We have, for every 0 < ε ≤ 1, as n→∞

E � n−
k−6

4 eπ
√

2kn

3 (1− 3ε

4π2 ).

Proof. We first bound g(w; τ). To this end, we write g(w; τ) as a sum over
its poles [2]

g(w; τ) = 1 + (1− ζ)
∑
m≥1

(−1)mq
m2+m

2

1− ζqm
+
(
1− ζ−1

)∑
m≥1

(−1)mq
m2+m

2

1− ζ−1qm
.

Therefore g(w; τ) can be bounded for Im(τ) = βk
2π , Im(w) = 0 and n→∞

as follows

g(w; τ)�
∑
m≥1

|q|
m2+m

2

1− |q|m
� 1

1− |q|
∑
m≥1

e−
βkm

2

2 � β
− 3

2

k � n
3

4 ,

where the second last bound comes from comparison with a gaussian inte-
gral. Thus

g(w; τ)2 � n
3

2 .
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We use Lemma 2.8 for the arc C2. Recall that τ = iz
2π and Re(z) = βk =

π
√

k
6n . Consequently, v = βk

2π and M in Lemma 2.8 equals 1. Using this and

the bound for g(w; τ), we directly obtain

E � n
3

2

∫
C2
β
k

2

k e
nβk+nβk(1− 6

π2 (1− 1√
2)) dz.

Using that for n→∞,− 6
π2nβk (1− 1√

2
) < − 6

4π2nβk and that the integration

path is O(1) finishes the proof. �

This finishes the proof of Theorem 1.1, since we have computed the main
term M3 and determined that the leading error among the error terms E,
Ei, i = 1, 2, 3 is given by E3.

3. Proof of Theorem 1.2

In this section we calculate the main term that contributes to the profile
coming from approaching the main singularity. To deduce Theorem 1.2 we
then use Wright’s circle method. Moreover we detect the error coming from
terms near the dominant pole and away from the dominant pole, giving the
range where the asymptotic expansion is valid.

3.1. The main term

To determine the profile of am,k(n) as a function of m for large n, we start
by determining an expansion of gm,1(z) which is valid for a wide range
of m. The range of m is 1 ≤ |m| ≤ 1

6βk
log n. One verifies that with this

range the error in Theorem 1.2 goes to zero for large n. Furthermore, we set

z = βk

(
1 + ium−

1

3

)
for |m| ≥ 1 and as before βk := π

√
k
6n .

To prove Theorem 1.2 we continue in much the same way as in Section 1.1
using the approach of [4, 7] to perform Wright’s variant [26] of the circle
method. We recall the definition of am,k(n) (2.1)

am,k(n) :=
1

2πi

∫
C

fm,k(q)

qn+1
dq,

where the contour is as in Section 2 the counterclockwise transversal of the
circle C := {q ∈ C; |q| = e−βk}. We change variables to z = βk(1 + ium−

1

3 )
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and obtain

am,k(n) =
βk

2πm
1

3

∫
D
fm,k(e

−z) enz du,

where D is the interval u ∈
[
−πm

1
3

βk
, πm

1
3

βk

]
. We split as before

am,k(n) = M + E,

with

M :=
βk

2πm
1

3

∫
D1

fm,k(e
−z)enzdu,

E :=
βk

2πm
1

3

∫
D2

fm,k(e
−z) enz du,

where D1 is the interval u ∈ [−1, 1] and D2 is the complement of D1 in
D. Completely analogously to Section 2 we split M = M1 + E1 and M1 =
M2 + E2, where M2, E1 and E2 are now defined as

M2 :=
βk

2πm
1

3

∫
D1

gm,1(z)
( z

2π

) k
2

e−
kz

24
+ kπ2

6z
+nz du,

E1 :=
βk

2πm
1

3

∫
D1

gm,2(z)

(e−z; e−z)k∞
enz du,

E2 :=
βk

2πm
1

3

∫
D1

gm,1(z)

(
1

(e−z; e−z)k∞
−
( z

2π

) k
2

e−
kz

24
+ kπ2

6z

)
enz du.

In the following Lemma we give an approximation for gm,1(z) as z → 0,
which is valid for the wide range of m mentioned above. We resum the sum
over `2 (the exponents of m) in the Taylor series for gm,1(z) (2.8). This gives
an expression in terms of hyperbolic trigonometric functions

Lemma 3.1. Recall that P (m,β) is defined in Equation (1.2). Assume that
|u| ≤ 1 and m ≤ 1

6βk
log n. Then we have as n→∞

gm,1(z) =
(

1 + ium−
1

3

)
P (m,βk) +O

(
βkm

2

3P (m,βk)
)
.

Proof. Recall that we determined in the previous section the Taylor series
for gm,1(z) defined in Equation (2.8). Using the generating function of the
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Bernoulli numbers, given by Equation (2.7), we can approximate this as

gm,1(z) =

∞∑
`=0

(mz)2`

(2`)!

(
zB2`+2 +O(|z|2)

)
= z

d2

d(mz)2

(mz
2

coth
(mz

2

))
+O

(
|z|2 cosh(mz)

)
= P (m, z) +O

(
|z|2 cosh(mz)

)
.

We note that z−1 P (m, z) =: f(mz) is only a function of mz. This func-
tion f(x) is clearly smooth for x 6= 0, and one easily verifies that f(x) is also
analytic for x = 0

f(x) =
1

6
+O

(
x2
)
.

We can thus make a Taylor expansion of f(x) around any x ∈ R. Since
|f ′(x)| ≤ |f(x)|, we have

f(x+ ε) = f(x) + f ′(x)ε+O(ε2) = f(x) +O(f(x)ε).

Now we apply this to gm,1(z) with x = βkm and ε = iβkm
2

3

gm,1(z) = z f(mβk) +O
(
β2km

2

3 (1 +m−
2

3 )
1

2 f(mβk)
)

+O
(
β2k(1 +m−

2

3 ) cosh(mβk)
)
.

Now we show that the first error term is larger than the second term for
the full range of m. For that we distinguish between the cases where βkm is
bounded and where βkm grows as 1

6 log(n). If βkm is bounded, both f(βkm)

and cosh(βkm) are O(1). Since in this case m = O
(
n

1

2

)
for n→∞, we find

thus that the first error is O
(
n−

2

3

)
and the second error term is O

(
n−1

)
.

For βkm→ 1
6 log(n) as n→∞, we can bound the cosh(βkm) by

cosh(βkm)� eβkm � n
1

6 .

Similarly, one finds for f(βkm)

f(βkm)� n−
1

6 log(n).

As a result, the first error becomes O
(
n−

5

6 log(n)
5

3

)
and the second error

O
(
n−

5

6

)
. This concludes the proof of Lemma 3.1. �
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This Lemma leads us to the last split M2 = M3 + E3 with

M3 :=
1

2πm
1

3

∫
D1

z P (m,βk)
( z

2π

) k
2

e−
kz

24
+ kπ2

6z
+nz du,

E3 :=
βk

2πm
1

3

∫
D1

(
gm,1(z)−

z

βk
P (m,βk)

) ( z
2π

) k
2

e−
kz

24
+ kπ2

6z
+nz du.

In order to determine the main term, we first define the following function

Js(α) :=
1

2πi

∫ 1+im−
1
3

1−im− 1
3

vseα(v+ 1

v )dv, α > 0,

and recall that Ref. [4, Lemma 4.2] shows that these integrals may be related
to I-Bessel functions (analogously to Is(α) in Section 2)

Lemma 3.2. As n→∞

Js(α) = I−s−1(2α) +O

(
exp

(
α

(
1 +

1

1 +m−
2

3

)))
.

With this lemma we prove the the following proposition for M3

Proposition 3.3. We have

M3 = P (m,βk) pk(n)
(

1 +O
(
n−

1

2

))
.

Proof. The change of variables v = 1 + ium−
1

3 gives

M3 =
β
k

2
+1

k

(2π)
k

2

P (m,βk)
1

2πi

∫ 1+im−
1
3

1−im− 1
3

v
k

2
+1eπv(n−

k

24
)
√

k

6n
+π

v

√
nk

6 dv.

We approximate the integral over v for n→∞ by

1

2πi

∫ 1+im−
1
3

1−im− 1
3

v
k

2
+1eπv

√
kn

6
+π

v

√
kn

6

(
1 +O

(
n−

1

2 v
))

dv.

Now using the definition of Js(α) this equals

(3.1) J k

2
+1

(
π

√
kn

6

)
+O

(
n−

1

2J k

2
+2

(
π

√
kn

6

))
.
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Using Lemma 3.2 and the asymptotic expansion of the Bessel function given
in Equation (2.11), Equation (3.1) is further approximated by

eπ
√

2kn

3

π
√

2
(
2
3kn

) 1

4

+O

(
eπ
√

2kn

3

n
3

4

)
+O

(
exp

(
π

√
kn

6

(
1 +

1

1 +m−
2

3

)))
.

One easily sees that the first error term is the largest one and so we have
for the leading term M3

M3 =
β
k

2
+1

k

(2π)
k

2

P (m,βk)
eπ
√

2kn

3

π
√

2(23kn)
1

4

(
1 +O

(
n−

1

2

))
.

Now using the following well-known formula [14, 23] for pk(n), for n→∞,

pk(n) = 2

(
k

3

) k+1

4

(8n)−
k+3

4 eπ
√

2kn

3

(
1 +O

(
n−

1

2

))
,

we finish the proof. �

3.2. The error term

In this subsection, we discuss the error terms E1, E2, E3 near the dominant
pole. We also determine the error E to Theorem 1.2 away from the dominant
pole, which is due to the minor arc D2.

To start with E1, one can easily verify that the bound gm,2(z)� 1
β2
k
e
− 3π2

2βk

obtained in Lemma 2.4 for z ∈ C1 continues to hold for z ∈ D1 and m ≥ 1.
Similarly, the proof of Lemma 2.5 mostly goes through, except that the
length of D1 is of order βkm

− 1

3 . As a result we have now

E1 � n−
k

4
+ 1

2 m−
1

3 eπ
√

2kn

3
− 3π

2

√
6n

k .

To establish the bound for E2, we note that for z ∈ D1 and m ≥ 1,
gm,1(z)� P (m,β). We can follow again roughly the proof of Lemma 2.6,

using now gm,1(z)� P (m,β) and that the length of D1 is of order βkm
− 1

3 .
Then one obtains

E2 � n−
k

4
− 1

2 m−
1

3 P (m,βk) e
π
√

2kn

3
−4π
√

6n

k .

For E3, we recall that Lemma 3.1 gives

gm,1(z)−
z

βk
P (m,βk) = O

(
βkm

2

3P (m,βk)
)
.
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After substituting this bound in the definition of E3 and again using the
length of D1, one obtains

E3 � n−
k

4
−1m

1

3 P (m,βk) e
π
√

2kn

3 .

Finally, one can also verify that the proof for E in Section 2 is now applicable
with M = m−

1

3 . This leads to

E � n−
k−6

4 e
π
√

kn

6

(
1− 3

4
m−

2
3

)
.

Therefore the dominant pole is indeed the one for z = O(n−
1

2 ). Comparing
now all error terms we see that E3 is again the dominating error, which
concludes the proof of Theorem 1.2.
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[12] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a
smooth projective surface. Math. Ann., 286 (1990), 193.
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