Surveys in Differential Geometry

Vol. 1: Lectures given in 1990
edited by S.-T. Yau and H. Blaine Lawson

Vol. 2: Lectures given in 1993
edited by C.C. Hsiung and S.-T. Yau

Vol. 3: Lectures given in 1996
edited by C.C. Hsiung and S.-T. Yau

Vol. 4: Integrable systems
edited by Chuu Lian Terng and Karen Uhlenbeck

Vol. 5: Differential geometry inspired by string theory
edited by S.-T. Yau

Vol. 6: Essay on Einstein manifolds
edited by Claude LeBrun and McKenzie Wang

Vol. 7: Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer
edited by S.-T. Yau

Vol. 8: Papers in honor of Calabi, Lawson, Siu, and Uhlenbeck
edited by S.-T. Yau

Vol. 9: Eigenvalues of Laplacians and other geometric operators
edited by A. Grigor’yan and S-T. Yau

Vol. 10: Essays in geometry in memory of S.-S. Chern
edited by S.-T. Yau

Vol. 11: Metric and comparison geometry
edited by Jeffrey Cheeger and Karsten Grove

Vol. 12: Geometric flows
edited by Huai-Dong Cao and S.-T. Yau

Vol. 13: Geometry, analysis, and algebraic geometry
edited by Huai-Dong Cao and S.-T. Yau

Vol. 14: Geometry of Riemann surfaces and their moduli spaces
edited by Lizhen Ji, Scott A. Wolpert, and S.-T. Yau
Volume XIV

Surveys in

Differential Geometry

Geometry of Riemann surfaces
and their moduli spaces

edited by
Lizhen Ji, Scott A. Wolpert, and Shing-Tung Yau

International Press
www.intlpress.com
Preface

The research of Pierre Deligne and David Mumford was reported on in *The irreducibility of the space of curves of given genus*, published in 1969, pages 75–109, tome 36 of Publications Mathématiques de L'I.H.É.S. In the subsequent Mathematical Review, Manfred Herrman wrote that the authors provide two separate proofs of the irreducibility of the moduli space of curves over algebraically closed fields of arbitrary characteristic. The main tool for the first proof is a stable reduction theorem for abelian varieties, due to Grothendieck and Mumford, applied to curves. The authors then follow ideas of Severi and Grothendieck for the conclusion and consider properties of the subscheme of tricanonically embedded stable curves in the Hilbert scheme. The second proof is based on Mumford’s earlier research and the new notion of an algebraic stack. The authors apply concepts from the theory of schemes to algebraic stacks to show that the moduli stack over Spec \mathbb{Z} is a proper, smooth and separated stack of finite type. From a generalization of the Enriques-Zariski connectedness theorem the authors conclude the irreducibility of the moduli space of curves, including the case of higher level moduli spaces.

In their introduction Deligne and Mumford cite a range of approaches to irreducibility. The approaches include a proof by Enriques-Chisini based on analyzing fixed degree coverings of \mathbb{P}^1 with fixed number of ordinary branch points, an analytic proof using Teichmüller’s theorem that Teichmüller space is a topological cell and a proof by Grothendieck using the given stable reduction theorem and étale cohomology. Explanation is provided on the use of a category larger than the category of schemes. It is explained for the new 2-category, that for objects X, Y then $\text{hom}(X, Y)$ is a category with all morphisms being isomorphisms. The objects of a 2-category are called algebraic stacks and the moduli space of curves is the underlying coarse variety of a moduli stack.

The present collection of papers is in honor of the fortieth anniversary of the research of Deligne and Mumford. Their work continues to the present as a fundamental contribution. Over the ensuing period, families of Riemann surfaces and algebraic curves have continued to arise in new and different areas of mathematics and physics. The range of approaches for studying
families of Riemann surfaces and algebraic curves has subsequently grown exponentially. A survey of current research on families and the moduli space of Riemann surfaces and algebraic curves would require a series of volumes. As editors, we set the goal of combining a collection of highly distinguished articles discussing a sampling of current research. A consideration for the goal was to include articles presenting algebraic, analytic and topological approaches. We also sought to combine articles representing the present state of techniques from the time of Deligne and Mumford, as well as articles representing approaches developed since that time.

There have been numerous influencing developments since the original research of Deligne and Mumford. The reader can find these developments and the continuing refinement of the existing methods of enumerative geometry, intersection theory and Brill-Noether theory throughout the contributions. The Maximal Rank Conjecture for the Hilbert function of a curve continues to guide considerations. Harer’s calculation of the second homology group and stability of homology for the moduli space continues as a basic influence for topological considerations. More generally, Looijenga’s conjecture for the moduli space of to be a union of \(g - 1 \) affine subsets influences current perspective. The Madsen-Weiss theorem that the stable cohomology of the mapping class groups is a polynomial algebra and the resolution of the Mumford conjecture on stable cohomology are continuing influences. Solutions of Witten’s conjecture, the introduction of hierarchies and even combinatorial methods to study tautological intersection numbers are major themes for current research. The Harris and Mumford result that for large genus the moduli space of stable curves is of general type is a further continuing influence. The question of birationality for small genera moduli spaces continues to guide investigations. Algebraic developments have been matched by analytical and further topological approaches. Harmonic maps have developed as a major tool. An important development is the discovery that a harmonic map from a compact Kähler manifold to a hyperbolic Riemann surface induces a holomorphic foliation on the domain. More broadly, existence and comparison arguments for non linear PDEs have undergone dramatic development. The development is suggested in the Liu-Sun-Yau results on positivity and equivalence of the classical invariant metrics for Teichmüller space. Harer’s results and the original proof of Witten’s conjecture involve the action of the mapping class group on Teichmüller space. Developments have been accompanied by Thurston’s foundational theory of measured foliations, measured geodesic laminations and the classification of elements of the mapping class group. Our understanding of the Teichmüller and Weil-Petersson metrics has undergone a renaissance in the ensuing period. Recent influencing results on the Teichmüller metric geometry include McMullen’s proof in genus 2 that the closure of the \(GL^+(2; \mathbb{R}) \) action on the Hodge bundle over moduli space is an algebraic orbifold; the Sinai-type asymptotics of Eskin and Mirzakhani for counting pseudo Anosov
elements in the mapping class group and a precise picture of the Teichmüller metric in finite and infinite dimensions.

The volume represents a compilation of the time and effort of the authors. We would like to take this opportunity to thank each author for their contribution. We also take this opportunity to thank the referees for their important role. We invite the reader to study each of the articles.

Lizhen Ji
Scott A. Wolpert
Shing-Tung Yau
October, 2009
Contents

Preface .. v
Divisors in the moduli spaces of curves
Enrico Arbarello and Maurizio Cornalba 1
Stability phenomena in the topology of moduli spaces
Ralph L. Cohen .. 23
Birational aspects of the geometry of $\overline{\mathcal{M}}_g$
Gavril Farkas ... 57
The universal Whitham hierarchy and the geometry of
the moduli space of pointed Riemann surfaces
Samuel Grushevsky and Igor Krichever 111
Brill-Noether theory
Joe Harris .. 131
$GL^+_2(\mathbb{R})$-orbit closures via topological splittings
Pascal Hubert, Erwan Lanneau, and Martin Möller 145
Harmonic mappings and moduli spaces of Riemann surfaces
Jürgen Jost and Shing-Tung Yau 171
Algebraic structures on the topology of moduli spaces
of curves and maps
Y.-P. Lee and R. Vakil .. 197
Recent development on the geometry of the Teichmüller
and moduli spaces of Riemann surfaces
Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau 221
The universal properties of Teichmüller spaces
Vladimir Markovic and Dragomir Šarić 261
Geometry of Teichmüller space with the Teichmüller metric
Howard Masur .. 295

GIT constructions of moduli spaces of stable curves and maps
Ian Morrison .. 315

Riemann surfaces, integrable hierarchies, and singularity theory
Yongbin Ruan .. 371