Surveys of Modern Mathematics
Volume II

Lie Theory and Representation Theory

edited by

Naihong Hu
Bin Shu
Jianpan Wang
Surveys of Modern Mathematics, Volume II
Lie Theory and Representation Theory

Naihong Hu
Bin Shu
Jianpan Wang

2010 Mathematics Subject Classification. 16T05, 14F10, 16G60, 14L15, 17B10, 17B50, 20J06, 20G05, 20G10, 32C38.
SURVEYS OF MODERN MATHEMATICS

Series Editors
Shing-Tung Yau
Harvard University
Cambridge, Massachusetts
U.S.A.

Lizhen Ji
University of Michigan, Ann Arbor
U.S.A.

Yat-Sun Poon
University of California at Riverside
U.S.A.

Jie Xiao
Tsinghua University
Beijing, China

Jean-Pierre Demailly
Institut Fourier
Laboratoire de Mathématiques
Saint-Martin d’Hères, France

Eduard J.N. Looijenga
Universiteit Utrecht
The Netherlands

Neil Trudinger
Mathematical Sciences Institute
Australian National University
Canberra, Australia
Preface

During the period from July 13 to July 31, 2009, East China Normal University hosted the second workshop and summer school on Lie Theory and Representation Theory. This volume contains the lecture notes of three courses in that summer school, together with the lecture notes of one course given in the first summer school which was held in 2006.

This volume consists of articles by Shun-Jen Cheng and Weiqiang Wang, Rolf Farnsteiner, Daniel K. Nakano, and Toshiyuki Tanisaki. These articles focus on different areas in Lie theory and representation theory. The article jointly by Cheng and Wang introduces some recent developments of representations of Lie superalgebras, explaining how Lie superalgebras of types \mathfrak{gl} and \mathfrak{osp} provide a natural framework for generalized Schur and Howe dualities, and how a super duality gives a conceptual solution to the irreducible character problem for these Lie superalgebras in terms of the classical Kazhdan-Lusztig polynomials.

Farnsteiner’s article discusses combinatorial and geometric aspects of representation theory of finite group schemes, and focuses on the “classical” theory of co-commutative Hopf algebras, the defining algebras of affine algebraic group schemes.

Nakano’s article gives a survey of recent developments in the representation theory and cohomology theory of reductive algebraic groups, their Frobenius kernels and their associated finite groups of Lie type.

Tanisaki’s article presents an overview of the theory of D-modules and its application to representations of Lie algebras.

This volume is well suited for graduate students in the fields of Lie theory and representation theory and related topics, and also for researchers who wish to learn about some current core areas in Lie theory and representation theory and their applications.

At last, we sincerely express our thanks to the Department of Mathematics, the International Exchange Division and the Graduate School of East China Normal University for their financial support to the summer schools and workshops in 2006 and 2009. We are grateful to National Natural Science Foundation of China.
Preface

for financial support (Grant:10926022) in 2009. Our deep appreciation also goes to our colleagues Pei Gu, Youyi Wu and Hongyan Zhang for their assistance in organizing these activities.

Jianpan Wang
Bin Shu
Naihong Hu
In Shanghai
31 October, 2010
Contents

Shun-Jen Cheng and Weiqiang Wang: Dualities for Lie Superalgebras 1
 0 Introduction .. 1
 1 Lie superalgebra ABC .. 5
 2 Finite-dimensional modules of Lie superalgebras 11
 3 Schur-Sergeev duality .. 18
 4 Howe duality for Lie superalgebras of type \mathfrak{gl} 25
 5 Howe duality for Lie superalgebras of type \mathfrak{osp} 29
 6 Super duality .. 35
 References .. 42

Rolf Farnsteiner: Combinatorial and Geometric Aspects of the
Representation Theory of Finite Group Schemes 47
 0 Introduction ... 47
 1 Finite group schemes .. 49
 2 Complexity and representation type 78
 3 Support varieties and support spaces 87
 4 Varieties of tori .. 106
 5 Quivers and path algebras ... 114
 6 Representation-finite and tame group schemes 125
 References .. 144

Daniel K. Nakano: Cohomology of Algebraic Groups, Finite Groups,
and Lie Algebras: Interactions and Connections 151
 1 Overview ... 151
 2 Representation theory ... 153
 3 Homological algebra .. 156
 4 Relating support varieties .. 158
 5 Relating cohomology .. 163
 6 Computing cohomology for finite groups of Lie type 168
 References .. 173

Toshiyuki Tanisaki: D-modules and Representation Theory 177
 1 Motivation .. 177
 2 Basic concepts .. 183
Contents

3 Derived category .. 189
4 Coherent D-modules .. 196
5 Regular holonomic D-modules 208
6 Application to representation theory 214
References .. 218