Advanced Lectures in Mathematics (ALM)

ALM 1: Superstring Theory
ALM 2: Asymptotic Theory in Probability and Statistics with Applications
ALM 3: Computational Conformal Geometry
ALM 4: Variational Principles for Discrete Surfaces
ALM 6: Geometry, Analysis and Topology of Discrete Groups
ALM 7: Handbook of Geometric Analysis, No. 1
ALM 8: Recent Developments in Algebra and Related Areas
ALM 9: Automorphic Forms and the Langlands Program
ALM 10: Trends in Partial Differential Equations
ALM 11: Recent Advances in Geometric Analysis
ALM 12: Cohomology of Groups and Algebraic K-theory
ALM 13: Handbook of Geometric Analysis, No. 2
ALM 14: Handbook of Geometric Analysis, No. 3
ALM 15: An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rational Lattices
ALM 16: Transformation Groups and Moduli Spaces of Curves
ALM 17: Geometry and Analysis, No. 1
ALM 18: Geometry and Analysis, No. 2
ALM 19: Arithmetic Geometry and Automorphic Forms
ALM 20: Surveys in Geometric Analysis and Relativity
ALM 21: Advances in Geometric Analysis
ALM 23: Recent Developments in Geometry and Analysis
ALM 24: Handbook of Moduli, Volume I
ALM 25: Handbook of Moduli, Volume II
ALM 26: Handbook of Moduli, Volume III
Handbook of Moduli
Volume I

edited by
Gavril Farkas · Ian Morrison
ADVANCED LECTURES IN MATHEMATICS

Executive Editors
Shing-Tung Yau
Harvard University
Cambridge, Mass., U.S.A.

Kefeng Liu
University of California at Los Angeles
Los Angeles, Calif., U.S.A.

Lizhen Ji
University of Michigan, Ann Arbor
Ann Arbor, Mich., U.S.A.

Editorial Board
Chongqing Cheng
Nanjing University
Nanjing, China

Tatsien Li
Fudan University
Shanghai, China

Zhong-Ci Shi
Institute of Computational Mathematics
Chinese Academy of Sciences (CAS)
Beijing, China

Zhiying Wen
Tsinghua University
Beijing, China

Zhouping Xin
The Chinese University of Hong Kong
Hong Kong, China

Lo Yang
Institute of Mathematics
Chinese Academy of Sciences (CAS)
Beijing, China

Weiping Zhang
Nankai University
Tianjin, China

Xiping Zhu
Sun Yat-sen University
Guangzhou, China

Xiangyu Zhou
Institute of Mathematics
Chinese Academy of Sciences (CAS)
Beijing, China
The Handbook of Moduli is dedicated to the memory of Eckart Viehweg, whose untimely death precluded a planned contribution, and to David Mumford, who first proposed the project, for all that they both did to nurture its subject; and to Angela Ortega and Jane Reynolds for everything that they do to sustain its editors.
Contents

Volume I

Preface
Gavril Farkas and Ian Morrison .. xiii

Logarithmic geometry and moduli
Dan Abramovich, Qile Chen, Danny Gillam, Yuhao Huang, Martin Olsson,
Matthew Satriano and Shenghao Sun ... 1

Invariant Hilbert schemes
Michel Brion .. 63

Algebraic and tropical curves: comparing their moduli spaces
Lucia Caporaso .. 119

A superficial working guide to deformations and moduli
F. Catanese .. 161

Moduli spaces of hyperbolic surfaces and their Weil–Petersson volumes
Norman Do ... 217

Equivariant geometry and the cohomology of the moduli space of curves
Dan Edidin .. 259

Tautological and non-tautological cohomology of the moduli space of curves
C. Faber and R. Pandharipande .. 293

Alternate compactifications of moduli spaces of curves
Maksym Fedorchuk and David Ishii Smyth 331

The cohomology of the moduli space of Abelian varieties
Gerard van der Geer .. 415

Moduli of K3 surfaces and irreducible symplectic manifolds
V. Gritsenko, K. Hulek and G.K. Sankaran 459

Normal functions and the geometry of moduli spaces of curves
Richard Hain .. 527
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter spaces of curves</td>
<td>1</td>
</tr>
<tr>
<td>Joe Harris</td>
<td></td>
</tr>
<tr>
<td>Global topology of the Hitchin system</td>
<td>29</td>
</tr>
<tr>
<td>Tamás Hausel</td>
<td></td>
</tr>
<tr>
<td>Differential forms on singular spaces, the minimal model program,</td>
<td>71</td>
</tr>
<tr>
<td>and hyperbolicity of moduli stacks</td>
<td></td>
</tr>
<tr>
<td>Stefan Kebekus</td>
<td></td>
</tr>
<tr>
<td>Contractible extremal rays on $\overline{M}_{0,n}$</td>
<td>115</td>
</tr>
<tr>
<td>Seán Keel and James McKernan</td>
<td></td>
</tr>
<tr>
<td>Moduli of varieties of general type</td>
<td>131</td>
</tr>
<tr>
<td>János Kollár</td>
<td></td>
</tr>
<tr>
<td>Singularities of stable varieties</td>
<td>159</td>
</tr>
<tr>
<td>Sándor Kovács</td>
<td></td>
</tr>
<tr>
<td>Soliton equations and the Riemann-Schottky problem</td>
<td>205</td>
</tr>
<tr>
<td>I. Krichever and T. Shiota</td>
<td></td>
</tr>
<tr>
<td>GIT and moduli with a twist</td>
<td>259</td>
</tr>
<tr>
<td>Radu Laza</td>
<td></td>
</tr>
<tr>
<td>Good degenerations of moduli spaces</td>
<td>299</td>
</tr>
<tr>
<td>Jun Li</td>
<td></td>
</tr>
<tr>
<td>Localization in Gromov-Witten theory and Orbifold Gromov-Witten</td>
<td>353</td>
</tr>
<tr>
<td>Chiu-Chu Melissa Liu</td>
<td></td>
</tr>
<tr>
<td>From WZW models to modular functors</td>
<td>427</td>
</tr>
<tr>
<td>Eduard Looijenga</td>
<td></td>
</tr>
<tr>
<td>Shimura varieties and moduli</td>
<td>467</td>
</tr>
<tr>
<td>J.S. Milne</td>
<td></td>
</tr>
<tr>
<td>The Torelli locus and special subvarieties</td>
<td>549</td>
</tr>
<tr>
<td>Ben Moonen and Frans Oort</td>
<td></td>
</tr>
</tbody>
</table>
Birational geometry for nilpotent orbits
Yoshinori Namikawa .. 1

Cell decompositions of moduli space, lattice points and Hurwitz problems
Paul Norbury ... 39

Moduli of abelian varieties in mixed and in positive characteristic
Frans Oort ... 75

Local models of Shimura varieties, I. Geometry and combinatorics
Georgios Pappas, Michael Rapoport and Brian Smithling 135

Generalized theta linear series on moduli spaces of vector bundles on curves
Mihnea Popa ... 219

Computer aided unirationality proofs of moduli spaces
Frank-Olaf Schreyer .. 257

Deformation theory from the point of view of fibered categories
Mattia Talpo and Angelo Vistoli .. 281

Mumford’s conjecture — a topological outlook
Ulrike Tillmann ... 399

Rational parametrizations of moduli spaces of curves
Alessandro Verra ... 431

Hodge loci
Claire Voisin ... 507

Homological stability for mapping class groups of surfaces
Nathalie Wahl ... 547
Preface

Gavril Farkas and Ian Morrison

The title of these volumes might lead unwary readers to expect an encyclopedic survey for experts in the study of moduli problems in algebraic geometry. What they will discover is rather different. Our aims here are, first, to clarify the audience that we hope the Handbook will serve and the approach it does takes to its subject and, second, to thank all those who have assisted us in helping it realize these aims.

To begin with, a bit of history. The idea for a Handbook of Moduli originated in a discussion between David Mumford and Lizhen Ji at Michigan in 2006. Lizhen and David produced a draft table of contents that was circulated at the Symposium marking David’s retirement from Brown in 2007. The Handbook was originally to have been edited by Ching-Li Chai and Amnon Neeman, but the demands of their work with Takahiro Shiota as editors of the second volume of Mumford’s Collected Papers took priority and, at their urging, we agreed to take over editorship in the spring of 2009.

We quickly reached the conclusion that what was needed for many topics was not a discussion of the latest results aimed at specialists, but a survey aimed at a broad community of producers (and even some consumers from cognate areas) of algebraic geometry, most of whom had little prior familiarity with the area. Our goal became a Handbook that would introduce the techniques, examples and results essential to each topic, and say enough about recent developments to prepare the reader to tackle the primary literature in the area. We particularly sought to elicit contributions that illustrated “secret handshakes”, yogas and heuristics that experts use privately to guide intuition or simplify calculation but that are replaced by more formal arguments, or simply do not appear, in articles aimed at other specialists.

For many topics, the Handbook succeeds much better than we dared to hope. The credit is due entirely to the hard work of the Handbook’s many authors in producing articles that conformed to the goals we had set. Again and again, we were delighted to find that authors, instead of taking the easy course of cutting and pasting from earlier surveys and primary references, had made the substantially greater effort to write the original treatments needed to bridge gaps in the literature and make important problems accessible to a wide audience for the first time.

We expect that they will reap a just reward and that their articles will be widely read and referenced. Here we want to offer them not only our sincerest thanks, but also those of the Handbook’s readers, for their exceptional generosity. Many
Handbook articles were also improved by extensive and thoughtful referees’ reports. We are grateful for all work that the referees did to improve the Handbook and take this opportunity to thank them collectively on behalf of the contributors.

We must, however, disclaim that the Handbook’s coverage is often incomplete, in extreme cases, non-existent. The blame for these gaps is mostly ours. When we solicited contributions to the Handbook, each invitation was accompanied by a suggested topic, and we selected contributors who we thought would be able to cover their topics in the spirit discussed above. The results reflect both our knowledge and taste—of topics and of experts in them—and also, in some cases, our ignorance.

In some areas, we found it easy to produce candidate contributor–topic pairs, and to recruit the contributors we had identified. The Handbook’s discussion of, for example, moduli spaces of curves is, therefore, particularly complete—some will say, not without a certain justice, excessive.

In other areas, we had more difficulty both in identifying and in enlisting candidates. A few of the more obvious gaps arose when authors who had accepted our invitation backed out after it was too late to find replacements. A more deeply felt loss—one that impacts the whole subject of moduli—was the untimely death of Eckart Viehweg, who had been one of the first to agree to contribute.

We also omitted a few topics as a courtesy to the authors of monographs devoted to them that we knew to be in preparation, others because papers treating them in the spirit we were seeking had recently appeared, and yet others because we felt that they were developing so rapidly that any contribution dealing with them would have a limited shelf-life. In hindsight, not all of these decisions were well taken.

As a result, the Handbook’s treatment of moduli has some major lacunae (mirror symmetry, wall crossing formulae) and there are other topics (moduli of sheaves and bundles) which are discussed but not in the depth that their importance merits. We apologize to readers who may have hoped to find more about these subjects in the Handbook, and (with Lizhen’s encouragement) we challenge experts who feel that their areas deserve a fuller exposition to offer him proposals for additional Handbook volumes devoted to them.

The Handbook also benefitted from the efforts of many other colleagues. Amnon Neeman showed considerable doggedness in recruiting us to succeed him and Ching-Li as editors. Scott Wolpert provided valuable advice on the cat-herding elements of the editor’s job. Dave Bayer helped enormously in setting up the final production process both to automate complex and error prone operations and to prevent inconsistencies between the \texttt{Bj\TeX} installations on our home systems and those at Higher Education Press.

Brian Bianchini, International Press’ book production manager, ensured that we had the resources we needed throughout the Handbook’s growth from the single volume originally projected to the present three. The Advanced Mathematics series editor, Lizhen Ji, was always ready to answer our questions, help with practical
difficulties, and adjust his schedule for the series to adapt to changes in ours. Lip-
ing Wang and her production staff at the Higher Education Press were unfailingly accommodating and helpful to us in resolving \textsc{\LaTeX} issues—even re\textsc{\LaTeX}ing several submissions to bring them into conformity with the Handbook style—and made every effort to ensure that the appearance of the Handbook volumes was up to the standard of their contents.

To all of them, and to many others who provided more informal help, we here offer our sincerest thanks.

Humboldt Universität, Institut für Mathematik, Unter den Linden 6, 10099 Berlin
\textit{E-mail address}: farkas@mathematik.hu-berlin.de

Department of Mathematics, Fordham University, Bronx, NY 10458
\textit{E-mail address}: morrison@fordham.edu