Introductory Lectures on Manifold Topology: Signposts

Thomas Farrell
Department of Mathematical Sciences
Binghamton University

Yang Su
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Surveys of Modern Mathematics, Volume VII
Introductory Lectures on Manifold Topology: Signposts

Thomas Farrell
Department of Mathematical Sciences, Binghamton University
Yang Su
Academy of Mathematics and Systems Science, Chinese Academy of Sciences
Dedicated to my mother with deepest gratitude

– Y. S.
Preface

The purpose of this book is to introduce to advanced graduate students and other interested mathematicians some of the basic technique and results from manifold topology. It is assumed that the reader is familiar with algebraic topology through cup products and Poincaré duality as well as with fiber bundles and characteristic classes; e.g. with the material in the first half of the book “Characteristic Classes” by J. W. Milnor and J. D. Stasheff. A glance at the Contents shows the topics that are covered. The book is based on a course of lectures given by the first author during the fall semester, 2009 at the Morningside Center of the Chinese Academy of Sciences. It was originally planned as a year long course; hence some of the topics alluded to in the Introduction are not covered here. These will be done in a second volume.

The writing of this book was partially supported by a grant from the National Science Foundation of the USA and by a Visiting Professorship at the Chinese Academy of Sciences of the first author, and by a grant from the National Science Foundation of China of the second author.
Contents

1 Introduction .. 1

2 The h-Cobordism Theorem ... 5
 2.1 The h-Cobordism Theorem and Generalized Poincaré Conjecture . 5
 2.2 Tangent vectors, embeddings, isotopies 9
 2.3 Handles and handlebody decomposition 13
 2.4 Calculus of handle moves 18
 2.5 Proof of the h-Cobordism Theorem 29

3 The s-Cobordism Theorem .. 35
 3.1 Statement of the s-Cobordism Theorem 35
 3.2 Whitehead group .. 40
 3.3 Whitehead torsion for chain complexes 43

4 Some Classical Results ... 53
 4.1 Novikov’s Theorem .. 53
 4.2 A counterexample to the Hurewicz Conjecture 55
 4.3 Milnor’s exotic spheres 58
 4.4 Rochlin’s Theorem .. 61
 4.5 Proof of Novikov’s Theorem 64
 4.6 Novikov Conjecture .. 72

5 Exotic Spheres and Surgery .. 75
 5.1 Plumbing .. 75
 5.2 Surgery .. 80

6 Hauptvermutung ... 89
 6.1 The Fundamental Theorem of algebraic K-theory 89
 6.2 Edwards-Cannon’s example 98
 6.3 The Hauptvermutung .. 102
 6.4 Whitehead torsion ... 103
 6.5 Proof of Stallings’ Theorem 108
 6.6 Farrell-Hsiang’s example 112
Index

E_8 Dynkin diagram, 78
K-flat, 115
$K_0(R)$, 90
$K_1(R)$, 40
$Nil(R)$, 89
$SK_1(R)$, 41
Θ_n, group of homotopy spheres, 78
$K_1(R)$, 44
bP_{n+1}, 78, 83
h-Cobordism Theorem, 7
h-cobordism, 6
h-cobordism torsion, 105
duality theorem, 107
s-Cobordism Theorem, 39

A
algebraic cancellation, 26
almost parallelizable, 61
anchor ring, 65
Arf invariant, 81
attaching disc, 19
attaching sphere, 19
augmentation, 36, 44

B
Bass projection, 92
Bass-Heller-Swan formula, 112
Bernoulli number, 67, 83
Borel Conjecture, 73
Bott Periodicity Theorem, 56

C
clutching construction, 56
cobordism, 6
combinatorial structure on S^n, 102
complementary disc, 19
complementary sphere, 19

E
Edwards-Cannon Theorem, 101
embedding, 11
engulfing, 114
exotic sphere, 78, 83
Milnor’s, 59

F
fibering theorem, 65
Fundamental Theorem of algebraic K-theory, 89

G
Generalized Poincaré Conjecture, 5
geometric cancellation, 23
Grothendieck construction, 92

H
handle, 13
index of, 13
handle addition, 26
handlebody decomposition, 14
$(2,3)$-, 35
dual, 22
regular, 29
standard, 20
t-standard, 21
Hauptvermutung, 94, 102
Higman’s trick, 95
Hirzebruch Index Theorem, 60, 67, 72
homology sphere, 100
Poincaré homology sphere, 100
homotopy sphere, 78
Hurewicz Conjecture, 3, 55

I
immersion, 11
incidence matrix, 21
integral group ring valued, 37
integral group ring, 36
isotopy, 11
Isotopy Extension Theorem, 11

K
Kervaire manifold, 77, 86

L
Lefschetz duality, 23
link of a vertex, 98

M
module
 free, 44
 projective, 44
 stably free, 52

N
Novikov Conjecture, 73
Novikov Homotopy Invariance Theorem, 72
Novikov’s Theorem, 54, 55

P
piecewise linear (PL) triangulation, 102
plumbing, 75, 78

Q
quaternionic line bundle, 58, 63

R
regular cell structure, 16
regular ring, 96
Rochlin’s Theorem, 61

S
Serre Conjecture, 96
Serre’s Theorem, 57
simple homotopy equivalence, 105
splitting theorem, 65
stable J-homomorphism, 57, 62, 64, 67, 78, 84
star of a vertex, 98
strongly equivalent triangulations, 102
structure set, 115
surgery, 81, 84, 85

T
torsion
 of a finitely based acyclic chain complex, 47, 48
 of an automorphism, 46
trading handles, 32

W
weakly combinatorial triangulation, 99
Whitehead group, 39, 40, 95, 96
Whitehead torsion, 103, 105
Whitehead’s Triangulation Theorem, 14
Whitney trick, 26
 non-simply connected, 38