Contents

Synopsis xi
Preface xvi

Part I. Operators with Index and Homotopy Theory 1

Chapter 1. Fredholm Operators 2
 1. Hierarchy of Mathematical Objects 2
 2. The Concept of Fredholm Operator 3
 4. Operators of Finite Rank and the Fredholm Integral Equation 9
 5. The Spectra of Bounded Linear Operators: Basic Concepts 10

 1. Analytic Methods. The Adjoint Operator 12
 2. Compact Operators 18
 3. The Classical Integral Operators 25
 4. The Fredholm Alternative and the Riesz Lemma 26
 5. Sturm-Liouville Boundary Value Problems 28
 6. Unbounded Operators 34
 7. Trace Class and Hilbert-Schmidt Operators 53

Chapter 3. Fredholm Operator Topology 63
 1. The Calkin Algebra 63
 2. Perturbation Theory 65
 3. Homotopy Invariance of the Index 68
 4. Homotopies of Operator-Valued Functions 72
 5. The Theorem of Kuiper 77
 6. The Topology of \mathcal{F} 81
 7. The Construction of Index Bundles 82
 8. The Theorem of Atiyah-Jänich 88
 9. Determinant Line Bundles 91
 10. Essential Unitary Equivalence and Spectral Invariants 108

Chapter 4. Wiener-Hopf Operators 120
 1. The Reservoir of Examples of Fredholm Operators 120
 2. Origin and Fundamental Significance of Wiener-Hopf Operators 121
 3. The Characteristic Curve of a Wiener-Hopf Operator 122
 4. Wiener-Hopf Operators and Harmonic Analysis 123
 5. The Discrete Index Formula. The Case of Systems 125
 6. The Continuous Analogue 129
Part II. Analysis on Manifolds

Chapter 5. Partial Differential Equations in Euclidean Space
1. Linear Partial Differential Equations
2. Elliptic Differential Equations
3. Where Do Elliptic Differential Operators Arise?
4. Boundary-Value Conditions
5. Main Problems of Analysis and the Index Problem
6. Numerical Aspects
7. Elementary Examples

Chapter 6. Differential Operators over Manifolds
1. Differentiable Manifolds — Foundations
2. Geometry of C^∞ Mappings
3. Integration on Manifolds
4. Exterior Differential Forms and Exterior Differentiation
5. Covariant Differentiation, Connections and Parallelity
6. Differential Operators on Manifolds and Symbols
7. Manifolds with Boundary

Chapter 7. Sobolev Spaces (Crash Course)
1. Motivation
2. Definition
3. The Main Theorems on Sobolev Spaces
4. Case Studies

Chapter 8. Pseudo-Differential Operators
1. Motivation
2. Canonical Pseudo-Differential Operators
3. Principally Classical Pseudo-Differential Operators
4. Algebraic Properties and Symbolic Calculus
5. Normal (Global) Amplitudes

Chapter 9. Elliptic Operators over Closed Manifolds
2. Elliptic Operators — Regularity and Fredholm Property
3. Topological Closure and Product Manifolds
4. The Topological Meaning of the Principal Symbol — A Simple Case Involving Local Boundary Conditions

Part III. The Atiyah-Singer Index Formula

Chapter 10. Introduction to Topological K-Theory
1. Winding Numbers
2. The Topology of the General Linear Group
3. Elementary K-Theory
4. K-Theory with Compact Support
5. Proof of the Periodicity Theorem of R. BOTT

Chapter 11. The Index Formula in the Euclidean Case
1. Index Formula and Bott Periodicity
2. The Difference Bundle of an Elliptic Operator 276
3. The Index Theorem for $\text{Ell}_c(\mathbb{R}^n)$ 281

Chapter 12. The Index Theorem for Closed Manifolds 284
1. Pilot Study: The Index Formula for Trivial Embeddings 285
2. Proof of the Index Theorem for Nontrivial Normal Bundle 287
3. Comparison of the Proofs 301

Chapter 13. Classical Applications (Survey) 310
1. Cohomological Formulation of the Index Formula 311
2. The Case of Systems (Trivial Bundles) 316
3. Examples of Vanishing Index 317
4. Euler Characteristic and Signature 319
5. Vector Fields on Manifolds 325
6. Abelian Integrals and Riemann Surfaces 329
7. The Theorem of Hirzebruch-Riemann-Roch 333
8. The Index of Elliptic Boundary-Value Problems 337
9. Real Operators 356
10. The Lefschetz Fixed-Point Formula 357
11. Analysis on Symmetric Spaces: The G-equivariant Index Theorem 360
12. Further Applications 362

Part IV. Index Theory in Physics and the Local Index Theorem 363

Chapter 14. Physical Motivation and Overview 364
1. Classical Field Theory 365
2. Quantum Theory 373

Chapter 15. Geometric Preliminaries 394
1. Principal G-Bundles 394
2. Connections and Curvature 396
3. Equivariant Forms and Associated Bundles 400
4. Gauge Transformations 409
5. Curvature in Riemannian Geometry 414
6. Bochner-Weitzenböck Formulas 434
7. Characteristic Classes and Curvature Forms 443
8. Holonomy 455

Chapter 16. Gauge Theoretic Instantons 460
1. The Yang-Mills Functional 460
2. Instantons on Euclidean 4-Space 466
3. Linearization of the Moduli Space of Self-dual Connections 489
4. Manifold Structure for Moduli of Self-dual Connections 496

Chapter 17. The Local Index Theorem for Twisted Dirac Operators 513
1. Clifford Algebras and Spinors 513
2. Spin Structures and Twisted Dirac Operators 525
3. The Spinorial Heat Kernel 538
4. The Asymptotic Formula for the Heat Kernel 549
5. The Local Index Formula 576
6. The Index Theorem for Standard Geometric Operators 594

Chapter 18. Seiberg-Witten Theory 643
 1. Background and Survey 643
 2. Spin\(^c\) Structures and the Seiberg-Witten Equations 655
 3. Generic Regularity of the Moduli Spaces 663
 4. Compactness of Moduli Spaces and the Definition of S-W Invariants 685

Appendix A. Fourier Series and Integrals - Fundamental Principles 705
 1. Fourier Series 705
 2. The Fourier Integral 707

Appendix B. Vector Bundles 712
 1. Basic Definitions and First Examples 712
 2. Homotopy Equivalence and Isomorphy 716
 3. Clutching Construction and Suspension 718

Bibliography 723

Index of Notation 741

Index of Names/Authors 749

Subject Index 757