Contents Online

# Mathematical Research Letters

## Volume 19 (2012)

### Number 6

### Determinants of pseudo-Laplacians

Pages: 1297 – 1308

DOI: http://dx.doi.org/10.4310/MRL.2012.v19.n6.a10

#### Authors

#### Abstract

We derive comparison formulas relating the zeta-regularized determinant of an arbitrary self-adjoint extension of the Laplace operator with domain $C^\infty_c(X\setminus \{P\})\subset L_2(X)$ to the zeta-regularized determinant of the Laplace operator on $X$. Here, $X$ is a compact Riemannian manifold of dimension $2$ or $3$; $P\in X$.

Published 18 July 2013