Mathematical Research Letters

Volume 28 (2021)

Number 6

The universal sheaf as an operator

Pages: 1793 – 1840



Andrei Neguţ (Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.)


We compute the universal sheaf of moduli spaces $\mathcal{M}$ of sheaves on a surface $S$, as an operator $\Lambda = {\lbrace \textrm{symmetric polynomials} \rbrace} \to K(\mathcal{M})$, thus generalizing the viewpoint of [4] to arbitrary rank and general smooth surfaces.

Received 28 July 2020

Accepted 25 April 2021

Published 29 August 2022